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A B S T R A C T

Modeling forest fire behavior is very important for the effective control of forest fires and the setting up of 
necessary precautions before fires start. However, studies of forest fire behavior are complex studies that depend 
on many variables and usually involve large data sets. For this reason, the predictive power and speed of classical 
forecasting models are lower than of artificial intelligence models in cases involving big data and many variables. 
Moreover, classical forecasting models must satisfy certain statistical assumptions, unlike artificial intelligence 
methods. Thus, in this study, predictions were made of surface fire behavior, especially the rate of fire spread and 
the fire intensity, at the location at which fires started using two artificial intelligence methods, an artificial 
neural network and a decision tree. The accuracy of the developed models was fitted and tested. Finally, the 
classical regression model for predicting surface fire behavior was compared with the two artificial intelligence 
methods. The accuracy measures of the artificial intelligence models were found to be better than those of the 
classical model.   

1. Introduction

Forests are some of the most important natural resources in the world
and play a key role in maintaining ecological balance, and forest eco-
systems provide many ecological and economic services for human life. 
Forest fires are considered some of the most detrimental events that 
interrupt these services. Extreme meteorological conditions greatly in-
crease the destructive effects of forest fires. The fires have complicated 
causes and are often very difficult to fight. Therefore, the prediction of 
fire behavior is essential for the successful management of fires, the 
effective planning of resources for fighting them, and the mitigation of 
the damage they cause (Mitsopoulos et al. 2017; Yavuz et al. 2018; 
Sevinc et al. 2020; Abid 2021). Various classical regression models have 
been developed to predict forest fire behavior (Fryer and Johnson 1988; 
Alexander and Cruz 2006; Sullivan 2007; Yassemi et al. 2008; Fernandes 
2009; Matthews et al. 2012; Kucuk et al. 2012; Cruz et al. 2017; Kucuk 
et al. 2018; Bilgili et al. 2019; Alhaj-Khalaf et al. 2021; Cruz et al. 2022). 
Other models of forest fires based on the machine learning method of 
artificial neural networks (Pham et al. 2020) have predicted flame 
characteristics and fire spread (Chetehouna et al. 2015). 

Fire detection and mapping, fire weather and climate change (Li 

et al. 2009; San-Miguel-Ayanz et al. 2012), fire probability and risk, fire 
hazard assessment, and fire behavior prediction have become very 
popular in recent years, driven by advances in fire sciences, digital and 
statistical information, the remote sensing technologies, including GIS, 
and the growing climate crisis (Vakalis et al 2004; Finney et al. 2011; 
Aricak et al. 2014; Rodrigues and Riva, 2014; Preisler et al. 2014; 
Goldarag et al. 2016; Lary et al. 2016; Huiling at al. 2016; Zhang et al 
2018; Sivrikaya and Küçük, 2022). Probabilistic methods such as logistic 
regression, neural networks, and fuzzy logic regression are commonly 
used for forest fire studies (Jaafari et al. 2019). Traditional models for 
predicting fire risk and behavior include generalized linear models 
based on logistic, Poisson, and negative binomial distributions. How-
ever, these models cannot process multidimensional big data. Re-
searchers have stated that artificial intelligence outperforms traditional 
statistical methods in solving the big data problem encountered in 
modeling forest fires. In addition, traditional statistical models must 
satisfy certain statistical assumptions, unlike artificial intelligence 
methods. 

The traditional approaches generally lack the ability to combine data 
and evidence from various sources, and they also do not consider un-
certainty or missing data. Therefore, new approaches, which consider 
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uncertainty and link the various long-term effects of factors to each 
other, are needed. Such methods should be capable of being integrated 
into multiple system operations. Artificial intelligence techniques have 
been very useful in meeting this need (Jain et al. 2020). They allow for 
modeling analysis to support decision making within an adaptive 
management framework (Cencerrado et al. 2014; O’Connor et al. 2017; 
Sayad et al. 2019). 

In recent years, artificial intelligence methods have proven to be very 
effective in predicting environmental disasters (Hart et al. 2019; Tan 
et al. 2021). However, there are difficulties in predicting the behavior of 
forest fires because they are very complex paradoxical events that are 
influenced by many environmental factors. One of the most effective 
methods of overcoming the difficulties of prediction is the use of arti-
ficial intelligence techniques. The artificial neural network, which is a 
mathematical software simulation, is used to expand the data and to 
provide new and unknown data. In practice, the artificial neural 
network is used as an alternative to traditional methods and is very 
helpful in producing satisfactory solutions for difficult problems. Arti-
ficial intelligence is especially useful in solving problems that are rich in 
data but weak in modeling and that no traditional method can solve 
(Kotsiantis et al. 2006; Kinaneva et al. 2019; Liang et al. 2019; Razavi- 
Termeh et al. 2020; Wu et al. 2022). This makes the use of artificial 
intelligence advantageous in predicting forest fires. Data based on 
wildfires and experimental fires are usually not sufficient for accurate 
predictions and cannot encompass every situation. Artificial intelligence 
not only prevents data loss in fire behavior predictions, but also con-
tributes to the solution of many data problems in making predictions. 

Studies using artificial intelligence to predict fire behavior are quite 
limited (Kozik et al. 2013; Zheng et al. 2017; Hodges and Lattimer, 
2019). In this study, for the first time in the literature, we propose a new 
approach to predicting fire behavior using artificial intelligence. We 
explain the structure of an artificial neural network and decision tree, 
the advantages and disadvantages of each, and the differences of each 
from classical regression models. We show how forest fire behavior can 
be predicted using artificial intelligence. 

Forest fuel characteristics and weather conditions are two factors 
that determine the ecological and economic impacts of a fire. In the 
extreme weather conditions experienced in 2021, the biggest forest fires 
in the history of Turkey occurred, and a total of 139.503 ha of forest area 
was burned (GDF 2022). The Manavgat forest fire (~55000 ha) was 
recorded as the largest forest area burned in a fire (Bilgili et al. 2021). 

Forest fires occur in different stand types, but the fuel types and the 
forest management plan applications in a stand determine to what de-
gree a fire will directly and indirectly affect the forest. In young stands 
with no interventions, a fire can easily turn into a crown fire because of 

the characteristics of the fuel and the stand’s horizontal and vertical 
continuity. For this reason, silvicultural interventions are made to delay 
and make it difficult for fires that start on the surface to reach the crown, 
to increase the crown base height, and to decrease the crown bulk 
density within the scope of forest fuel management (Kucuk et al. 2021). 
However, slash fuels that accumulate in a stand as a result of silvicul-
tural interventions pose a great danger for fires. For this reason, it is 
important to know how a fire will develop when slash fuels have accu-
mulated in the surface layer of such stands. Kucuk et al (2012) stated 
that forest fires first started in the litter layer and turned into larger fires 
depending on environmental conditions. 

This study was the first study conducted in Turkey using the two 
different artificial intelligence methods of an artificial neural network 
and a decision tree, instead of the classical regression model, to predict 
the fire behavior of Pinus nigra slash fuels. Artificial neural network 
models were originally developed to solve problems that linear regres-
sion models failed to solve. Problems of regression models, in which 
nonlinear relationships are represented, are not always solvable. The 
search for solutions to such problems has been one of the starting points 
in the development of artificial neural networks. Another feature that 
makes this study very different from others is that it uses the results of 
experimentally obtained fire behavior models and the results of models 
developed using artificial intelligence. In other words, it shows that 
artificial intelligence, which is used successfully in many fields for its 
ability to go beyond the classical modeling approach, can also be used in 
the prediction of fire behavior. This point brought the innovative aspects 
of this study to the fore. The decision tree model used in the study, which 
makes the innovative aspects of this study even stronger, is another 
alternative artificial intelligence model. Decision trees are some of the 
most practical methods for revealing the relationships between vari-
ables. The results of the artificial neural network model and decision 
tree model developed for predicting the rate of fire spread and the fire 
intensity, which are fire behavior parameters, are compared with the 
results of the traditional regression models. This study showed that 
artificial intelligence can be used in fighting the mega forest fires 
increasingly seen in recent years, especially those due to the effects of 
the climate crisis. 

2. Methods

In this study, the surface fire behavior at the location where the fire
started was predicted using artificial intelligence, especially the rate of 
fire spread and the fire intensity. The suitability of the developed models 
was fitted and tested. Finally, the classical regression models developed 
for predicting surface fire behavior were compared with the two 

Fig. 1. Comparison of artificial intelligence models and classical regression model in predicting fire surface behavior.  
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artificial intelligence models (Fig. 1). Ten variables were used in the 
study: air temperature (T), relative humidity (RH), wind speed (W), 
needle moisture content (NMC), fine fuel moisture content (FFMC), 
ignition of fire line length (ILL), total fuel load (TFL), rate of fire spread 
(ROS), flame length (FL), and fire intensity (FI). 

2.1. Study area 

The study was carried out in an Anatolian black pine (Pinus nigra 
Arnold) forest located in the Kastamonu Forest District in northwestern 
Türkiye. This black pine species is the most widespread species in the 
area after Calabrian pine (Pinus brutia Ten.); it has economic and 
ecological value and is distributed in fire-prone areas in Türkiye (Kucuk 
2000; GDF 2022). 

The study area is located at 546819, 4577880 UTM, and its average 
elevation is 1200 m. The study area has a northwestern Black Sea 
climate characterized by short hot summers and long cold winters. 
During the summer season, the average temperature varies from 25 to 
38 ◦C, and the fire season generally starts in late June and continues 
until mid-September. The stand age of the study area was 45 to 50 years, 
and the average stocking findings showed 560 stems ha− 1 with an 
average tree diameter of 20 cm at breast height. The stand height was 16 
m, and the mean stand crown closure was 75 %. Surface fuels consisted 
of a litter layer of dead needles, branches, and twigs on the forest floor. 

2.2. Measurements before the experimental fires 

A total of 33 small-scale burning plots were prepared on relatively 
flat surfaces in the thinned black pine stand. The fuel depth in the 
burning plots ranged between 20 and 45 cm. Three ignition line widths 
(1 m, 3 m, and 5 m) were used. Surface fuel load estimations were based 
on fuel samples randomly taken from areas immediately adjacent to and 
representative of each burning plot (Brown 1974; Kucuk et al. 2018). 
Each fuel component was weighed in the field and taken to the labo-
ratory for the estimation of the surface fuel loading after oven-drying. 
Before the experimental fires, an automatic mobile weather station 
was established in the study area. During the experimental fires, the 
wind speed, air temperature, and relative humidity were recorded. 

2.3. Experimental fires and data 

Experimental surface fires were carried out in the fire season within a 
relatively narrow range of air temperature, relative humidity, wind 
speed, and fuel moisture content. Collection of the data on fire behavior 
started when the fire line had moved about 30 cm from the edge of the 
plot or when the fuel (from a drip torch) used to establish the fire line 
had lost its effect in the initial phase of fire spread. The rate of spread is 
expressed as the distance reached by the fire per unit time. Rates of 
spread were determined by recording the time the head fire front arrived 
at poles 1 m apart on each side of the burning plot. In the calculation of 
rate of spread, we used rate of fire spread formula in the literature 
(Kucuk et al. 2018). Fire behavior was monitored during each fire from 
the time the ignition line was fully established to the time the fire front 
reached the edge of the plots (Stocks et al. 2004; Sağlam et al. 2008a, b; 
Kucuk et al. 2012; Kucuk et al. 2018). Fire line intensity (FLI) is the 
proportional expression of the energy released per unit distance. FLI was 
calculated using Byram’s equation (1959); 

FLI = H × W × ROS. 
Where, 
FLI is the fire line intensity (kW/m), 
H is heat yield of the fuel (kJ kg− 1), 
W is the dry weight of the fuels consumed by the fire (kg m− 2) and. 
ROS is the rate of spread of the flaming front (m/s). 
In this study, an energy content of 18000 kJ kg− 1 was used based on 

the relevant information (Alexander, 1982; Bilgili and Sağlam 2003). 

2.4. Artificial neural network models 

Artificial neural network models are information-processing tech-
nologies inspired by the workings of the human brain. They calculate 
predictive values through interconnected networks that imitate the 
working principles of neurons, which are the basic structures of the 
human nervous system. These artificial neurons, also known as artificial 
nerve cells or basic processing units, have five basic elements: input 
values, weights, sum functions, activation functions, and output values. 
Input values are the sample values introduced to the artificial neurons. 
Weights are the coefficient values that are multiplied by the variables 

Fig. 2. General structure of multilayer perceptron neural network model.  
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according to the importance and impact of the information entering the 
cells. The sum, or aggregation, function is created by adding together the 
information values weighted by the coefficients and turning them into a 
function. There are different approaches to constructing aggregation 
functions. The activation function determines the output to be produced 
in response to the information entering the artificial nerve cell. Acti-
vation functions are usually chosen to be nonlinear functions. There are 
several types of activation functions, such as the stepwise activation 
function, sigmoid activation function, piecewise linear activation func-
tion, Gaussian activation function, linear activation function, and hy-
perbolic tangent activation function. Finally, the output value is the 
result generated by the activation function. This value can be trans-
mitted as a result, or the artificial neuron can process this result as an 
input to itself or to another artificial neuron. Although a neuron can 
have many inputs, it produces a single output. The first artificial neural 
network models were developed to provide solutions to linear relations 
problems. Examples of these models are simple single-layer perceptrons, 
simple perceptrons, and Adaline/Madaline units. Multilayer perceptron 
artificial neural networks have also been developed to examine 
nonlinear relationships in later stages. In addition, information about 
multilayer perceptron artificial neural networks is given (Sharma et al. 
2012; Graupe 2013; Suzuki 2013; Da Silva et al. 2017; Walczak 2018; 
Alanis et al. 2019; Kubat 2021). 

2.4.1. Multilayer perceptron neural network models 
The multilayer perceptron neural network model is one of the models 

developed as an alternative to the simple perceptron models, which are 
insufficient in cases where the relationships between variables are not 
linear. A multilayer perceptron neural network model has three layers, 
the input layer, the hidden layer, and the output layer. No data pro-
cessing takes place in the input layer. The basic processing units in this 
layer have only one input and one output. The output value is sent to all 
of the basic processing units in the next layer, the hidden layer. These 
units are responsible for processing the information coming from the 
input layer and sending it to the output layer. In multilayer perceptron 
neural networks, there can be more than one intermediate layer, and 
each layer can contain more than one processing unit. The processing 
units in the hidden layer are connected to all of the processing units in 
the output layer. In the output layer, the information coming from the 
hidden layer is processed and transmitted to the outside world. The 

number of processing units in the output layer can also be more than 
one. The general structure of the multilayer perceptron neural network 
model is shown in Fig. 2, (Sharma et al. 2012; Graupe 2013; Ramchoun 
et al. 2016; Park and Lek 2016; Sumsion et al. 2019; Amato et al. 2017). 

The supervised learning approach is used in multilayer perceptron 
neural networks. In this approach, a sample data set containing both 
input values and output values is entered into the artificial neural 
network beforehand to generate predictive values based on these sample 
values. The multilayer perceptron neural network model (also called the 
error propagation model) makes estimations using the delta learning 
method, which has two stages: forward calculation and backward 
computation. The net input value is obtained by weighting and summing 
the data received from the input layer and reaching the processing unit 
in the forward calculation phase. The net input value is converted to an 
output value with the help of the activation function. Then this output 
value is sent to the processing unit in the next layer. These processes are 
repeated until the values obtained in the last output layer converge to 
the output values used in the training process. In the second stage, the 
aim is to reduce the errors in each iteration by distributing the weight 
values. The weight values randomly assigned to the system at the initial 
stage are updated in each iteration after the errors are distributed to the 
weights (Velo et al. 2014; Fernandes de Mello and Antonelli Ponti 2018; 
Zhou et al. 2016). 

Artificial neural network models have some advantages and disad-
vantages over classical regression models. The most important advan-
tage of artificial neural networks is that they store information on the 
entire network and the loss of a few pieces of information does not 
prevent the network from working. Also, neural networks can work with 
incomplete data and information. After the training phase, the network 
can produce output even with incomplete information. Artificial neural 
networks can produce output without being affected by an error in or 
corruption of one or more unit of data. The model has an error-free 
structure. Another advantage is that the network is trainable 
compared with other examples and can benefit from previous work. In 
addition, the network can learn from similar networks. Networks can 
work together to complement each other. They can perform multiple 
tasks simultaneously. Artificial neural networks can solve complex 
problems more successfully than linear approaches; do not need any 
assumptions or prerequisites in terms of data structure and model; have 
the ability to learn from data and make decisions; can reveal hidden 

Fig. 3. Example of decision tree model.  
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relationships in data; and are much more successful than other classical 
models at modeling data with a nonconstant variance. 

There are also disadvantages to using artificial neural networks. For 
example, the performance capabilities of the networks are directly 
dependent on the power of the computer hardware being used. In 
addition, they may produce unexpected results because the how and 
causality are not considered during the creation of the network. There is 
no definite rule for their construction. A proper network structure may 
depend on experience and trial and error. Since artificial neural net-
works work with numerical values, some problems may be difficult to 
teach to the network if they must be changed to numerical values. This is 
a process that largely depends on the capabilities of the user or 
researcher. It cannot be guaranteed that the network obtained in the 
predetermined learning time will give the optimum result. One of the 
biggest disadvantages of artificial neural networks is that they do not 
give details of why and how the output prediction values they produce 
are found. This may pose a problem in explaining some analyses (Tu 
1996; Livingstone et al. 1997; Dumitru and Maria 2013; Walczak 2018). 

2.5. Decision tree models 

Decision trees are nonparametric supervised learning methods that 
can perform both the regression and classification processes used in data 
analysis. Although artificial neural networks work in the form of an 
unknown closed box, decision trees are open. They create a prediction 
model structured like a tree, consisting of a root node (starting node) and 
decision nodes and leaf nodes that are added to the model according to 
the nature of the process. The nodes at which the branching ends are 
called terminal nodes. An example of a decision tree model is shown in 
Fig. 3. 

In the decision tree model, learning is performed by dividing the data 
set into sections. The basic principle in the process of creating a decision 
tree is to ask questions about the data and to create decision rules by 
collecting the answers in line with the answers received. Questions are 
asked starting from the root node and continue until the terminal nodes 
that do not have branches are reached. The criteria used for branching in 
the decision tree are different for the regression and classification 

models. In decision tree models created for the regression process, a 
variable and a value that will divide this variable into two different 
groups are selected. This process is repeated for each variable and for 
each possible value to find out which variable and which value give the 
best result. The results are scored by taking the weighted average of the 
mean squares of error of both groups formed. The highest score indicates 
which variable and which value best discriminate among the groups. 

Decision tree models have some unique advantages. For example, 
they are quite easy to understand and interpret in terms of the charac-
teristics of their appearance. They can be used for both classification and 
regression. Decision tree models are some of the most practical methods 
for revealing the most significant variables and the relationship between 
two or more variables. Apart from these, they do not need any 
distribution-based assumptions, because they are nonparametric 
methods. They can work with both numerical and categorical data. In 
addition to requiring less preliminary preparation of data, they are also 
much less affected by outliers or missing values. They can also easily 
represent nonlinear relationships. 

The most important disadvantage of decision tree models is that they 
may produce overestimations. There is also no guarantee that the ob-
tained model is the optimal model. They cannot provide an information 
flow from other models. They are heavily affected by an increase in 
variance in the data. In addition, when working with continuous vari-
ables, they lose information during the categorization phase (Quinlan 
1990; Rokach and Maimon 2005; Esmeir and Markovitch 2007; King-
sford and Salzberg 2008; De Ville 2013; Kotsiantis 2013; Breiman 2017). 

2.6. Model fit and comparison of fire behavior models 

For the artificial neural network model to examine fire behavior, the 
multilayered sensor function in the Weka (2021) program was used. 
After trying many network structure combinations, models with the best 
correlation and low error values were adopted. 64 % of the data set was 
reserved as training data and 34 % as test data. In this study, artificial 
neural networks model structure was customized as a solution to the 
overfitting problem, and the multilayer perceptron type artificial intel-
ligence model was used based on 30 % learning rate and 20 % 

Fig. 4. Artificial neural network model for predicting fire intensity.  
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momentum value. 
Five hundred iterations were carried out during the training period. 

Two separate artificial neural networks were developed for the predic-
tion of fire intensity and rate of fire spread. In the built decision tree 
models, the random tree function included in the Weka (2021) program 
was used. The independent variables for the prediction of fire behavior 
with the decision tree were air temperature, relative humidity, wind 
speed, needle moisture content, fine fuel moisture content, ignition of 
fire line length, total fuel load, and rate of fire spread. Sixty-six percent 
of the data set was reserved as training data and 34 % as test data. 

3. Results and discussion

3.1. Development of an artificial neural network model for predicting fire 
intensity 

Estimating the fire intensity is extremely important for planning the 
size of a firefighting organization (Calkin et al. 2011; Mitsopoulos et al. 
2017), the equipment to be used, and the appropriate responses to take 

(Thompson et al. 2016). In this study, the temperature, relative hu-
midity, wind speed, needle moisture content, fine fuel moisture content, 
ignition line width, total fuel load, and rate of fire spread variables were 
the independent variables for predicting the fire intensity. The artificial 
neural network model for predicting fire intensity is shown in Fig. 4; it is 
a single-hidden-layer network containing four neurons. 

The results of the fit of the artificial neural network model created for 
predicting fire intensity are given in Table 1. 

When the model performance results given in Table 1 are examined, 
it is seen that the model has a very high correlation value of 0.995. 
Similarly, the relative absolute error value of 13.3 % turned out to be a 
rather small value. This showed that the model made predictions with a 
nearly perfect result. According to the study’s artificial neural network 
model, the factors that most affected the fire intensity were, from most 
influential to least influential, the wind, rate of fire spread, and total fuel 
load (Table 2). In the fire intensity formula provided by Byram (1959), 
the rate of fire spread and the amount of combustible fuel consumed 
were the basic parameters. Although similar results were achieved with 
the artificial neural network model, the effects of many other parameters 
were also revealed. This result shows that other parameters are factors 
and that they affect each other. 

3.2. Development of an artificial neural network model for predicting the 
fire spread rate 

The temperature, relative humidity, wind speed, needle moisture 
content, fine fuel moisture content, ignition of fire line length, and total 
fuel load were considered to be independent variables in predicting the 
fire spread rate (Fig. 5). 

The artificial neural network shown in Fig. 5 has two hidden layers. 
There are two neurons in the first hidden layer and five neurons in the 
second hidden layer. The results of the fit of the artificial neural network 

Table 1 
Results of fit for the artificial neural network model for predicting fire intensity.  

Correlation 
coefficient 

R2 Mean Absolute Error 
(MAE) 

Root Mean Squared Error 
(RMSE) 

Relative Absolute Error (%) 
(RAE) 

Root Relative Squared Error (%) 
(RRSE) 

Total Number of 
Instances  

0.995  0.99  245.568  289.996  13.3  13.6 11  

Table 2 
Variables affecting fire severity according to artificial neural 
network model.  

Independent variables Weights 

Wind speed  1995.028 
Rate of fire spread  1337.682 
Total fuel load  195.640 
Air temperature  − 144.161 
Ignition of fire line length  − 338.307 
Needle moisture content  − 384.758 
Fine fuel moisture content  − 385.732 
Relative humidity  − 557.832  

Fig. 5. Artificial neural network model for predicting the fire spread rate.  
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model for predicting the fire spread rate shown in Fig. 5 are given in 
Table 3. The factors affecting the rate of fire spread in the constructed 
artificial neural network model are given in Table 4 in decreasing order 
from most influential to least influential. 

Data for experimental fires have shown the wind speed to be the 
environmental variable that leads to the most significant changes in the 
rate of fire spread. When the results given in Table 4 are examined, it is 
seen that the artificial neural network determined the most influential 
factor on the rate of fire spread to be wind speed. Wind is the most 
important factor increasing fire spread. The wind parameter, which is 
shown to be the most important independent variable in many models of 
rates of fire spread, was also the most important in our study (Nelson 
2002; Cheney et al. 2012; Anderson et al. 2015; Cruz and Alexander, 
2019). The second most important factor was the air temperature, and 
the third most important factor was the total fuel load. The least 
important factor was determined to be the relative humidity. 

3.3. Development of a decision tree model for predicting fire intensity 

The effect of the wind speed on the rate of fire spread is complex, and 
it depends on several factors such as fuel characteristics, wind speed 
profiles, and heat transfer from the fire. While creating the decision tree 
model for fire intensity prediction, the air temperature, relative hu-
midity, wind speed, needle moisture content, fine fuel moisture content, 
ignition of fire line length, total fuel load, and rate of fire spread were 
used as the independent variables. The results of fit of the decision tree 
model created for predicting fire intensity are given in Table 5. The most 
influential factors for fire intensity are given in Table 6 and are listed 
from most influential to least influential. 

According to the decision tree model created for predicting fire in-
tensity, the most important factor was wind speed. The second most 
important factor was the rate of fire spread, and the third most impor-
tant factor was the fine fuel moisture content. The least important factor 
was the total fuel load. 

3.4. Development of a decision tree model for predicting the fire spread 
rate 

When a decision tree model for predicting the fire spread rate was 

built, the independent variables chosen were the temperature, relative 
humidity, wind speed, needle moisture content, fine fuel moisture 
content, ignition of fire line length, and total fuel load. In studies similar 
to this study, the effectiveness of the same parameters was determined 
using classical methods (Kucuk et al. 2012; Kucuk et al. 2018; Sevinc 
et al. 2020; Cruz et al. 2022). The results of fit of the decision tree model 
created for predicting the rate of fire spread are given in Table 7. The 
factors that affected the rate of fire spread, from most influential to least 
influential, are given in Table 8. 

According to the decision tree model created for predicting the rate 
of fire spread, the most important factor was the temperature, and the 
second and third most important factors were the wind speed and fine 
fuel moisture content, respectively. The least important factor was the 
total fuel load. Comparative predictions of fire behavior of all of the 
models created, from most influential to least influential, are given in 
Table 9. 

The performances of the artificial neural network and decision tree 
models created separately for the prediction of fire intensity and rate of 
fire spread are compared in Table 10. 

In regard to fire intensity, the correlation coefficients of both the 
artificial neural network and decision tree models were significantly 
high at 0.995 and 0.99, respectively. Both the artificial neural network 
model and the decision tree model performed better than the regression 
model, which had a comparatively low correlation coefficient of 0.844. 
The artificial neural network model performed better than the decision 
tree model or classical regression model. Its scores for the mean absolute 
error (MAE), root mean squared error (RMSE), relative absolute error 
(RAE), and root relative squared error (RRSE) were only approximately 
half of those scores for the decision tree model. Thus, briefly, the most 
successful model in predicting the fire intensity was the artificial neural 
network model, the second most successful was the decision tree model, 
and the least successful was the regression model. 

When it came to predicting the rate of fire spread, the correlation 
coefficient of 0.906 of the artificial neural network model was higher 
than the correlation coefficients of the decision tree model (0.804) and 
the regression model (0.873). Although the MAE and RMSE values of the 
artificial neural network model were higher than those of the decision 
tree model, the RAE and RRSE values of the decision tree model were 
larger than those of the artificial neural network model. In this 

Table 3 
Results of fit for the artificial neural network model for predicting the fire spread rate.  

Correlation 
coefficient 

R2 Mean Absolute Error 
(MAE) 

Root Mean Squared Error 
(RMSE) 

Relative Absolute Error (%) 
(RAE) 

Root Relative Squared Error (%) 
(RRSE) 

Total Number of 
Instances  

0.906  0.82  0.443  0.591  33.321  39.803 11  

Table 4 
Factors affecting the rate of fire spread according to the arti-
ficial neural network model.  

Independent variables Weights 

Wind speed  0.469 
Air temperature  0.030 
Total fuel load  − 0.127 
Fine fuel moisture content  − 0.261 
Needle moisture content  − 0.265 
Ignition of fire line length  − 0.297 
Relative humidity  − 0.314  

Table 5 
Results of fit for the decision tree model for predicting fire intensity.  

Correlation 
coefficient 

R2 Mean Absolute Error 
(MAE) 

Root Mean Squared Error 
(RMSE) 

Relative Absolute Error (%) 
(RAE) 

Root Relative Squared Error (%) 
(RRSE) 

Total Number of 
Instances  

0.990  0.98  425.681  758.740  23.032  35.669 11  

Table 6 
Factors affecting fire intensity according to the decision tree 
model.  

Independent variables Weights 

Wind speed  1817.458 
Rate of fire spread  1131.349 
Fine fuel moisture content  43.691 
Air temperature  40.895 
Relative humidity  − 68.900 
Ignition of fire line length  − 139.82 
Needle moisture content  − 350.633 
Total fuel load  − 782.927  

O. Kucuk and V. Sevinc                                                



Forest Ecology and Management 529 (2023) 120707

8

comparison, it can still be suggested that the artificial neural network 
exhibited a slightly better prediction performance than the decision tree 
model. However, unlike in the previous case, the regression model 
performed better than the decision tree model in predicting the rate of 
fire spread. 

4. Conclusions

In this study, predictions were made of the surface forest fire
behavior based on the rate of fire spread and the fire intensity using two 

artificial intelligence methods, an artificial neural network and a deci-
sion tree. Additionally, the prediction performances of the two methods 
were compared with the performance of the conventional regression 
model. The artificial neural network performed better than the other 
models in predicting both the fire intensity and the fire spread rate. The 
decision tree model had a considerably more successful performance 
than the regression model in predicting the fire intensity. However, 
when it came to predicting the fire spread, the regression model per-
formed slightly better than the decision tree model. Overall, the artificial 
neural network was the most powerful model in predicting the fire in-
tensity and the fire spread rate, and this demonstrated that artificial 
intelligence models can be used quite successfully in predicting fire 
behavior. To expand on this study, other studies of the prediction of the 
fire intensity and fire spread rate can be performed with other artificial 
intelligence methods and using additional or different variables. This 
method can also be used for Pinus brutia in Mediterranean region. 
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Table 7 
Results of fit for the decision tree model for predicting the rate of fire spread.  

Correlation 
coefficient 

R2 Mean Absolute Error 
(MAE) 

Root Mean Squared Error 
(RMSE) 

Relative Absolute Error (%) 
(RAE) 

Root Relative Squared Error (%) 
(RRSE) 

Total Number of 
Instances  

0.804  0.64  1.161  1.750  87.401  117.780 11  

Table 8 
Factors affecting the rate of fire spread according to the deci-
sion tree model.  

Independent variables Weights 

Air temperature  0.249 
Wind speed  0.201 
Fine fuel moisture content  − 0.059 
Ignition of fire line length  − 0.083 
Relative humidity  − 0.214 
Needle moisture content  − 0.294 
Total fuel load  − 0.306  

Table 9 
Comparative results of models for predicting fire behavior.  

Fire Behavior Predicting 

Fire intensity Rate of fire spread 

Artificial neural network 
model 

Decision tree model Regression 
model 

Artificial neural network 
model 

Decision tree model Regression 
model 

Wind speed Wind speed Wind speed Wind speed Air temperature Wind speed 
Rate of fire spread Rate of fire spread Total fuel load Air temperature Wind speed Ignition of fire line 

length 
Total fuel load Fine fuel moisture 

content 
Ignition of fire line 
length 

Total fuel load Fine fuel moisture 
content 

Needle moisture content 

Air temperature Air temperature  Fine fuel moisture content Ignition of fire line 
length  

Ignition of fire line length Relative humidity  Needle moisture content Relative humidity  
Needle moisture content Ignition of fire line 

length  
Ignition of fire line length Needle moisture content  

Fine fuel moisture content Needle moisture content  Relative humidity Total fuel load  
Relative humidity Total fuel load      

Table 10 
Comparison of the performances of the artificial neural network models and decision tree models for predicting the fire intensity and rate of fire spread.  

The Performance Results of the Models  

Fire intensity Rate of fire spread 

Measures Artificial neural network 
model 

Decision tree 
model 

Regression 
model 

Artificial neural network 
model 

Decision tree 
model 

Regression 
Model 

Correlation coefficient 0.995 0.990  0.844 0.906 0.804  0.873 
R2 0.99 0.98  0.94 0.82 0.64  0.83 
Mean Absolute Error (MAE) 245.568 425.681  542.125 0.443 1.161  0.552 
Root Mean Squared Error 

(RMSE) 
289.996 758.740  0.591 1.750  

Relative Absolute Error (%) 
(RAE) 

13.3 23.032  33.321 87.401  

Root Relative Squared Error 
(%) 
(RRSE) 

13.6 35.669  39.803 117.780  

Total Number of Instances 11 11  11 11   
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Formal analysis, Visualization. 
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