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A B S T R A C T   

Background: Pyrethroid insecticides are commonly used in residential settings, and their use has increased 
rapidly. Although research has been scarce, they have been reported to be associated with impaired neuro
development. Moreover, susceptible exposure windows and the long-term effects of pyrethroids have not been 
investigated. We examined the association between pyrethroid exposure and attention-deficit/hyperactivity 
disorder (ADHD) symptoms over time, with exposure windows spanning from the prenatal period to school-age. 
Methods: Using 524 mother–child pairs, we measured urinary concentrations of 3-phenoxybenzoic acid (3-PBA), 
a major pyrethroid metabolite, and asked parents to fill-out the ADHD Rating Scale IV (ARS). We used Poisson 
regression to identify the susceptible periods of pyrethroid exposure, by correlating various 3-PBA exposure 
windows (prenatal, ages 2, 4, 6 and 8) with ADHD symptoms at ages 6 and 8. 
Results: Doubling of prenatal and age 2 3-PBA concentrations was associated with increased ADHD symptoms at 
age 6 (2.7% change, 95% confidence interval [CI]: 0.3, 5.2; 5.2% change [95% CI: 0.5, 10.2], respectively). The 
3-PBA concentrations at age 4 and age 6 were linked with ADHD symptoms at age 8 (2.7% change [95% CI: 0.3, 
5.3]; 3.3% change [95% CI: 0.2, 6.4], respectively). There were no clear sex-specific patterns in association. 
Discussion: Both prenatal and early-childhood exposure to 3-PBA were found to be associated with ADHD 
symptoms. Exposure during pregnancy, and at ages 2 to 6 were found to be susceptible periods for pyrethroid 
neurotoxicity at ages 6 and 8.   

1. Introduction 

Pyrethroid insecticides are the most widely used insecticides for 
residential purposes, and their use has increased dramatically following 
the ban of two organophosphate pesticides in 2000–2001 (Williams 
et al. 2008). They are also used in agriculture, particularly on crops such 
as cotton, vegetables and nuts (Barkoski et al. 2021). Residues in foods 
are the main source of exposure to pyrethroids, but inhalation or 

ingestion of contaminated household dust may be another important 
source of exposure, and dermal absorption, to a smaller degree, is a 
significant route in homes with frequent insecticide application (Agency 
for Toxic Substances and Disease Registry, 2003; Bao et al., 2020; 
Morgan 2012). Exposure to pyrethroids in the general population is 
widespread, as 3-phenoxybenzoic acid (3-PBA), a major metabolite of 
up to 20 synthetic pyrethroid insecticides, was detected in over 70% of 
urine samples in a US study (Barr et al. 2010). Children are at a higher 
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risk of exposure because they eat more food per kilogram of body weight 
than adults (Hauptman et al., 2017), and also because of their proximity 
to the floor and surfaces where insecticides may be applied, and higher 
urinary concentrations have been reported compared to adolescents and 
adults (Viel et al. 2015). 

Although pyrethroids have low volatility and mammalian toxicity 
compared to organophosphates, they have been documented to cross the 
blood–brain barrier during both the prenatal and postnatal period 
(Sinha et al. 2004), exhibiting neurotoxicity in the developing brain. 
Animal studies have found alterations in the dopaminergic system and 
attention-deficit/hyperactivity disorder (ADHD)-like behavior in mice 
exposed to pyrethroids (Burns et al. 2013; Elwan et al. 2006; Gillette and 
Bloomquist 2003). However, there is limited research on the association 
between pyrethroids and ADHD symptoms in humans. Prenatal expo
sure to pyrethroid has been reported to be associated with ADHD-related 
traits at ages 2–4 years (Dalsager et al. 2019). Cross-sectional studies in 
children have yielded inconsistent results, with some reporting positive 
associations between pyrethroid exposure and ADHD symptoms (Lee 
et al. 2020; Wagner-Schuman et al. 2015), while another study showed 
no association (Quiros-Alcala et al. 2014). Although previous studies 
only targeted preschool ages, ADHD symptoms can also be detected in 
the school-age period after age 6 (Kessler et al. 2005), but no study has 
investigated whether prenatal pyrethroid exposure has an effect on 
ADHD at this age. Moreover, no studies to date have simultaneously 
examined the neurotoxic effect of prenatal and postnatal 3-PBA expo
sure, and therefore, the most susceptible exposure windows are 
unknown. 

The purpose of this study was to examine the relationship between 
pyrethroid exposure at multiple time periods and ADHD symptoms in 
school-age children. We aimed to identify the susceptible periods of 
pyrethroid exposure that are associated with increased ADHD symptoms 
by correlating urinary 3-PBA exposure at multiple time points (prenatal 
and ages 2, 4, 6, and 8) with ADHD symptoms at ages 6 and 8. 

2. Methods 

2.1. Study design and participants 

Our research was based on data from the Environment and Devel
opment of Children (EDC) study, an ongoing prospective cohort study 
designed to evaluate the association between prenatal and postnatal 
environmental exposures and physical/cognitive development. Detailed 
information of the study design has been described elsewhere (Kim et al. 
2018). We randomly contacted women that had participated in a larger 
study called the Congenital Anomaly Study (CAS). The CAS recruited 
13,484 pregnant women during the second trimester from eight local 
hospitals (5 primary hospitals and 3 tertiary hospitals) in the Seoul and 
Gyeonngi provinces of South Korea from August 2008 to July 2010. The 
inclusion criteria for GAS were 1) pregnant women in the second 
trimester of pregnancy, 2) pregnant women who provided informed 
consent for follow-up and the exclusion criteria were 1) pregnant 
women with congenital abnormalities, including genetic disorders, or 
immunodeficiency disorders and 2) individuals unable to communicate 
in Korean. Data on their individual characteristics (sociodemographic 
and lifestyle factors, past medical history), and spot urine/blood samples 
at enrollment to estimate the exposure of environmental factors during 
the second trimester of their pregnancy (between 14 and 27 weeks of 
gestation; median 17 weeks of gestation) were collected. After the CAS 
ended in 2011, participants for the EDC study were recruited by 
randomly contacting the mothers after birth. Children who had a 
congenital deformity at birth (n = 115) or invalid contact information 
(n = 218) were excluded from the potential contact list. A total of 726 
mother–child pairs were enrolled in the EDC study and participated in 
follow-up. The children were followed up every two years, from 2012 to 
2019. A total of 425 children at age 2, 645 children at age 4, 574 chil
dren at age 6, and 525 children at age 8 received follow-up. 

Neurodevelopment was assessed using parent-report questionnaires and 
formal testing (including tests for intelligence, attention and executive 
function) by professional psychologists. As the intelligence quotient (IQ) 
level is considered to be stable (Schalke et al. 2013), children’s IQ scores 
were assessed once at age 6 using the Korean Educational Develop
mental Institute’s Wechsler Intelligence Scale for Children (Park et al. 
1996). Additionally, mothers’ IQ scores were evaluated using the 
Korean Wechsler Adult Intelligence Scale (Lim et al. 2000). After 
excluding 151 children who were missing ARS scores at age 6 or 8 and 
children from multiple births (twin or triplets, n = 51), a total of 524 
mother–child pairs were included in this study. All children had data on 
3-PBA concentrations for more than one exposure period (prenatal, age 
2, 4, 6 or 8). Fig. 1 depicts the flow of the participants throughout the 
study. 

Informed consent was obtained from the parents (since pregnancy) 
and children (aged ≥ 8 years) after sufficient explanation of the study. 
The study protocol was reviewed and approved by the Institutional 
Review Board of Seoul National University Hospital. This study was 
conducted in accordance with the principles of the Declaration of 
Helsinki. 

2.2. Measurement of 3-PBA concentrations 

We measured 3-PBA concentrations using maternal urine samples 
collected between 14 and 27 weeks of gestation, at a mean of 20 weeks, 
and from children at ages 2, 4, 6 and 8. The first urine after fasting 
overnight was collected with a 10 ml conical tube, stored on ice at the 
site, and transported on the same day to SMARTIVE Co. a commercial 
lab, for storage at − 70 ◦C until analysis. The laboratory methods and 
processes for 3-PBA analysis followed a previously reported study 
(Schettgen et al. 2002). Our detailed method of 3-PBA concentration 
assessment was described in a previous article (Lee et al. 2019). To 
explain briefly, after 1 ml of concentrated hydrochloric acid (37%) was 
added for hydrolysis of the samples, the samples were heated at 90 ◦C for 
1 h with the standard solution, n-hexane was added, shaken for 20 min, 
and the mixture was centrifuged at 2500 rpm for 5 min. n-Hexane was 
further added to the supernatant. The collected mixture was combined 
with 0.1 M NaOH, shaken for 10 min, and centrifuged at 2500 rpm for 5 
min. The separated upper layer was removed and concentrated hydro
chloric acid and n-hexane were added. The mixture was shaken for 10 
min and then centrifuged at 1500 rpm for 5 min. After removing the 
upper layer solution, the solvent was dried with a nitrogen concentrator, 
and then mixed with toluene and N-Methyl-N-(tert-butyldimethylsilyl) 
trifluoroacetamide. The mixture was allowed to react at 70 ◦C for 60 min 
and urinary 3-PBA concentration was determined by a gas 
chromatograph-mass spectrometer (Clarus 600 T, Perkin Elmer 
(GC–MS/MS)). 

Strict internal quality control was performed prior to analysis of the 
whole samples and included tests of linearity, accuracy and precision 
and detection limit. In the linearity test, R2 was 0.999 in the calibration 
curve in pooled urine. The accuracy test was performed using ClinChek I 
and II (catalog no. 8928, ClinChek® Urine Controls, Recipe® Chemicals 
+ Instrument GmbH, Germany) and showed 99–116% accuracy for 
ClinCheck I and 87–98% recovery. Coefficient of variations (CV%) were 
3.0%, 2.6% and 1.5% in low, medium and high concentrations, 
respectively. For values below the limit of detection (LOD), we assigned 
the LOD value divided by the square root of 2 (Hornung et al. 1990). In 
this study, the LOD was 0.015 µg/L. Our laboratory was involved in the 
German External Quality Assessment Scheme and has passed the 57th to 
60th (2017–2018: urinary 3-PBA) programs. Creatinine values (g/L) 
were included as covariates in subsequent analyses to correct for urine 
dilution (Barr et al., 2005; O’Brien et al., 2016). For measuring creati
nine, CREA reagent (Roche, Indianapolis, IN, USA) was used with a 
Hitachi 7600 machine (Hitachi, Tokyo, Japan) for a kinetic colorimetric 
assay (rate-blanked and compensated). 
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2.3. Assessment of ADHD symptoms 

ADHD symptoms were measured using a parent-report rating scale 
called the ADHD-Rating Scale IV (ARS) (Dupaul 1998). The ARS consists 
of 18 items rated on a scale from 0 to 3, with potential responses of 
“never or rarely”, “sometimes”, “often”, or “very often”. Each item 
corresponds with the diagnostic criteria of ADHD in the Diagnostic and 
Statistical Manual of Mental Disorders IV (DSM-IV) (American Psychi
atry Association 2013). The total score ranges from 0 to 54, with nine 
items reflecting inattention symptoms (range from 0 to 27) and nine 
items addressing hyperactivity-impulsivity symptoms (range from 0 to 
27). All higher scores indicate more ADHD traits. The internal consis
tency (Cronbach’s α) of ARS in this study population was 0.88 at age 6 
and age 8. The cut-off for possible clinical ADHD is ≥ 19. 

2.4. Definition of covariates 

We selected potential covariates based on previous literature (Dals
ager et al. 2019; Lee et al. 2020; Wagner-Schuman et al. 2015). These 
included maternal age at pregnancy (years), maternal education (<or ≥
college education), family income status (monthly family income < or ≥
$3,500), maternal smoking during pregnancy (ex-smoker, current 
smoker, or non-smoker), diabetes mellitus (DM) during pregnancy (yes 
or no), child’s age (in months), sex, body mass index (BMI) (kg/m2), 
birth order (<or ≥ 2nd), delivery mode (vaginal delivery or cesarean 
section), prematurity (<or ≥ 37 weeks), low birth weight (<or ≥ 2.5 
kg), breastfeeding status (exclusive breastfeeding, mixed feeding, or 
exclusive formula feeding), and season of 3-PBA exposure (spring, 
summer, autumn, or winter). We controlled for different covariates in 
prenatal and postnatal exposure models: DM during pregnancy, pre
maturity and low birth weight were only considered as covariates in 
postnatal models, as these are potential mediators lying on the pathway 
from prenatal 3-PBA exposure to ADHD symptoms. Breastfeeding was 
only considered in postnatal models as this occurred after prenatal 3- 
PBA exposure and couldn’t have affected prenatal 3-PBA 

concentration. Based on exploratory analyses, we selected the final 
covariates that were associated with both ARS scores and 3-PBA con
centrations (p < 0.1) (Hernán et al., 2002). Specifically, we first iden
tified the covariates that were associated with ARS scores at age 6 or 8, 
and then selected the covariates that were associated with 3-PBA con
centrations during pregnancy, age 2, 4, 6 or 8 (Table S1, S2). Urine 
creatinine concentrations were included as covariates in all analyses for 
correction of urine dilution. The final set of selected covariates were age, 
sex, family income, season of exposure, and urine creatinine concen
tration for the prenatal 3-PBA analyses and age, sex, family income, 
season of exposure, DM during pregnancy, breastfeeding, prematurity, 
and urine creatinine concentration for the postnatal 3-PBA analyses. 

2.5. Statistical analysis 

We used log2-transformed 3-PBA values in all subsequent analyses to 
approximate normal distribution. Pearson correlation coefficients be
tween 3-PBA concentrations during pregnancy and at ages of 2, 4, 6, and 
8 were calculated. Intraclass correlation coefficients (ICCs; two-way 
mixed models, single rater, absolute agreement option: ICC(3,1)) were 
computed to examine differences of ARS scores (ages 6 and 8) and 3-PBA 
concentrations (at ages of 2, 4, 6, and 8 years) of the children over time. 

The ARS scores at age 6 and 8 were right skewed (Figure S1), thus 
ARS scores were analyzed using Poisson regression. Univariate Poisson 
regression models were used to investigate the association between 
potential covariates and ARS scores and linear regression models were 
used to explore the association between those covariates and 3-PBA 
concentrations at different ages. 

We compared the parental characteristics of the participants 
included in this study and those excluded using independent t-tests (for 
continuous variables) or chi-square tests (for categorical variables) 
(Table 1). The characteristics of the children at ages 6 and 8 were also 
compared (Table 2). 

We examined the association between 3-PBA concentrations and 
ARS scores using multivariable Poisson regression models at multiple 

Fig. 1. Study flow of the participants Abbreviations: 3-PBA, 3-phenoxybenzoic acid.  
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time points to identify susceptible exposure windows. We investigated 
relationships by pairing 3-PBA concentrations at pregnancy, ages 2, 4, 6 
or 8 (exposure windows) and ARS scores at age 6 or 8 (ages of outcome). 
We adjusted for child’s age (month), sex, family income, season of 
exposure and urine creatinine concentration for the prenatal 3-PBA 

analyses and age, sex, family income, season of exposure, DM during 
pregnancy, prematurity, breastfeeding and urine creatinine concentra
tion for the postnatal 3-PBA analyses. As eligible participants differed by 
follow-up ages, we included 449 and 414 children at the age 6 and age 8 
for ARS analyses, respectively (n = 169 and n = 158 for the age 2 
exposure windows). We repeated the analyses separately for the inat
tention and hyperactivity-impulsivity ARS subscale scores. We repeated 
the same analyses after stratification by the children’s sex, and also 
investigated the interaction between sex and 3-PBA concentrations 
(significance set at p < 0.05), as epidemiological research has provided 
evidence supporting differential effects of pesticide toxicity by sex 
(Garcia 2003; Lee et al. 2019). 

We examined the effects of exposure to 3-PBA on ARS scores at age 6 
and 8 using a generalized linear mixed model with a log-link function for 
repeated analysis (n = 521), adjusting for age, sex, family income, 
season of exposure, DM during pregnancy, prematurity, breastfeeding 
and urine creatinine concentration. We also estimated the association in 
separate sexes. To see if sustained exposures to 3-PBA impact ARS 
scores, we also constructed models including no covariates, but only the 
main effects and interactions between 3-PBA concentrations at different 
exposure periods. We excluded cross-sectional 3-PBA exposures from the 
models, as cross-section associations may be caused by reverse causa
tion. For the age 6 ARS analysis, we constructed a model including 
prenatal, age 2, and age 4 3-PBA concentrations, and also another 
excluding age 2 (only including prenatal and age 4 exposure), as in
clusion of age 2 resulted in small sample sizes. For the age 8 ARS 
analysis, we constructed a model including prenatal, age 2, age 4, and 
age 6 3-PBA concentrations, and also another excluding age 2 (only 
including prenatal, age 4 and age 6 exposure), as inclusion of age 2 
resulted in small sample sizes. 

To test for robustness, we performed sensitivity analyses by adjusting 
for covariates that were selected when using the forward selection 
process, which were age, sex, family income, season of exposure, birth 
order, maternal age at pregnancy and urine creatinine concentration in 
prenatal models and age, sex, family income, season of exposure, birth 
order, maternal age at pregnancy, breastfeeding, prematurity and urine 
creatinine concentration in postnatal models. Another sensitivity anal
ysis was conducted by adjusting for all 3-PBA concentrations measured 
prior to exposure window of interest (e.g., adjusted for prenatal and age 
2 3-PBA concentrations for the age 4 3-PBA analysis). As the sample size 
was significantly reduced when adding the 3-PBA concentration at age 2 
in the postnatal models, we constructed another main model (n = 169 
and n = 158 in postnatal analyses) for comparison. Finally, we reran the 
analyses after restricting to the population that had visited at both ages 6 
and 8 (n = 412 for prenatal and ages 4, 6 and 8 exposure windows; n =
157 for age 2 exposure window). 

All statistical analyses were performed using SPSS for Windows 
software (ver. 22.0; Armonk, NY: IBM Corp.) and R version 4.0.2 (The 
Comprehensive R Archive Network, Vienna, Austria; http://cran-r-pr 
oject.org). Statistical significance was defined as p < 0.05 (two-tailed). 
As the 3-PBA concentrations were log2-transformed and the ARS scores 
were analyzed using a log-link function, the β coefficients were inter
preted as (eβ-1)*100 % change for doubling in exposure. 

3. Results 

3.1. General characteristics of the participants 

Table 1 presents the parental characteristics of our participants (n =
524). The mean maternal age at pregnancy was 31.2 ± 3.6 years. The 
proportion of mothers who were college graduates were 82.4%. During 
pregnancy, none of the mothers were current smokers and 15.6% were 
ex-smokers. We found that the characteristics of those included in this 
study were not significantly different compared to those who were 
excluded in our analyses (n = 202), except for DM during pregnancy and 
season of prenatal 3-PBA exposure. Regarding the child characteristics, 

Table 1 
Characteristics of the mothers of included and excluded children in the study.  

Variables Included 
children 
(n = 524) 

Excluded 
children  
(n = 202) 

P- 
value 

Maternal age at pregnancy, years, 
mean (SD) 

31.2 (3.6) 31.7 (3.6)  0.12 

Maternal Education, N (%)    
< College education 92 (17.6) 45 (22.3)  0.17 
≥ College graduate 432 (82.4) 157 (77.7)  
Paternal education, N (%)    
< College education 88 (16.8) 32 (15.8)  0.82 
≥ College graduate 435 (83.2) 170 (84.2)  
Smoking during pregnancy, yes, N 

(%)    
1.0 

Ex-smoker 80 (15.6) 30 (15.4)  
Never smoker 432 (84.4) 165 (84.6)  
DM during pregnancy, yes, N (%) 22 (4.2) 1 (0.5)  0.01 
Maternal FSIQ, mean (SD) 116.4 (11.6) 117.4 (11.2)  0.62 
Season of exposure, prenatal, N (%)    0.03 
Spring 196 (37.6) 56 (27.9)  
Summer 92 (17.7) 52 (25.9)  
Autumn 115 (22.1) 48 (23.9)  
Winter 118 (22.6) 45 (22.4)  

Abbreviations: SD, standard deviation; DM, diabetes mellitus; FSIQ, full-scale 
intelligence quotient. 
P-value for difference of characteristics between included and excluded children 
(chi-square test for categorical variables and t-test for continuous variables). 

Table 2 
Sociodemographic characteristics of the children at age 6 and 8.  

Variables Age 6  
(n = 449) 

Age 8  
(n = 414) 

p-value 

Age, months, mean (SD) 71.2 (1.5) 95.1 (1.5)  <0.01 
Sex, boys, N (%) 238 (53.0) 219 (52.9)  1.00 
BMI, kg/m2, mean (SD) 15.8 (1.9) 16.9 (2.5)  <0.01 
Birth order, N (%)    0.63 
1st 266 (59.2) 252 (60.9)  
2nd or higher 183 (40.8) 162 (39.1)  
Delivery mode, N (%)    0.83 
Vaginal delivery 299 (66.6) 279 (67.4)  
Cesarean section 150 (33.4) 135 (32.6)  
Low birth weight, yes, N (%) 12 (2.7) 11 (2.7)  > 0.99 
Prematurity, yes, N (%) 21 (4.7) 18 (4.3)  0.82 
Breastfeeding, N (%)    0.94 
Exclusive breastfeeding 150 (33.4) 140 (33.8)  
Mixed feeding 290 (64.6) 267 (64.5)  
Formula feeding 9 (2.0) 7 (1.7)  
Monthly family income, N(%)    <0.01 
< $3500 142 (31.6) 88 (21.3)  
≥$3500 307 (68.4) 326 (78.7)  
Child FSIQ, mean (SD) 109.8 (12.8) 109.7 (12.9)  0.91 
ARS scores, mean (SD)    
ARS total score 6.3 (5.5) 6.9 (5.6)  0.11 
ARS inattention score 3.5 (3.0) 4.2 (3.4)  <0.01 
ARS hyperactivity-impulsivity score 2.8 (2.9) 2.7 (2.7)  0.60 
Season of 3-PBA exposure, N (%)    0.25 
Spring 124 (27.6) 105 (25.4)  
Summer 126 (28.1) 133 (32.1)  
Autumn 155 (34.5) 125 (30.2)  
Winter 44 (9.8) 51 (12.3)  
3-PBA concentrations, μg/L, GM (GSD) 0.8 (2.5) 0.7 (3.9)  0.65 

Abbreviations: SD, standard deviation; BMI, body mass index; FSIQ, full-scale 
intelligence quotient; ARS, ADHD Rating Scale IV ; 3-PBA, 3-phenoxybenzoic 
acid; GM, geometric mean; GSD, geometric standard deviation. 
P-value for difference of characteristics between included and excluded children 
(chi-square test for categorical variables and t-test for continuous variables). 
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the proportion of boys was similar at ages 6 and 8 (53.0% and 52.9%, 
respectively), and the majority were from families with a higher income 
(68.4% and 78.7% at ages 6 and 8: Table 2). The ICC of total ADHD 
symptoms from age 6 to 8 was 0.55, indicating relatively stable levels of 
ADHD symptoms in a child. The inattention subscale scores were higher 
at age 8 compared to age 6 (3.5 ± 3.0 at age 6 vs 4.2 ± 3.4 at age 8). 
Twelve children at age 6 and 19 children at age 8 surpassed the cut-off 
value of possible clinical ADHD. 

3.2. 3-PBA concentrations 

The distribution of 3-PBA concentrations at each age is presented in 
Table S3. The geometric mean concentrations of 3-PBA exposure were 
0.7 ± 3.7, 0.5 ± 3.5, 0.9 ± 3.4, 0.8 ± 2.5, and 0.7 ± 3.9 μg/L, during 
pregnancy, and at age 2, 4, 6 and 8, respectively. Childhood concen
trations of 3-PBA at age 4 to 8 were higher compared to pregnancy, and 
decreased from age 4 to age 8. Boys were exposed to higher concen
trations compared to girls at all ages. The detection frequencies of 3-PBA 
were > 99% at all time points (99.2% during pregnancy, 100% at ages 2, 
4 and 6, 99.8% at age 8). The ICC of 3-PBA from age 2 to 8 was 0.16, and 
0.19 from ages 4 to 8. The correlation coefficients of 3-PBA pairs at 
different ages were small (range − 0.03 – 0.29: Figure S2). 

3.3. Association between 3-PBA exposure and ADHD symptoms 

The association between 3-PBA exposure and ARS scores at multiple 
time points are shown in Table 3 and Fig. 2. Doubling of 3-PBA con
centrations during pregnancy was associated with 2.7% (95% CI: 0.3, 
5.2) increase in ARS scores at 6 years of age. Also, doubling of 3-PBA 
concentrations at age 2 was associated with 5.2% (95% CI: 0.5, 10.2) 
increase in ARS scores at 6 years of age. Doubling in 3-PBA concentra
tions at 2 and age 4 years of age was associated with increased ARS 
scores at 8 years (2.7% change [95% CI: 0.3, 5.3]; 3.3% change [95% CI: 
0.2, 6.4], respectively). The effect sizes of associations showed a 
decreasing trend with age, from age 2 to age 8 (% change [95% CI]: 4.0 
[-0.5, 8.7], 2.7 [0.3, 5.3], 3.3 [0.2, 6.4], 0.1 [-2.0, 2.2] at ages 2,4, 6 and 
8, respectively). 

None of the sex-interaction terms were significant for the significant 
associations found in the main analysis (Table 3). Significant sex × 3- 
PBA interaction was found in the association between 3-PBA exposure at 
age 6 and ARS at age 6, and also in the association between 3-PBA 
exposure at age 8 and ARS at age 8. However, these were cross- 

sectional findings and can be caused by reverse causation. According 
to the sex-stratified analyses, the association between 3-PBA during 
pregnancy and ARS scores at age 6 was significant in boys, but not girls 
(4.3% change [95% CI: 1.1, 7.6] for boys vs 0.1% [95% CI: − 3.4, 3.7] for 
girls; Fig. 2). In postnatal exposure windows, the associations were 
stronger among girls in some exposure windows, as the associations of 3- 
PBA concentrations at ages 2 with ARS scores at age 6 and 8 were sig
nificant in girls, but not boys (4.6% change [95% CI: − 0.8, 10.3] for 
boys versus 11.9% change [95% CI: 0.7, 24.2] for girls at age 2 with age 
6 ARS scores; 1.9% change [95% CI: − 2.9, 6.9] for boys versus 16.7% 
change [95% CI: 3.8, 31.1] for girls at age 2 with age 8 ARS scores). 
Exposure to 3-PBA at age 6 was associated with ARS scores at age 8 in 
girls only (1.5% change [95% CI: − 2.1, 5.2] for boys versus 6.8% change 
[95% CI: 1.2, 12.7] for girls). 

When examining the subscale scores separately, 3-PBA was not 
found to be associated with a specific subscale score prominently. 
Doubling in 3-PBA concentrations at age 4 were associated with a 3.8% 
decrease (95% CI: − 7.3, − 0.3) in the hyperactivity-impulsivity subscale 
scores at age 6 (Table S4). The inattention subscale scores at age 2 were 
related to 3-PBA concentrations at age 8 (5.8% change, [95% CI: 1.9, 
9.8]; Table S4). 

The mixed model results were not significant (Table S5), indicating 
that increase in log2-transformed 3-PBA metabolites were not associated 
with increase in ARS scores from age 6 to 8 (-0.4% change, 95% CI: 
− 3.3, 2.6). The 2-way interaction between prenatal and age 4 3-PBA 
concentrations was found to be associated with an increase in age 6 
ARS scores (1.5 % change, 95% CI 0.3, 2.8). The 3-way interaction be
tween prenatal, age 4 and age 6 3-PBA concentrations was also linked to 
an increase in age 8 ARS scores (2.0% change, 95% CI: 1.0, 3.1; 
Table S6). 

3.4. Sensitivity analyses 

In the sensitivity analyses, adjustment for covariates selected by 
forward selection (Model 1) did not change the significant associations 
between exposure window-specific 3-PBA concentrations and ARS 
scores (Table S7). When we reduced the sample size to match the sample 
size of age 2, only prenatal and age 2 3-PBA exposure was associated 
with age 6 ARS scores (Main Model 2). However, adjusting for all prior 
3-PBA concentrations of early exposure period did not change the results 
in comparison to the main model (Model 2). When restricting to the 
population that visited at both ages 6 and 8, the results remained similar 

Table 3 
Associations between 1-unit increase in exposure to 3-PBA and changes in ARS scores by exposure windows.  

Age of 
ARS assessment 

Exposure 
windows 

Totala Boysb Girlsb Sex × 3-PBA 

(β [95% CI]) p-value (β [95% CI]) p-value (β [95% CI]) p-value p-value 

Age 6  
(n = 449 

Boys: n = 238 
Girls:n = 211) 

Pregnancy 0.03 (3.40*10-3, 0.05)  0.03 0.04 (0.01, 0.07)  0.01 9.32*10-4 (-0.04, 0.04)  0.96  0.36 
Age 2* 0.05 (5.27*10-3, 0.10)  0.03 0.05 (-8.05*10-3, 0.10)  0.10 0.11 (7.36*10-3, 0.22)  0.04  0.44 
Age 4 − 0.02 (-0.04, 0.10)  0.20 − 7.46*10-3 (-0.04, 0.02)  0.63 − 0.03 (-0.07, 0.02)  0.24  0.74 
Age 6 − 0.01 (-0.04, 0.02)  0.40 0.01 (-0.03, 0.05)  0.54 ¡0.06 (-0.11, ¡1.56*10-3)  0.04  <0.01 

Age 8  
(n = 414 

Boys:n = 219 
Girls:n = 195) 

Pregnancy 2.24*10-3 (-0.02, 0.03)  0.86 0.02 (-0.01, 0.05)  0.29 − 0.02 (-0.06, 0.02)  0.31  0.25 
Age 2* 0.04 (-5.72*10-3, 0.08)  0.09 0.02 (-0.03, 0.07)  0.45 0.15 (0.04, 0.27)  0.01  0.40 
Age 4 0.03 (2.85*10-3, 0.05)  0.03 0.03 (-1.51*10-3, 0.06)  0.06 0.02 (-0.02, 0.06)  0.30  0.31 
Age 6 0.03 (2.57*10-3, 0.06)  0.03 0.02 (-0.02, 0.05)  0.42 0.07 (0.01, 0.12)  0.02  0.72 
Age 8 1.01*10-3 (-0.02, 0.02)  0.93 0.02 (-6.28*10-3, 0.05)  0.13 − 0.03 (-0.06, 4.91*10-3)  0.10  0.03 

a Adjusted for child’s age, sex, family income, season of exposure and urine creatinine for prenatal exposure analyses. 
Adjusted for child’s age, sex, family income, season of exposure, breastfeeding, prematurity, diabetes mellitus during pregnancy and urine creatinine for postnatal 
exposure analyses. 
b Adjusted for child’s age, sex, family income, season of exposure and urine creatinine for prenatal exposure analyses. 
Adjusted for child’s age, sex, family income, season of exposure, breastfeeding, prematurity, diabetes mellitus during pregnancy and urine creatinine for postnatal 
exposure analyses. 
Abbreviations, 3-PBA, 3-phenoxybenzoic acid, ARS, ADHD Rating Scale IV, CI, confidence interval. 
Significant results shown in bold. 
*Sample size: n = 169 and n = 158 for the age 6 and age 8 analyses, respectively for the total population. 
n = 93 and n = 76 for the age 6 and age 8 analyses, respectively for the boys. 
n = 88 and n = 70 for the age 6 and age 8 analyses, respectively for the girls. 
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(Model 3). 

4. Discussion 

To our knowledge, this is the first study that investigated 1) the effect 
of both prenatal and early childhood exposure to 3-PBA on ADHD 
symptoms in school-age children and 2) the susceptible exposure win
dow to 3-PBA neurotoxicity. In utero, ages 2 to 6 were found to be 
susceptible periods, but each window of exposure affected ADHD 
symptoms at different ages. The associations did not show a specific 
pattern by sex. Sustained exposure to 3-PBA during pregnancy and at 
age 4 was found to impact age 6 ADHD symptoms, while sustained 
exposure to 3-PBA during pregnancy, at age 4 and age 6 was associated 
with increase in ARS score at age 8. 

Previous studies on the effect of pyrethroid exposure on neuro
development have been limited in number and have produced incon
sistent results. In regard to prenatal exposure, the study by Dalsager 
et al. found that prenatal exposure to 3-PBA was associated with ADHD 
related traits at 2–4 years of age (Dalsager et al. 2019). Maternal pyre
throid exposure was reported to be associated with lower cognitive 
scores at three months of age (Fluegge et al. 2016) and at 12 months of 
age (Xue et al. 2013), and with poor social-emotional development at 
age 1 (Eskenazi et al. 2018). One study found that prenatal 3-PBA was 
associated with generalized behavioral deficits measured at 4–9 years of 
age (Furlong et al. 2017). Comparatively, prenatal 3-PBA concentrations 
were only marginally associated with Bayley Scales of infant develop
ment at 24 months of age (Watkins et al. 2016). Another study found 
that greater in utero 3-PBA concentrations were associated with a 
moderate but imprecise increase in risk for autism spectrum disorder 
compared to typically developing children at age 3-years (Barkoski et al. 
2021). A French cohort reported that prenatal 3-PBA was not associated 
with IQ scores at six years of age (Viel et al. 2015). These studies differed 
in exposure levels, used different measurement tools of behavior, and 
assessed behavioral outcome at different ages; thus, results may not be 
directly comparable across studies. Moreover, exposure misclassifica
tion, sex-specific effects, and the effects of pesticide mixtures may have 
contributed to the discrepancy (Radke et al. 2020). Due to the paucity of 
literature, further studies are warranted to determine the neurotoxic 
effect of pyrethroid pesticides. 

Only one previous study has investigated the association of prenatal 

pyrethroid exposure and ADHD symptoms to our knowledge. This study 
on a mother–child cohort in Denmark (Odense Child Cohort) found that 
doubling in maternal 3-PBA concentration was associated with a 3% 
higher expected ADHD score assessed by the Child Behavior Checklist 
for Ages 11/2–5 (95% CI: 1.00, 1.07) (Dalsager et al. 2019), while our 
study found a 2.7% increase (95% CI: 1.2, 6.0) in ARS scores associated 
with doubling of maternal 3-PBA concentrations. A cross-sectional study 
of 8–15-year-olds in the US reported that hyperactive-impulsive symp
toms increased by 50% for every 10-fold increase in 3-PBA concentra
tions (Wagner-Schuman et al. 2015), equivalent to 5% increase in 
symptoms for every 2-fold increase in 3-PBA. The estimates of effect 
were similar in these studies and the present study, but the exposure 
concentrations differed, as the median of prenatal exposure was 0.24 
ug/L in the Denmark study, 0.29 ug/L in the US study (2001–2002 
National Health and Nutrition Examination Survey), and 0.77 μg/L in 
our study. Even at lower concentrations in the Denmark and US studies, 
3-PBA showed neurotoxic effects. According to the Korean National 
Environmental Health Survey, 3-PBA concentrations in the general 
population were>3 times higher in Korea than in the US, probably due 
to the wider exposure of Koreans to various forms of pyrethroids such as 
sprays and fumigants (Hu et al. 2021; Yoo et al. 2016). The population 
burden is determined not only by the effect size but also the distribution 
of a factor (Bellinger 2012). Although the effect sizes were small, the 
population burden can be a concern due to the wide-spread usage of 
pyrethroid pesticides. 

We found multiple susceptible periods, spanning from the prenatal 
phase to age 6. Previous animal studies have suggested that both pre
natal and postnatal periods may represent susceptible phases for pyre
throid neurotoxicity (Ahlbom et al. 1994; Burns et al. 2013; Eriksson and 
Nordberg 1990; Richardson et al. 2015; Talts et al. 1998). Multiple 
susceptible periods are also plausible considering the continuous brain 
development from in utero to adolescence (Kim et al. 2021). Axon 
elaboration, synapse formation, as well as axon and synapse elimination 
are mechanisms that have shown to alter circuit architecture during 
susceptible periods (Knudsen 2004), therefore, the periods of rapid 
neurogenesis and synaptic pruning may be periods of heightened 
sensitivity to external insults (Ismail et al. 2017; Meredith 2015). Neu
rogenesis is most prominent during early fetal development, whereas 
synaptogenesis starts from 27 weeks of gestation and intensifies over the 
first 2 years of life (Johnston et al. 2009). Synaptic pruning occurs 

Fig. 2. CI plot of the associations between 3-PBA 
and ARS scores Adjusted for child’s age, sex (for 
the total sample), family income, season of exposure 
and urine creatinine for prenatal exposure analyses 
Adjusted for child’s age, sex (for the total sample), 
family income, season of exposure, breastfeeding, 
prematurity, diabetes mellitus during pregnancy 
and urine creatinine for postnatal exposure analyses 
Abbreviations: CI, confidence interval; 3-PBA, 3- 
phenoxybenzoic acid; ARS , ADHD Rating Scale.   
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rapidly from the age of 2 years to 10 years (Huttenlocher and Dabholkar 
1997). The susceptible period to 3-PBA coincides with periods of neu
rodevelopment. Identification of susceptible periods could facilitate in
terventions to reduce exposure on the population level and individual 
level during these time periods (Stacy et al. 2017). 

There were no clear sex-specific association patterns found in this 
study. The associations between prenatal 3-PBA exposure and ADHD 
symptoms in the Odense Child Cohort were not modified by sex, either 
(Dalsager et al., 2019). However, other studies on the association be
tween pyrethroid exposure and neurodevelopment have reported mixed 
findings regarding sex-modification. Watkins et al. found that the 
negative association between prenatal 3-PBA concentration and neuro
development scores at 24 months of age was stronger in girls compared 
to boys (Watkins et al. 2016), whereas another study observed increased 
odds of an ADHD diagnosis associated with pyrethroid biomarkers in 
boys, but not girls (Wagner-Schuman et al. 2015). A rodent study by 
Meng et al. found that pyrethroid exposure during puberty was more 
prominently associated with spatial learning and memory impairments 
in females (Meng et al. 2011), but male mice have also been reported to 
be more vulnerable to pyrethroid-induced hyperactivity than female 
mice (Lazarini et al. 2001). Pyrethroid exposure led to decreased 
testosterone and estradiol synthesis and androgen receptor expression in 
the cerebral cortex of pubertal mice (Liu et al. 2011), and this may 
underlie the sex-dependent action of the pyrethroid on neuro
development. The mechanism underlying the sex-specific susceptible 
periods are undetermined, and further studies investigating sex hor
mones in vivo may bring further insight to the mechanism underlying 3- 
PBA neurotoxicity. 

Among ADHD symptoms, pyrethroid exposure was not found to be 
specifically related to hyperactivity-impulsivity symptoms or inattentive 
symptoms in children. However, although not significant, prenatal 3- 
PBA exposure was marginally significantly associated with 
hyperactivity-impulsivity scores at age 6 (3.7% change, 95% CI: − 0.03, 
7.5). This is in line with a previous cross-sectional study in 8–15-year- 
old participants, which reported that hyperactive-impulsive symptoms 
increased by 50% for every 10-fold increase in 3-PBA concentrations 
(Wagner-Schuman et al. 2015). This effect size was comparable to our 
study, which showed a 3.7% increase in hyperactivity-impulsivity 
symptoms for a 2-fold increase in prenatal 3-PBA exposure. The rela
tion of pyrethroids and hyperactivity-impulsivity have also been re
ported in previous animal studies, demonstrating that pyrethroid 
exposure during gestation and early childhood results in hyperactivity 
and impulsive-like behavior (Eriksson and Fredriksson 1991; Richard
son et al. 2015). Another study demonstrated up-regulation of striatal 
dopamine transporters (DAT) in mice given intraperitoneal doses of 
pyrethroid permethrin, which has been linked to the pathophysiology 
underlying ADHD hyperactive symptoms (Gillette and Bloomquist 
2003). ADHD is a heterogeneous disorder with various symptom pro
files, and clinical distinction of subtype may be important as comor
bidities, functional impairment, and underlying pathophysiology may 
differ among subtypes (Levy et al. 2005; Saad et al. 2017). The associ
ation of 3-PBA with a specific subtype of ADHD may also be a factor 
contributing to the inconsistent results on 3-PBA and ADHD association. 
Further studies exploring the relationship of 3-PBA with ADHD subtypes 
are warranted. 

The differential effects of 3-PBA according to timing of exposure can 
be partially explained by epigenetic processes such as DNA methylation. 
First, in utero, ages 2 to 6 were prone to 3-PBA neurotoxicity. These 
findings are in line with previous studies investigating age-related 
methylation changes. Acevedo et al reported that DNA methylation 
changes during the first five years of life and weakens around the third 
year (Acevedo et al. 2015). From these findings, we can speculate that 
the methylome would be more prone to environmentally toxic materials 
in the early stages of life, when changes are more dynamic. Second, the 
effect of prenatal 3-PBA exposure affected ADHD symptoms at six years 
of age, suggesting long-term effects. Transient environmental exposure 

during critical windows are known to affect epigenetic marks, which are 
evident at birth (Hogg et al. 2012) and may persist until later life 
(Reynolds et al. 2013; Waterland and Michels 2007). Third, the adverse 
effects of prenatal 3-PBA exposure were attenuated at age 8. Prenatal 3- 
PBA may have affected DNA methylation regions related to ADHD 
symptom manifestation, but this affect may have been compensated by 
positive factors that also affect DNA methylation (Choi et al. 2020). 

The mean ARS scores in this study (6.3 at age 6, 6.9 at age 8) were 
similar to those of the Korean study of 29,914 community-based chil
dren aged 5–7 years (9.5 in boys and 6.8 in girls; Choi et al. 2019). The 
proportion of those surpassing the ARS cut-off was low (2.7% at age 6, 
4.6% at age 8), indicating a generally healthy population. However, 
ADHD traits are dimensional and are continuously distributed in the 
general population (Riglin et al. 2021; Thapar and Cooper 2016). Even 
subclinical ADHD symptoms have been found to be associated with 
higher rates of comorbid psychopathologies and cognitive, interper
sonal, and school functioning deficits (Biederman et al. 2018). 
Furthermore, ADHD traits share common environmental and genetic 
risks as clinical disorders (Sullivan et al. 2012). Further studies are 
warranted to determine if the effect of 3-PBA on ADHD traits can be 
expandable to a clinical population. 

ADHD symptoms were relatively stable at age 6 and 8 within our 
study population. Studies have suggested that during childhood and 
adolescence, the majority showed onset of some symptoms of impair
ment before age 7, but a significant proportion of cases report the onset 
between 7 and 16 years of age (Asherson and Agnew-Blais 2019). Data 
from an adult population survey showed that only 50% of individuals 
with clinical features recalled an onset before age 7; by contrast, 95% 
recalled onset before age 12 and 99% before age 16 (Kessler et al. 2005). 
3-PBA exposure at age 4 and age 6 affected ADHD symptoms at age 8 
only, and this could have affected new onset symptom manifestation at 
age 8, or contributed to symptom stability from early ages. Further 
studies investigating ADHD trajectories are warranted to determine this 
speculation. 

There are some limitations to this study. This study was conducted in 
a community-based cohort and did not target a clinical population with 
formal ADHD diagnoses. Therefore, further studies using a diagnostic 
interview that can confirm ADHD diagnosis is needed. The associations 
at different exposure periods night have been influenced by difference in 
sample size (statistical power) across age groups. The sample size at age 
2 years was less than half of the sample sizes at other ages, so the results 
of this exposure period are less reliable. There was a large confidence 
interval at age 2 in girls. Further, concentration of 3-PBA exposure was 
measured at a single time point using spot urine; considering the fast 
clearance (7 h) and high intra-individual variability of 3-PBA exposure, 
calculation of mean 3-PBA concentrations across multiple time points or 
average 24-hour urine 3-PBA concentrations could more accurately 
reflect 3-PBA exposure level (Morgan et al. 2016; Ratelle et al. 2015). 
The 3-PBA concentrations in urine may not represent entirely the 
exposure to parent pyrethroid compounds, but also reflect exposures in 
the environment (Trunnelle et al. 2014); this may have caused the high 
variation and low ICC of 3-PBA between different age groups. We only 
measured 3-PBA, and other pyrethroid metabolites levels, like cis-(2,2- 
dibromovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (cis-DBCA), 
cis-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (cis- 
DCCA), and trans-DCCA, were not available. Although we accounted for 
various covariates, factors like diet and other endocrine-disrupting 
chemicals could have confounded the results. Lastly, we studied a 
Korean cohort living in urban regions, thus limiting the generalizability 
of our findings to other ethnicities or populations in rural areas. 

Despite these limitations, the major strengths of this study include 
the longitudinal design and repetitive assessment of 3-PBA exposure and 
ADHD symptoms. We were able to identify multiple susceptible periods 
in early life, and also examine the change in neurotoxicity effects across 
time. Where some studies have used agricultural pesticide applications 
as a proxy for pesticide exposure, we used a biomarker, which captures 
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all exposure routes. 

5. Conclusions 

Exposure to 3-PBA during pregnancy and at age 2 was associated 
with increased ADHD symptoms at age 6, while exposure at ages 4 and 6 
was associated with ADHD symptoms at age 8. These findings indicate 
there are multiple susceptible periods in early life that can contribute to 
the manifestation of ADHD symptoms during the school-age period. 
Regulatory efforts to decrease pyrethroid exposure in this age range 
could result in large benefits to public mental health. Further replication 
studies are necessary to confirm these results. 
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