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Abstract

Many real-world use cases benefit from fast training and prediction times, and much research went into speeding up distance-
based outlier detection methods to millions of data points. Contrary to popular belief, our findings suggest that little data is often
enough for distance-based outlier detection models. We show that using only a tiny fraction of the data to train distance-based
outlier detection models often leads to no significant reduction in predictive performance and detection variance over a wide range
of tabular datasets. Furthermore, we compare a data reduction based on random subsampling and clustering-based prototypes
and show that both approaches yield similar outlier detection results. Simple random subsampling, thus, proves to be a useful
benchmark and baseline for future research on speeding up distance-based outlier detection.
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1. Introduction

Outlier or anomaly are the two terms most commonly used in the context of outlier detection or anomaly detection.
An outlier is frequently defined as an observation (or subset of observations) which appears to be inconsistent with the
remainder of that set of data” [5]. Outlier detection is the research area that studies the detection of such inconsistent
observations. Outliers are by nature infrequent events (e.g., rare medical conditions or machine failures), and labels
are often difficult to obtain. Most outlier detection algorithms, therefore, operate in an unsupervised setting.
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1.1. Distance-based outlier detection

A broad spectrum of techniques have been proposed for outlier detection, and many reviews exist on the topic,
covering various outlier detection approaches and application scenarios; see Hodge and Austin [16], Chandola et al.
[9], Pimentel et al. [25] or Wang et al. [31], for example. Because there exists no rigid definition concerning which
observation is an outlier, each outlier detection algorithm relies on certain assumptions to decide what qualifies an in-
stance to be regarded as an outlier [38]. Our focus lies on distance-based outlier detection approaches, which assume
that normal data instances occur in dense neighborhoods, while anomalies occur far from their closest neighbors. A
key advantage of distance-based techniques is that they are unsupervised in nature and do not make any assumptions
regarding the generative distribution for the data [9]. Additionally, distance-based algorithms are considered highly
transparent and explainable depending on the distance function employed [6]. Distance-based outlier detection meth-
ods are often further differentiated in terms of local and global methods, which relates to the decision if the outlierness
of an instance is based on the complete (global) dataset or only on a (local) selection of instances [28].

1.2. Approximate distance-based methods

Most distance-based algorithms rely on identifying an instance’s nearest neighbors to determine its outlierness,
which is a computationally expensive operation. The computational complexity of a single nearest-neighbor query
with Euclidean distance is O(nd), where n refers to the number of examples and d to the dimensionality of the dataset
[19]. A large amount of research investigates speeding up distance-based outlier detection algorithms. As mentioned
previously, the computational complexity depends on both the number of instances and the dimensionality of the
dataset. We investigate how the number of training instances influences the prediction result; thus, our investigation
solely focuses on the instance-based complexity. There are many existing approximation techniques focusing on the
instance-based complexity of nearest-neighbor searches, which we summarize below.

e Data Subsampling refers to using only a subset of the data to learn an outlier detection model. Zimek et al.
[39] show that instance subsampling can be used to create efficient distance-based outlier detection ensembles.
Aggarwal and Sathe [1] investigate the theoretical foundations for subsampling methods in unsupervised outlier
detection. Song et al. [30] use subsampling ensembles for outlier detection with feature-mapped neighbors.

o Clustering and Pruning can be used to partition the data and discarding instances that do not influence the
prediction results. Yang and Huang [36] use clustering and a pruning scheme to speed up outlier detection. Wang
and Zheng [32] use a similar two-stage clustering procedure to improve nearest-neighbor outlier detection.
[35] suggest a pruning strategy to accelerate the identification of the top-n outliers. Kasture and Gadge [17]
propose a neighbor-based outlier detection method using k-Means clustering to prune instances near the cluster
centroids. Salehi et al. [27] use a k-Means clustering approach to retain only those points that are most useful
for subsequent outlier detection in data streams.

o Approximate neighbors describes techniques that use heuristics to determine the neighbors of an instance. Pei et
al. [24] define an approximation method for distance-based outlier detection using reference points. [34] propose
an approximate k-nearest neighbors variant inspired by minimum spanning trees. Schubert et al. [29] present
an ensemble method that approximates local neighborhoods using an ensemble of space-filling curves. Kirner
et al. [20] evaluate good and bad neighborhood approximations for distance-based outlier detection ensembles.
Aumiiller et al. [4] provides a comprehensive benchmark of recent approximate neighbor algorithms.

e Prototypes describe methods that construct a set of instances to represent the entire dataset. Hart [15] and
Angiulli [3] describes prototype selection methods that consist of a subset of the training data. Mollineda et al.
[23] create artificial prototypes using hierarchical clustering. Harmeling et al. [14] propose an indexing scheme
to identify outlier prototypes. Recently, various prototype methods were introduced for supervised nearest-
neighbor approaches, see [21], [33], [37] or [13].

Besides the approximate methods, the complexity of exact neighbor queries can be reduced using various tree-
based indexing structures, as studied in [19], for example. Instead of adjusting distance-based methods to use more
data points, we evaluate if using less data is a viable option to speed up existing outlier detection methods. There have
been some investigations about subsampling approaches in distance-based outlier detection, but those focus mainly
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on ensemble learning strategies (e.g., [39] or [1]), whereas we would like to identify the effects of subsampling on
individual distance-based outlier detection models. Additionally, we compare random subsampling to cluster-based
sampling using prototypes, which previous researchers have not addressed.

2. Methodology

Our goal is to investigate how distance-based outlier detection algorithms are affected by a reduction of training
data, either through random subsampling or through clustering-based prototypes. More specifically, our investigation
is concerned with the following three research questions (RQs).

RQI: How does random data subsampling influence distance-based outlier detection performance?
RQ2: How does prototype-based data subsampling influence distance-based outlier detection performance?

RQ3: Does prototype-based subsampling lead to better outlier detection results than random subsampling?

In the following sections, we describe the different datasets used for evaluation (2.1), our random subsampling and
prototype methodology (2.2), the algorithms used in our study (2.3), and the evaluation method used to answer the
posed research questions (2.4).

2.1. Datasets

The datasets used in our study mostly stem from Campos et al.’s [8] review on the evaluation of unsupervised outlier
detection and comprise a range of tabular datasets. The sets have either previously appeared in the research literature
or are originally intended for classification, where one or more classes have a semantic interpretation as outliers.
All semantically meaningful datasets are sampled to different outliers fractions. The outlier sampling fractions are
{0.02,0.05,0.1,0.2}. To mitigate the impact of randomization when downsampling, the procedure is repeated ten
times for each dataset, resulting in 10 different variants for these datasets. Four of the datasets provided in [8] contain
less than 200 instances, which we remove from our evaluation.

Preprocessing includes removing duplicates, the transformation of categorical attributes, and linear feature normal-
ization to the range [0, 1]. Detailed information on the individual datasets and the preprocessing involved can be found
in [8]. Additionally, we evaluate our results on twelve proprietary datasets consisting of high-dimensional manufac-
turing sensor data. The normal data for each sensor data set is sampled ten times from a large pool of data. In total, 31
datasets are included, and an overview of all datasets and their characteristics can be found in table 1.

2.2. Sampling and Prototypes

First, we randomly split each dataset into a 50% training and test set. We split the data so that the training and
test set contains an approximately equal amount of outliers, also known as stratification. Let N,y be the number
of instances in the training set and Ny be the number of instances in the test set. For a number of fixed proportions
p €1{0.1,0.2,...,0.9} of Ny,in, we evaluate how a reduction to that proportion of the training data influences our outlier
detection performance. The exact amount of training instances for a fixed proportion p is defined as Nl(r’; in = | P Nyain -

For RQ1, we randomly subsample Nt(r’; zn instances for each fixed proportion p. For RQ2, we calculate Nt(:i 3n k-Means
clusters for each proportion p and use the cluster centroids as prototypes for the training data. We use k-Means as our
prototype implementation because of its wide use, scalable implementations, and the cluster centroids intuitively

capturing the notion of a prototype.
2.3. Algorithms

Because it is unfeasible to evaluate all available distance-based outlier detection algorithms in detail, we use k-
Nearest Neighbors (KNN) and Local Outlier Factor (LOF) as a proxy for other global and local outlier detection
techniques. Many distance-based outlier detection algorithms follow the basic neighbor-based approaches expressed
in KNN and LOF, see [28] or [2] for specific reviews on more recent distance-based methods. The benefit of using
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Table 1. The datasets used for evaluation where N denotes the number of samples,|O| the number of outliers, and d the dimensionality of the dataset.

Dataset Description N |0] d  Ref.
Datasets used in the literature

ALOI Images represented with histograms features 50,000 1508 27 [12]
Glass A dataset describing types of glass using class 6 as outliers 214 9 7 [18]
Tonosphere Differentiates bad radars for structures in the Ionosphere 351 126 32 [18]
KDDCup99 Data describing network intrusions or attacks 60,632 246 41 [11]
PenDigits Hand-written digits with class 4 downsampled as outliers 9,868 20 16 [11]
Shuttle Space shuttle data using class 2 as outliers 1,013 13 9 [11]
‘Waveform Three classes of waves and with class 0 downsampled as outliers 3,443 100 21 [11]
WBC Benign or malignant cancer types with malignant as outliers 454 10 9 [11]
‘WDBC Nuclear characteristics for breast cancer with malignant outliers 367 10 30 [11]
Semantically meaningful datasets

Annthyroid Hypothyroidism data with classes other than normal as outliers 7,200 534 21 [11]
Arrhythmia Cardiac arrhythmia patient records with arrhythmia as outliers 450 206 259 [11]
Cardiotocography Data set related to heart diseases with other than normal as outliers 2,126 471 21 [11]
HeartDisease Medical data on heart problems with affected patients are outliers 270 120 13 [11]
InternetAds Web images classified as ads or not with ads being outliers 3,264 454 1,555 [11]
PageBlocks Different types of blocks in document pages with non-text as outliers 5,473 560 10 [11]
Pima Patients suffering from diabetes are considered outliers 768 268 8 [11]
SpamBase Data set representing emails classified as normal or spam (outliers) 4,601 1,813 57  [11]
Stamps Differentiate geniune (ink) stamps from forged stamps (outliers) 340 31 9 [22]
Wilt Differentiates diseased trees (outliers) from other land covers 4,839 261 5 [11]
Proprietary datasets

Sensorla Detect different defects (outliers) using sensor point 1 on machine ’a’ 1,000 30 3001 -
Sensorlb Detect different defects (outliers) using sensor point 1 on machine ’b’ 1,000 30 3001 -
Sensorlc Detect different defects (outliers) using sensor point 1 on machine ’¢’ 1,000 30 3001 -
Sensor2a Detect different defects (outliers) using sensor point 2 on machine ’a’ 1,000 30 3001 -
Sensor2b Detect different defects (outliers) using sensor point 2 on machine ’b’ 1,000 30 3001 -
Sensor2c Detect different defects (outliers) using sensor point 2 on machine ’c’ 1,000 30 3001 -
Sensor3a Detect different defects (outliers) using sensor point 3 on machine ’a’ 1,000 30 1440 -
Sensor3b Detect different defects (outliers) using sensor point 3 on machine ’b’ 1,000 30 1440 -
Sensor3c Detect different defects (outliers) using sensor point 3 on machine '¢’ 1,000 30 1440 -
Sensorda Detect different defects (outliers) using sensor point 4 on machine ’a’ 1,000 30 1440 -
Sensor4b Detect different defects (outliers) using sensor point 4 on machine ’b’ 1,000 30 1440 -
Sensordc Detect different defects (outliers) using sensor point 4 on machine ’¢’ 1,000 30 1440 -

KNN and LOF for evaluation is that they depend on a single parameter k£ once the distance metric is fixed. We
use the Euclidean distance metric for our evaluations. For each proportion p of the training data, we optimize the
hyperparameter k individually for both random subsampling and the cluster prototypes. We assume that k lies in
{1,2,...,10} U {15,20,..., 100}, but restrict k to lie below Nt(r’:gn — 1. For the cluster prototypes, we use a fast k-Means
approach proposed by Ding et al. [10]. Contrary to the traditional clustering objective, we are not looking to find the
cluster substructure in the data. Instead, we attempt to combine similar points and keep only one point (the centroid)

as a prototype of each cluster.

2.3.1. k-Nearest Neighbors

Ramaswamy et al.[26] propose to use an instance’s distance to its k"-nearest neighbor to determine its outlier score.
Specifically, for a number of neighbors k and an instance x, let D®(x) denote the distance of the k' nearest neighbor
of x. D®(x) can intuitively be seen as a measure of how much of an outlier an instance x is. Larger values of D®)(x)
imply sparser neighborhoods and are thus typically stronger outliers than points belonging to dense neighborhoods
with lower values of D®(x). This outlier detection approach is typically referred to as k-nearest neighbors outlier



988 David Muhr et al. / Procedia Computer Science 200 (2022) 984-992

detection. To decide if an instance is an outlier or not, the value of D®)(x) is compared to the & neighbor distances
of the rest of the dataset. Because the distance is compared to the rest of the dataset, KNN is seen as a global method.

2.3.2. Local Outlier Factor

Breunig et al.[7] first introduce the concept of locality in distance-based outlier detection with the local outlier
factor. LOF compares the density of each instance x with the density of the k-nearest neighbors of x. A score of
approximately 1 indicates that the corresponding object is located within a region of homogeneous density. If the
difference between the density in the local neighborhood of x, and the density around the neighbors of x is higher, x
gets assigned a higher LOF value. LOF is considered a local method because the outlierness of an instance depends
on how isolated an instance is in relation to its surrounding neighborhood.

2.4. Evaluation

The most popular evaluation measure in unsupervised outlier detection is based on the Receiver Operating Char-
acteristic (ROC). A ROC can be summarized by a single value known as the area under the ROC curve (ROC AUC).
A perfect ranking would result in a ROC AUC value of 1, whereas an inverted perfect ranking would result in a value
of 0. A value of 0.5 can be seen as random guessing [8]. For each k, we evaluate the ROC AUC score for KNN and
LOF using the whole training set, and each training set proportion p. We report only the best result achieved with a
specific value for k. If the same evaluation score is achieved for multiple values of k, we report the smallest k.

3. Results

In this section, we show that distance-based outlier detection methods are robust against data sampling with regards
to detection performance (3.1) and detection variance (3.2). We further show that k-Means cluster prototypes can result
in better predictive performance and lower variance when compared to random subsampling (3.3) in global outlier
detection with KNN, but not in local outlier detection with LOF. In addition to the aggregated results shown in this
paper, we provide detailed per-dataset results including the optimized hyper-parameters online'.

3.1. Effect on detection performance

Averaged over all datasets, the detection performance decreases slightly with a reduction of training data as visible
in Figure 1. Randomly sampling 10% of the training data resulted in a 1.14% =+ 5.33% ROC AUC reduction for KNN
and 1.81% =+ 5.04% reduction for LOF. Using 10% prototypes instead, the mean reduction is 0.33% = 5.07% and
1.92% + 5.20% respectively. Thus, over all datasets, LOF is slightly more sensitive to data reduction compared to
KNN. This stability of KNN over LOF has also been observed in [1]. Interestingly, a data reduction to 10% of the
training data leads to no score decrease or a score improvement in ~ 38% of the datasets with random sampling and
~ 42% of the datasets with prototype sampling with KNN and ~ 28% for both sampling approaches with LOF.

There are cases where a data reduction leads to better ROC AUC scores when the optimal amount of neighbors
falls above our hyperparameter search range (100 neighbors). On the other hand, if the amount of neighbors is already
low for the full training set, a reduction in data typically leads to a decline in performance. These facts have also been
observed by [1]. Note that optimizing k for each data partition is essential when using random or prototype-based
sampling; otherwise, an incorrect bias for a specific data set size is introduced, as exemplified by the delusory results
in [39], where the authors observed that a reduction in data leads to consistently better ensemble models.

3.2. Effect on detection variance
Ten randomly sampled versions exist for all subsampled and proprietary datasets, which we use to determine

the variance of the achieved detection results. Perhaps surprisingly, the difference in variation across sampling and
prototype fractions is low for both KNN and LOF, see Figure 2.

! https://davon.github.io/little-data/
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Fig. 1. ROC AUC scores averaged over all datasets and the corresponding standard deviation.
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Using the five datasets containing different outlier fractions from 2% to 20%, we additionally analyze how the
outlier fractions influence the detection variance. A consistent pattern found is that the detection variance decreases
with a higher outlier fraction for both KNN and LOF and over all values of p. The average variance linearly decreases
from 8.79% + 4.83% (KNN) and 9.15% + 4.93% (LOF) at 2% outliers to 3.46% + 2.32% and 3.71% =+ 2.53% at
20% outliers with no significant differences between random subsampling and prototypes. An additional visualization
detailing the relationship between the variation of scores and different outlier fractions can be found online'.
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3.3. Comparison of random sampling and prototypes
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The correlation between different ROC AUC scores is above 90% for all sampling sizes for both KNN and LOF.
Using prototypes instead of random sampling leads to better correlation when the sampling size is small, as visible in
Figure 3. Furthermore, we use a Wilcoxon signed-rank test to compare the random and prototype ROC AUC scores
statistically. Over all sample sizes, there is a small but significant (p < 0.01) improvement using prototype sampling
over random sampling for KNN. For LOF, there is no significant difference visible (p =~ 0.18). The difference in
detection variance between random sampling and prototypes shows a similar picture. Prototypes lead to significantly
lower detection variance for KNN (p ~ 0.03), but not for LOF (p ~ 0.23).
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In summary, we find that both KNN and LOF are highly robust against both random- and prototype-based data
sampling (RQ1, RQ2). Prototype-based sampling leads to a better score correlation compared to random sampling for
both KNN and LOF, but only for KNN, the ROC AUC score improvements are significant (RQ?3).

4. Conclusion

The trade-off between bias and variance is one of the central machine learning challenges. Using more data is
the most trivial approach to reduce the variance of an estimator. However, there is also a trade-off between learning-
and prediction-speed and predictive performance, which is especially relevant in unsupervised learning, where vast
amounts of data might be available. We show that simple random data subsampling and prototype-based data re-
duction are valuable strategies to accelerate learning and prediction with the analyzed distance-based outlier detection
approaches. In cases where an impractically large number of neighbors best describes the outlier density, a data reduc-
tion is particularly suited to improve prediction speed and predictive performance. Current approximation techniques
to accelerate distance-based outlier detection are typically evaluated using the complete training data set as a bench-
mark for speed and performance. Developers of future speed-up methods for distance-based outlier detection should
additionally include random subsampling as a simple benchmark and baseline. Unfortunately, the datasets currently
used in the outlier detection community are often very small and do not capture the challenges inherent in real-world
use cases. Thus, our study uses datasets that might not represent real-world outlier detection challenges, but we tried to
mitigate this by including proprietary datasets from real-world use cases, and we plan to publish these datasets in the
future. Another drawback in our study is the simple k-Means-based prototype strategy, which showed mixed results
overall. In many use cases, prototypes did not show significant improvements over random subsampling, but some
use cases showed promising results. More insights are necessary to understand under which circumstances prototypes
lead to better outlier detection results, which provides an exciting research area for future studies. In conclusion, our
findings raise intriguing questions about data sampling in distance-based outlier detection. In future investigations
regarding the acceleration of distance-based outlier detection, researchers should shed more light on the properties
needed for data sampling to be effective by using it as a simple baseline for novel methods.
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