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Abstract—Since the launch of the smartphones, their usage is 

increasing exponentially. They have become an important part of 

our lives. We are very much dependent on smartphones for our 

daily routine and use numerous applications both from the play 

store or the third party applications. Most of the times, the 

applications downloaded from unofficial sources pose a threat as 

there doesn’t exist the necessary checks or mechanisms to 

validate the authenticity of these applications and maybe infected 

with malware. The malware infected applications can lead to 

leakage of user’s personal data. Anti-virus tools use signature 

based methods for detecting malwares, but their databases need 

to be updated regularly. In this paper, we present a system for 

classifying Android applications on the basis of permissions used 

by those applications. We used six machine learning algorithms 

for classifying these applications into malicious or benign 

applications. On comparing the results, we find that Logistic 

Regression Algorithm suits best to our dataset and provide 

99.34% accuracy. 
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I. INTRODUCTION 

In today‟s era, smartphones have become a ubiquitous device 

for storage, computing and for carrying out the transactions 

among these devices. It is handier, portable and easy to use 

device. To make the usage experience of the mobile phones 

better and for determining the features and functions available 

on the device, a software platform i.e. an operating system 

(OS) is preinstalled in the mobile phones which is decided by 

the manufacturer. This OS is specially designed for mobile 

phones and largely vary from that of computers and therefore 

able to run advanced functions on smartphones that were 

previously unable to be done on desktop computers. There are 

various kinds of OS available in the market namely Android 

OS, IOS, Windows OS etc. The first fully functional and 

popular smartphone OS was the Symbian OS which was 

introduced in 2000. Another OS that revolutionized the market 

was the IOS by Apple and came along with their first iphone 

model in 2007. But since the launch of Android OS in 2007, it 

has become the most popular mobile OS and has grown 

strongly through the years. According to the statista report, 

the statistics given shows global market share held by the 

leading smartphone OS, in the second quarter of 2018 is 88 

percent of all smartphones sold to end users were phones with 

the Android OS [1]. Thus, we targeted Android OS for the 

research. The availability of smartphones with Android OS at 

relatively cheaper rates have also led to this accelerated 

migration of regular phone users to smartphone users and thus 

there is an exponential growth in Android market. 

This accelerated growth of the Android OS has largely 

attracted the malware developers. A large number of 

applications containing malware are being developed every 

day. Smartphones are becoming a major target of malware 

attacks with Android OS being the top on the hit list as it is 

open source OS and it is relatively easy to penetrate malware 

in these applications [2]. Thus, the detection and removal of 

these malicious applications is becoming a major concern for 

both developers and to the end users. It is becoming the need 

of the hour to keep the platform safe for the community by 

providing detection and defensive methods against malware. 

Rest of the paper is organized as follows: Section II comprises 

of the related work and the background followed by the 

methodology used in Section III. Next, in section IV, the 

experimental results are analysed on the basis of various 

performance parameters. In section V, the paper is concluded 

and the future scope is outlined. 

II. BACKGROUND AND RELATED WORK

There have been various methods for malware detection. The 

most popular method is signature based method. The signature 

of malicious samples is stored in a database and this database 

is then used to detect malware. This method is effective only 

to detect known malwares. ML algorithms have been 

introduced in order to detect zero-day malware [4],[2]. Due to 

the rise in the malware activities in the Android community, 

there have been many research efforts being put by researches 

toward the detection of malicious Android samples. 

Researchers from around the world follow different 

approaches to mitigate this issue. There have been many static 

as well as dynamic advancements in this field. Static malware 

analysis involves examining the code of the malware sample 

without executing it. On the other hand, dynamic malware 

analysis is to monitor the behaviour of the malware while it is 

being executed in the sandboxed environment [3]. Many static 

analysis approaches given in [5], [6], [7] follows basis on 

already known malware and compute applications through 

reverse engineering which help to decompile the packaged 

applications thereby making it easier to look for signatures or 

other heuristics written in the program code. Some follows 

different approaches like [8], [9], [10], which checks the usage 

of power by each application and reports the user or 

developers about any anomalous consumption.  

Many dynamic analysis approaches used in [11], [12], [13] 

keeps a check on the pattern of system calls. Others like [15], 

[16] have implemented the approach of universal signature 

based methods that are able to compare the application in 

question with many known malware or other heuristics.  
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Recently, the researchers have started to make use of data 

mining and machine learning (ML) for classifying and 

detecting malware [17], [18], [19], [20]. These methods are 

able to detect zero-day malware. 

In [12], a framework based on ML known as Crowdroid is 

proposed that is able to recognize malware on Android 

smartphones on the basis of system calls and their frequency. 

Similarly, in [21], an intrusion detection system based on 

machine learning is proposed. It keeps a check on the user‟s as 

well as smartphone‟s behaviour by observing certain 

parameters, spanning from sensor activities to CPU usage. 

This model uses 88 features which together describes the 

system behaviours along with rooting the system and the 

external use of Linux server. Further, these are pre-processed 

by feature selection mechanisms. A machine learning based 

clustering model is used in [22], this model analyses the static 

function calls from binaries to detect anomalies. The Symbian 

OS used this kind of technique. This framework uses a client, 

Remote Anomaly Detection System, which monitors and 

visualizes the component. In [23] Dini et al. presented a multi-

level system called MADAM (Multi-Level Anomaly Detector 

for Android Malware) which is capable of extracting features 

at both the kernel and application levels using 13 features to 

describe system‟s behaviour and system calls. But this model 

was only targeted for rooted device. In [24] Portokalidis et al. 

presented a different approach based on VMM approach to 

detect malware in their design of Paranoid Android system 

where a full malware analysis can be done in the clouds using 

many replicas of mobile phone. A secure virtual environment 

is created for the mobile replicas to run and which makes it 

possible for approximately 105 replicas. Mirela et al [25] 

presented an approach based on neural network which were 

very efficient in detecting the fraud calls and imposter. The 

main drawback of this method is that it is a slow process and it 

classifies the samples into groups having same behaviour and 

thus will lead to lot of false positives. Furthermore, Jerry et al. 

[26] worked on the transmission of viruses through SMS 

messages or other interfaces like Bluetooth and infrared.  
This paper presents a system for classifying Android 

applications on the basis of permissions used by them.  

III. METHODOLOGY USED

This section discuss the methodology used to classify the 

Android applications into malicious and benign on the basis of 

permission analysis. Figure 1 shows the Workflow diagram of 

our methodology. 

Fig. 1 Workflow Diagram for classifying Android Applications using 

Permission Analysis 

A) Data Collection

We downloaded multiple Android application samples both 

malicious and benign. We have collected 2500 malicious 

Android applications from various websites like VirusShare, 

zeltser etc and 1500 benign application from Google‟s 

Android play store and other trusted website. These collected 

samples are validated and labelled using VirusTotal [27] 

(which consist of 60+ Anti-virus scanners). 

B) Feature Extraction

Firstly, we studied about the malware and the permissions and 

the different categories of permissions that an application 

seeks during its functioning. These permission categories were 

available on google developer website [28] and give clear 

understanding of how the working of the application is 

affected by each permission the system requires both for 

software and hardware access. 

We studied about the difference between the benign and 

malicious applications and the permission categories which 

were listed unsafe to be accessed by the user.  

Android permissions are divided in to several protection 

levels: 

1). Normal Permissions are those permissions which have 

very little risk of user‟s privacy. These permissions do not 

require user‟s involvement; these are granted by the Android 

system directly. eg. BLUETOOTH, INTERNET, 

SET_ALARM, WAKE_LOCK etc. 

2). Signature Permissions are permission granted by the 

system at the install time. These are only granted to an app 

when it is signed by the same certificate as the app that defines 

the permission. eg. BIND_DEVICE_ADMIN, 

BIND_NFC_SERVICE, READ_VOICEMAIL etc. 

3). Special Permissions -The permissions that doesn‟t comes 

under the normal and dangerous are the special permissions 

SYSTEM_ALERT_WINDOW and WRITE_SETTINGS are 

particularly sensitive, if an application wants to access these it 

must declare it in the manifest and access those with the help 

of intents. 

4). Dangerous permissions -These are the permissions which 

require access to user‟s private data. For granting these 

permissions a message is prompt on the screen asking about 

the user‟s permissions. eg. READ_CALANDER, CAMERA, 

READ_CONTACTS, WRITE_CONTACTS, CALL_PHONE 

etc. 

The permissions used in any Android application are found in 

the manifest.xml file of the zipped. apk package. We 

developed a Python script to extract these permissions and list 

them in a CSV file. 

C) Dataset preparation

In this paper, we have used an approach which is aimed at 

uncovering the already known malware families and also the 

unknown malware to reduce chances of malware in the 

android community from escaping detection from scanners. 

For this we created a dataset using multiple Android .apk 

samples downloaded from both google play and VirusShare 

and other trusted sites providing malware samples. We got a 

collection of 4000 samples of both malicious and benign 

android application samples. As the permissions required by a 

particular application is inside the android manifest file of the 

android sample, we have created a script in python which 

reads and processes multiple samples at the same time and 

accesses the manifest.xml file and extract permissions and 

compile the permissions into a CSV file format which could 

be further used as an input file to the machine learning 

algorithms. This python script was run multiple times on the 

same samples to ensure the correct data and to lower the 

chances of randomization. The final result is used as a dataset 

in our paper and made free from error and stored. 
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With the help of this script, we parsed 4000 Android 

application samples both benign and malicious and extracted 

permissions which was stored in a CSV file format and used as 

a dataset. In the developed CSV, 202 permissions are used as 

the headers and 4000 applications are parsed in the rows and 

marked „1‟ if that permission is used in that application or „0‟ 

if that permission is not used in that application.  

 The dataset was further split in the ratio of 80:20 randomly. 

The 80% of the dataset was used to train the model and to 

identify the benign and malicious permissions and to create 

Labelled analysis. The remaining 20% of the dataset was 

utilized for the testing phase of the algorithm  

D) Classification Using Machine Learning

After the creation of the dataset, a script is run to analyse the 

permissions and classify the samples into two different classes 

i.e. – malicious and benign. In this paper we focus on creating 

a labelled dataset for the machine learning algorithms and 

specifically for the supervised learning algorithms. The 

classifier is then trained using the previously created dataset 

and then tested to predict the result according to the feature 

vectors. No matter how complex or how advanced the 

machine algorithm is, any approach of the machine learning 

used can never be fully efficient to prevent the transmission of 

viruses. 

Further, many predefined machine learning algorithms are 

applied to the input data which either classify the data into 

groups or identifies patterns among the dataset to [17] predict 

the output and give appropriate results. Machine learning 

algorithms are loosely classified into supervised and 

unsupervised learning algorithms. [29] 

Now we will discuss about different ML algorithms: 

 Logistic Regression- Logistic regression (LR) is an

algorithm which uses the statistical concepts and

models a relationship between the input and output

numerical values. The model is represented by a

logistic equation which combines the input values of

a specific set and predicts the output for a set of that

input values.

 Linear Discriminant Analysis-

Linear Discriminant Analysis (LDA) is a very

common technique for dimensionality reduction

problems as a pre-processing step for machine

learning and pattern classification applications. At the

same time, it is usually used as a black box, but

(sometimes) not well understood. The LDA technique

is developed to transform the features into a lower

dimensional space, which maximizes the ratio of the

between-class variance to the within-class variance,

thereby guaranteeing maximum class separability

[27].

 K-Nearest Neighbour (KNN)- K-Nearest

Neighbours (KNN) is a type of algorithm which can

be used both for regression and classification

problems but is mostly used in classification

problems. This algorithm is easy in interpretation and

requires very low calculation time and thus is a

widely used ML algorithm. The K in this algorithm is

the number of neighbours which are defined by the

user. In this algorithm we use the Euclidean distance

to measure the K nearest neighbours of the data point

and predict the output according to its neighbours.

Euclidean distance function: In Cartesian coordinates, 

if p = (p1, p2,..., pn) and q = (q1, q2,..., qn) are two 

points in Euclidean n-space, then the distance (d) 

from p to q, or from q to p. 

 Decision Tree- Decision tree (DT) algorithm is a

type of supervised learning algorithm in which a data

structure is used to solve a problem. In this case the

leaf node is referred to as the class label and the

internal nodes of the tree represent the attributes.

They are able to solve the problems of both

classification and regression. Initially, we consider

the whole dataset as the root and categorical feature

values are preferred and the continuous values are

first made discrete values before using them to build

the model. Then statistical methods are used for

ordering the attributes as internal node or root.

 Gaussian Naïve Bayes- Gaussian Naive Bayes

(GNB) theorem is a type of classification algorithm

which can be used for both binary and multi class

classification problems. This theorem is called so

because it has its roots of Bayes theorem. Naïve

Bayes is often represented by probabilities. In this

model the data is stored as probabilities for a learned

model. Naïve bayes can be extended to real-valued

attributes by assuming Gaussian distribution and by

using mean and standard deviation from the training

data.

Where 

 Support Vector Classifier- SVC is a supervised

machine learning algorithm which is commonly used

for both regression and classification problems. It is

widely used in classification problems where each

data item is plotted in n-dimensional space and n

defines the features present and the value of each

feature is the value of each coordinate. Further, a

separate hyper plane is made to differentiate the two

classes.
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E) Experimental Result Analysis 

Experimental results are discussed in the following section i.e 

section IV. 

IV. EXPERIMENTAL RESULTS 

 

This section discusses the experimental results obtained after 

applying the following ML algorithms on the created dataset 

as explained in previous section. 

 
Table 1 Confusion Matrix 

 

To compare the classification models, following performance 

parameters are used. These parameters are obtained through 

the confusion matrix as shown in table 1.  

 

 True Positives (TP) - These are the values which are 

correctly predicted and are positive values which can 

be described as the positive value of actual class and 

positive value of predicted class. It is denoted by TP. 

 

 True Negatives (TN) - These are the values which 

are correctly predicted but negative values which 

refers to the negation of actual class and negation of 

predicted class. It is denoted by TN. 

 

 False Positives (FP) – These are the values which are 

wrongly predicted but are true in real i.e. - when we 

have positive values of actual class but negation in 

predicted class. 

 

 False Negative (FN) – These are the values which 

are wrongly predicted and negative in actual class. 

 

 

Further, we look into more parameters of performance which 

are accuracy, precision, recall and F1 score. 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Fig. 2 Comparison of Accuracy for ML Algorithms used 

 

Figure 2 shows the comparative analysis of the Accuracy 

which is calculated by using equation (1). In our experiment, 

Logistic Regression gives the best accuracy with the value 

99.34%. 
 

 
 

Fig. 3 Comparison of Precision for ML Algorithms used  

 

Figure 3 shows the comparative analysis of Precision which is 

calculated by using equation (2). In our experiment, SVC 

shows the best precision with the value 99.6%. 

 

 
 

Fig. 4 Comparison of F1 Score for ML Algorithms used 

 

Figure 4 shows the comparative analysis of the F1 score which 

is calculated by using equation (4). In our experiment Logistic 

Regression shows the best F1-Score with the value 99.5%. 

 

According to the results obtained, we concluded that out of all 

the algorithms that were tested with our dataset, the algorithm 

Logistic Regression gives out the most accurate results with an 

accuracy measure of 99.34% and the precision and F1 score of 

99.40% & 99.50% respectively. 
 

 Predicted Class 

Actual 

Class 

 Yes No 

Yes True Positive False Negative 

No False Positive True Negative 
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Table 2 Experimental Results 

Classifier FPR FNR Accuracy (%) Precision (%) F1 Score (%) 

LR 0.004 0.003 99.34 99.40 99.50 

LDA 0.004 0.012 98.42 99.40 98.80 

KNN 0.008 0.007 98.55 98.79 98.89 

DT 0.012 0.005 98.82 98.59 99.09 

GNB 0.261 0.003 73.68 60.08 74.87 

SVC 0.003 0.018 97.89 99.60 98.41 

V. CONCLUSIONS AND FUTURE SCOPE 

In this paper, we have implemented various supervised 

machine learning algorithms for detection of malware in 

the Android application samples and classified them into 

two groups namely benign and malicious. For this 

classification, we use a labelled dataset which was created 

using permissions extracted from multiple Android 

applications from manifest file which was accessed 

programmatically using a python script. The dataset is 

split into training and testing data in the ratio 80:20. On 

this dataset six supervised ML Algorithms are used to 

classify the Android application in malicious and benign. 

From the results, it is concluded that Logistic Regression 

gives the best accuracy i.e. 99.34% with Precision value 

of 99.40%. After studying the concepts of various 

machine learning algorithms and after application of such 

machine learning algorithms on the dataset created by 

extracting the permissions from the Android manifest files 

and comparing the results of these algorithms on the basis 

of various parameters such as accuracy, precision etc. we 

concluded that there is a great potential in the machine 

learning algorithms in detection of malware. The dataset 

created by the python script is a self-created dataset and 

can be used in future research and used to implement 

other complex algorithms to get better outcomes or same 

algorithms can be implemented with a different approach 

to improve the time and space complexity of the models. 

Furthermore, more features and parameters can be 

included to enhance the analysis of performance measure. 

In our paper, we only considered the permissions for the 

classification of Android application samples. This work 

can be extended by considering other features of Android 

application like API (Application Procedure Interface) 

Calls, Network activities etc. with advanced ML 

Algorithms like deep learning algorithms. 
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