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A B S T R A C T

The objective of the current paper is to provide an accurate distributed parameter model for random vibration
analysis of multi-floor buildings. The Hamilton's principle is employed to derive the equations governing the
dynamic behavior of the system as well as the related kinematic and natural boundary conditions. The natural
frequency and mode shapes of the developed model are then extracted analytically and validated using finite
element simulations. It is also observed that the predictions of the proposed model for the natural frequencies of
the system is far more accurate than those of that of the discrete model available in the literature. Using a single
mode approximation in the Lagrange equation, the partial differential equations of the motion are reduced to a
single ordinary differential equation. Assuming a band limited white noise for the acceleration of the support,
the random response specifications (such as expected value, autocorrelation, spectral density and mean square)
of the system is calculated by making use of the random vibration theory. The qualitative and quantitative
nature of the response characteristic are also analyzed to reveal the effects of different design parameters on the
system's response. The suggested modeling approach in this paper may be employed for prediction of the dy-
namic behavior of more complex structures to different types of deterministic or random excitations. Also the
provided analytical method for the random response calculation of the system can be utilized to make more
informed decisions in the design process.

1. Introduction

Protection of engineering structures against un-wanted vibrations
have always been a challenge for civil and mechanical engineers. In
building constructions, an earthquake can bring about severe un-
welcomed vibrations of the system and produce large stresses which
ultimately can lead to catastrophic collapse of the structure. So re-
searchers have been trying to innovate new techniques to study the
vibrational phenomena in such structures and also to develop new vi-
bration suppression techniques to minimize their vibration level.

In some studies, the earthquakes have been modeled as harmonic
support motion. For example Farshidianfar and Soheili [1] investigated
the optimized parameters of tuned mass dampers for high rise struc-
tures considering soil structure interaction effects under harmonic base
excitations. Park and Reed [2] examined the performance of uniformly
and linearly distributed multiple mass dampers in suppressing the vi-
brations resulted from harmonic and earthquake excitations.

In practice, the nature of earthquake is not deterministic. So in
many other studies, the vibrational response of buildings and other

mechanical systems has been analyzed based on the hypothesis of
random excitations. For example, Kiureghian and Neuenhofer [3] de-
veloped a new response spectrum method for seismic analysis of linear
multi-degree-of-freedom, multiply supported structures subjected to
spatially varying ground motions. Heredia-Zavoni and Vanmarcke [4]
employed the random-vibration methodology to study the seismic
random response analysis of linear multi support structural systems.
While respecting the stationarity assumption, their method, simplified
the random analysis by equalizing the response evaluation of the
system to that of a series of linear one-degree systems. Wen [5] pro-
vided an overview of the major developments in modeling and response
analysis of inelastic structures under random excitations. Kiureghian
[6] developed a response spectrum method for stationary random vi-
bration analysis of linear, multi-degree-of-freedom systems. His method
was based on the assumption that the input excitation is a wide-band,
stationary Gaussian excitation and the response. Radeva and Radev [7]
proposed a method for simulation of seismic ground motions. They
considered the random motion as a stationary filtered white noise with
fuzzy parameters and proposed an analytical procedure to analyze the
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fuzzy random vibration of multi-degree-of-freedom hysteretic build-
ings. Coupling adjacent buildings with supplemental damping devices is
a practical and effective approach to mitigating structural seismic re-
sponse. Hao and Zhang [8] used the random vibration method to study
earthquake ground motion spatial variation effects on relative linear
elastic response of adjacent building structures. Ni et al. [9] developed
a method for analyzing the random seismic response of a structural
system consisting of two adjacent buildings interconnected by hys-
teretic damping devices. Effective elimination of the vibration of
building structures due to earthquake and wind loading via passive,
semi active and active structures have also been investigated in the
prior art. Ikeda and Ibrahim [10] investigated the passive vibration
control of an elastic structure carrying a rectangular tank partially filled
with liquid, subjected to horizontal narrow band random ground ex-
citation. Yang et al. [11] studied vibration suppression of structures
using a semi-active mass damper under random base excitation. Gur
and Mishra [12] presented the optimal stochastic performance of pure
friction system supplemented with shape memory alloy assisted pure
friction, based on a framework of multi-objective optimization. Ozbulut
and Hurlebaus [13] proposed a new device which took advantages of
both variable friction dampers as well as shape memory alloys to in-
telligently suppress the vibration of a building structure. Calise et al.
[14] carried out a series of experiments to quantify the potential ben-
efits of using robust control design methodology in active control of
building structures.

Many researchers studied random vibration analysis of structures to
non-stationary inputs. Alderucci and Muscolino [15] presented a
closed-form solution for the evolutionary power spectral density of the
response of linear classically damped structural systems subjected to
fully non-stationary multi-correlated excitations. They utilized their
method to study random vibration of a bridge, and validated their
findings with Monte Carlo Simulations. Muscolino and Alderucci [16]
presented a method to evaluate the evolutionary frequency response
function of classically damped linear structural systems subjected to
both separable and non-separable non-stationary excitations. Chakra-
borty and Basu [17] proposed an input-output relation for the non-
stationary response of long-span bridges subjected to random differ-
ential support motions. Their developed methodology could evaluate
non-stationarity in both the intensity and frequency content of the re-
sponse statistics for spatially correlated multipoint random excitations.

Random vibration analysis of structures considering the non-
linearity of the structures have also received much attention. So far,
many different approaches have been developed for nonlinear random
vibration analysis, each of them having their own advantages and dis-
advantages. Among these technique, one can mention Markov vector
approach, perturbation methods, equivalent linearization, stochastic
linearization, equivalent nonlinearization, closure approximations,
stochastic averaging and Mont Carlo simulation method [18–20]. The
most interested approaches used for nonlinear random vibration ana-
lysis are based on the linearization of the nonlinear system. For ex-
ample, Feldman [21] proposed a nonlinear technique based on the
Hilbert transform for investigation of nonlinear systems. His suggested
approach which involves some kind of linearization of the nonlinear
system, enables direct extraction of linear and nonlinear system para-
meters from a measured time signal of input and output. His proposed
strategy was mainly developed for deterministic nonlinear vibration
analysis. However, he claimed that it can extract the instantaneous
modal parameters of the equivalent linear system even if the excitation
is a random signal. Fujimura and Kiureghian [19] developed a new,
non-parametric linearization method for nonlinear random vibration
analysis. They verified the accuracy of their technique via Mont Carlo
simulations. Mishra et al. [22] studied the optimum performance of the
shape memory–alloy-based rubber bearing for isolating the bridge deck
against a random earthquake. The responses required for modeling the
nonlinear random system were obtained by stochastic linearization of
the cyclic nonlinear force-deformation behavior of the shape

memory–alloy restrainers. Gur et al. [23] proposed the optimal para-
meters for the super-elastic damper by conducting systematic design
optimization, in which, the stochastic response served as the objective
function, evaluated through nonlinear random vibration analysis. They
assumed the response processes to be Markovian and adopted linear-
ization technique for nonlinear force-deformation hysteresis of the
building frame and the dampers.

From the provided brief literature review, one can conclude that
vibration modeling of buildings under seismic activity of the ground
have been well presented. However, some researchers have ignored the
random nature of the earthquake excitation. Those who considered the
stochastic character of the earth tremor, utilized a lumped parameter
model for the multi-floor building. In practice, however, a building is a
multi-body distributed parameter system constituted from some walls
(which can be modeled using simple beams) interconnecting to some
floors (which can be modeled using some rigid masses). As far as the
authors know, such a model have not been yet reported in the litera-
ture. Accordingly, the distinct objectives and contributions of this paper
are:

1. Proposing a novel multi-body distributed parameter model for a
multi-floor building and deriving closed-form expressions for the
natural frequencies and mode shapes of the system.

2. Analytical modeling of the random vibration response of the system
to a band limited white noise excitation as the acceleration of the
supporting ground.

To achieve these, Hamilton's principle is utilized to derive the par-
tial differential equations governing the system's dynamic behavior.
The normalized homogenous un-damped form of these equations are
then solved for finding the natural frequencies and mode shapes of the
system which are verified via finite element simulations. The suggested
mode shapes are then utilized in an energy based approach to derive the
temporal equations which are then modeled based on the random vi-
bration theory and closed form expressions are derived for the statis-
tical specifications of the response.

2. Mathematical modeling

The physical model of sample building with five floors is depicted in
Fig. 1. As illustrated in this figure, each floor is considered as a con-
centrated line mass, while the walls are modeled as two beams, sup-
porting the corresponded floor from the right and left. The structural
damping of the system is taken into account via some concentrated
dampers, which resist against the relative movements of the floors. The
motion of the ground due to earthquake excitation is modeled with ûg̈
and the resulting relative displacements in the structure is assumed to
be small. It has to be noted that this assumption may not come true if
the building experiences relatively large displacements. A distributed
parameter model of this linear multi-body continuous system can be
obtained using the Hamilton's principle.

Having long and slender geometry, uniform-thickness planar beams
may be modeled using the Euler-Bernoulli beam theory. This theory
assumes that plane cross-sections continue to remain plane and normal
to the neutral axis after deformation [24] and has been successfully
utilized to study the static, dynamic, and vibrational behavior of
structures constituted from beams [25–27]. Assuming the Euler-Ber-
noulli assumptions hold for the problem under study, the strain energy
stored in beams of Fig. 1 for the case of relatively small displacements
can be expressed as [24]
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where π̂ is the strain energy of the system and li, Ei, Ii and ŵi are re-
spectively the length, Young's modulus of elasticity, second area

N. Aliakbari, H. Moeenfard Soil Dynamics and Earthquake Engineering 115 (2018) 18–26

19



moment of inertia of the beam's cross section around the neutral axis
and relative deflection of the beam along the ẑi direction.

Considering a support motion for the building, its kinetic energy, T̂ ,
can be easily expressed as
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In this equation, ρi and Ai are the volumetric density of the beams
material and the area cross section of the beams of the i 'th floor re-
spectively and mi is the mass of the i th floor. Also u tˆ (ˆ)g is the dis-
placement of the ground.

The virtual work done on the system can be classified into two parts:
(a) the virtual work by the dampers, δŴExt

D( ), and (b) the virtual work
done by the axial loads of the beams, δŴExt

N( ) (please refer to [24] re-
garding this virtual work). These virtual works may be mathematically
expressed as
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where δ is the variation operator and ci s are the damping coefficients of
the dampers shown in Fig. 1.

Obviously, the total virtual work, δŴExt can be obtained as

= +δW δW δW^ ^ ^
Ext Ext

D
Ext

N( ) ( )
(5)

Now the Hamilton's principle can be used to derive the governing

equations as well as the corresponding boundary conditions of the
multi-body system of Fig. 1. Based on this principle [24]
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where t̂1 and t̂2 are any two arbitrary times.
Using the Hamilton's principle, the equations of motion of the

system and the corresponded boundary conditions can be derived. To
present these equations and boundary conditions more conveniently,
the following normalized variables are introduced.
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In these equations, d is the horizontal distance between the vertical
beams supporting the floors and  is a time scale defined by

 = l
ρ A
E I1

2 1 1

1 1 (16)

Using these normalized variables, the equations of motion of the
system can be expressed in dimensionless form as
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The ()̇ in Eq. (17) represents differentiation with respect to the
normalized time t ̅.

Also, the normalizd boundary conditions will be as:
Normalized kinematic boundary conditions

= = …w t i(0, ̅) 0, 1, 2, ,5i (18)

= = …dw t
dx

i
(0, ̅)

0, 1, 2, ,5i

i (19)

= = …dw l t
dx

i
( , ̅)

0, 1, 2, ,5i i

i (20)

Normalized natural boundary conditions

Fig. 1. Physical model of a five floor building.
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Each of these equations of motion and the corresponding boundary
conditions has a physical/geometrical interpretation. Eq. (17) re-
presents the equations of motion of the i’th beam in which the effects of
the axial force and the support motion are taken into account. Eqs.
(18)–(20) respectively reveals the fact that the beams in Fig. 1 have
zero relative deflections at =x 0i and has zero slope at their beginning
and ending points. Finally, the natural boundary conditions, Eqs. (21)
and (22), reflect the equations of motion of the floors in horizontal
direction.

3. Eigen value analysis

The very first step in dynamic analysis of vibratory systems is sol-
ving the related eigen value-eigen function problem and derivation of
the natural frequencies and mode shapes. The dynamic response of the
system then can be approximated as a linear combination of these
modes.

A mode shape of a vibratory system is defined as a state of move-
ment of the free, un-damped vibration of that system in which all of its
elements are vibrating with the same frequency and phase, but not
necessarily the same amplitude. So if the system under study is vi-
brating in its j’th mode, then one can say
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where = −I 1 ,  is the set of natural numbers and φ x( )i
j

i is the j th
deflection shape (i.e. mode shape) of the i’th beam when the system is
vibrating with its j’th normalized natural frequency ωj.

By substituting Eq. (23) into Eq. (17) and solving the resulting
equations, one gets
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By employing Eq. (24) into Eqs. (18)–(22), removing the excitation
and damping terms and canceling Iω texp( ̅)j from both sides, a set of
linear, homogenous, algebraic equations in terms of cm n

j
, are obtained as

⃗ ⃗=× ×A ω C[ ( )] 0j j12 12 12 1 (27)

in which

= …
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The superscript T in Eq. (28) denotes the transpose operator. The
non-zero elements of the A ω[ ( )]j are presented in Appendix A.

Eq. (27) has non-trivial solution if and only if the determinant of
A ω[ ( )]j is zero. By solving =A ω( ) 0j , the natural frequencies of the
systems are obtained. Then, by substituting ωj into Eq. (27), the vector

⃗Cj and consequently the j th mode shape of the system is derived

analytically using Eq. (24).
In order to verify the accuracy of the proposed analytical technique

for finding the mode shapes of the system, a typical five floor building is
considered. The physical properties of the floors are as provided in
Table 1, while the physical and geometrical properties of the con-
stitutive beams are compiled in Table 2. Also, the profile of the beam's
cross sections are assumed to be ×S380 64.

The building has been analyzed using the proposed analytical
technique as well as the discrete analysis approach already presented in
the literature (please see chapter six of [29] as an example). To verify
the accuracy of the proposed solutions, finite element (FE) simulations
were also carried out in the commercial FE software ABAQUS. In FE
analysis, the fixity condition of the beams and the floors were chosen to
be tie. A tie constraint ties separate surfaces together, so that there is no
relative motion between them. This type of constraint allows to fuse
together two regions even though the meshes created on the surfaces of
the regions may be dissimilar. 2D modeling space for both beams and
floors was considered, while wire was picked for their base feature. To
account for the rigidity of the floors, they were modeled as rigid wire
option available in the ABAQUS. Moreover, via trial and error ap-
proach, the number of elements for each beam/floor was taken to be
3000 to guaranty a converged results.

In Table 3, the first three natural frequencies of the system are
presented. It is observed that the analytical results of the proposed
continuous model well agree with the findings of FE simulations, while
the results of the discrete model (commonly used in the literature for
analysis of buildings) are not sufficiently accurate.

The first three mode shapes of the building with characteristics
given in Tables 1 and 2 are depicted in Fig. 2. In order to make these
modes comparable, they have been all normalized so that the normal-
ized absolute displacement of the highest floor to be unity. It is evident
that the modes predicted by the continuous model as well as those
obtained based on a discrete model, both agree well with the those of
the FE simulations. However, the discrete model has no idea about the
deflection shapes of the beams and can only be used to predict the
movement of the floors.

As Fig. 2 suggests, there are small discrepancies between the FE
findings and those of the continuous model. This inconsistency can be
improved by refining the meshes used for the simulations which albeit
severely increases the computational cost. Moreover, it worth noting
that the linear Euler-Bernoulli beam assumptions employed in the

Table 1
Physical properties of the floors [28].

i 1 2 3 4 5

× −m (kg) 10i 3 6.417 5.514 5.514 5.514 5.514

× −c (N. s/m) 10i 3 67 58 57 50 38

Table 2
Physical and geometrical properties of the constitutive beams.

Parameter l E I A ρ
Value 3 200 × −186.1 10 6 × −8130 10 6 7860
Unit m Gpa m4 m2 kg/m3

Table 3
Natural frequencies of the building (in terms of Hz), comparison of the results of
the distributed and lumped parameter models with those of FEA.

Finite Element
Method

Continuous
Model

Error % Discrete
Model

Error %

First mode 3.1609 3.4107 7.9028 2.4754 21.6869
Second mode 9.2416 9.8267 6.3312 7.1165 22.9949
Third mode 14.608 15.3697 5.2143 11.0938 24.0567
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analytical modeling, does not take into account the axial displacements
of the mid-plane of the beams. In the FEA, however, the nodes are al-
lowed to displace in both axial and transverse directions. So the FE
approach will be able to model the elasto-kinematic and load stiffening
effects which in presence of axial loads (resulted from weight of the
floors), become increasingly important [27]. This can ultimately leads
to appreciable difference between the FE and exact results.

4. Random vibration modeling

A common well respected approach in modeling linear and non-
linear vibrations of continuous systems is to assume that the vibrational
response is composed of the linear combinations of the mode shapes of
the system with some time dependent coefficients [24–26,30–35]. It has
been shown in the prior arts that if the natural frequencies of the system
are well-separated, a considerable percentage of the energy of the
system is injected to the first vibrational mode [25,26]. In such a case,
the first mode shape becomes the dominant mode and can be used to
precisely approximate the dynamic response of the system. Using a
single mode approximation for the system under study, one can say

=w x t φ x l q tˆ ( ˆ , ˆ) ( ˆ / ) ˆ (ˆ)i i i i i
(1) . By defining a non-dimensional q as

=q t q t l( ̅) ˆ (ˆ)/ 1, the normalized deflection of the beams can be stated as
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i i

i
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(29)

where φ x( )i i is the deflection shape of the i’th beam when the system is
vibrating in its first mode. Substituting Eq. (29) into Eq. (1) while
considering the normalization scheme for w x t( , ̅) (Eq. (8)), the potential
energy of the system is obtained as
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Also by employing Eq. (29) into Eq. (2) and simplifying the out-
come, the kinetic energy of the system is re-derived as

= + +T M q M qu M uˆ 1
2

̇ ̇ ̇ 1
2

̇g g1
2

2 3
2

(32)

where the parameters Mi, =i 1,2,3 are defined as
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Finally, the virtual work expression, Eq. (5), can also be expressed in
terms of the first mode shape as

 ̂= − − = − −δW Q q t Q q t δq t
l

Q q t Q q t δq t( ˙ ( ) ( )) ( ) 1 ( ˙ ( ) ( )) ( )Ext 1 2
1

1 2 (36)

in which Qi s are defined as
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Now by considering Eqs. (30), (32) and (36) and using the Lagrange
equation, the differential equation governing the q t( ̅) is obtained as

+ + + = −M q Q q K Q q M ü ̇ ( ) g̈1 1 2 2 (39)

To further simplify the notations, the normalized time t ̅ is re-nor-
malized using =t ω t ̅n where ωn is defined as

= +ω K Q
Mn

2

1 (40)

Using the new time scale t , Eq. (39) may be re-expressed as

+ + = −q ζω q q M
M

u‵‵ 2 ‵ ‵‵n g
2

1 (41)

where the prime denotes differentiation with respect to t , and ζ is de-
fined as

=ζ Q
M ω2 n

1

1
2 (42)

Considering ′′ug as the input of the dynamic system and q t( ) as its
output, the complex frequency response of the system, H ω( ) is readily
derived as equation. The magnitude and the phase of H ω( ) for a
building with characteristics given in Tables 1 and 2 are shown in
Fig. 3.

⎜ ⎟= ⎛
⎝ − −

⎞
⎠

H ω M
M ω iζω ω

( ) 1
2 1n

2

1
2 (43)

⎜∠ = ⎛
⎝ −

⎞

⎠
⎟

−H ω
iζω ω
ω

( ) tan
2

1
n1

2
(44)

Also, assuming small damping (i.e. <ζ 1), the impulse response of
the system with the mentioned input and output will be as

= −
−

−−h t M
M ω ζ

e ω ζ t U t( )
1

sin( 1 ) ( )
n

ζω t
n

2

1
2

2n

(45)

in whichU t( ) is the unit step function. The impulse response function of
the sample building under study is graphically depicted in Fig. 4.

Fig. 2. First three mode shapes of the building under study, comparison of the
results of the lumped and distributed parameter models with those of FEA (a)
first mode (b) second mode (c) third mode.
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It has to be noted that white noise is a reasonable representation of
earthquake motion. Bycroft [36] showed that a white-noise source used
in conjunction with an analog computer is a convenient method of
analyzing structures subjected to complex ground motions and of as-
signing probabilities to the deformations arising. He suggested to re-
present standard large earthquakes with white ground accelerations
having a flat spectral density. Many other researchers used the white
noise assumption to simulate random vibration of civil structures. For
example, Abdel-Rahman and Ahmadi [37] studied the stability analysis
of multi-degree-of-freedom elastic frames subjected to a white noise
earthquake excitation. By comparing the frequency content of sta-
tionary random white noise and a measured ground acceleration time
history, Meinhardt et al. [38] showed that ordinary earthquake ex-
citation can be approximated with sufficient accuracy by a stationary
white noise stochastic process. If the rock bed effects are not negligible,
the linear Kanai–Tajimi filter [39–41] or its generalized format pro-
posed by Fan and Ahmadi [42] which also consider the non-stationarity
of the ground motion, shall be employed.

As discussed above, in the absence of rock bed effects, white noise is
a suitable choice for modeling the ground acceleration in an earth-
quake. Moreover, the white noise assumption greatly simplifies the

formulations. So here in this paper, the ground acceleration ′′ug is
modeled with a band limited white noise whose spectral density is
depicted in Fig. 5.

Now, the autocorrelation function for the stochastic excitation ′′ug
can be simply derived as [43]

∫= =′ ′
−∞

∞

′ ′R τ S ω e dω
S aτ

τ
( ) ( )

2 sin( )
u u

iωτ 0

(46)

where a is the parameter characterizing the frequency content of the
system as illustrated in Fig. 5.

Knowing the statistical properties of the input excitation, one can
use the random vibration theory to derive closed-form expressions for
the statistical properties of the response. For example, in order to find
the expected value of the movement of the floors, one first needs to find
E q t[ ( )] which can be simply obtained based on the complex frequency
response of the system as [43,44]

= ′ = − ′′ ′E q t E u t H M
M

E u t[ ( )] [ ( )] (0) [ ( )]g g
2

1 (47)

So, as the expectation operator is linear, one can conclude that

= − ′′E w x t l
l

M
M

φ x E u t[ ( , )] ( ) [ ( )]i i
i i

i g
1 2

1 (48)

The scaled expected values of the relative deflections w x t( , )i i at the
floors are listed in Table 4. As it is observed, the relative mean de-
flection of the higher floors are less than those of the lower ones.
However, it has to be noted that the mean deflection of each floor with
respect to the ground is obtained by summing the relative deflections
up to that specific floor.

Utilizing the random vibration theory for a system governed by Eq.
(41), the autocorrelation function for q t( ) can be derived as

∫ ∫
∫ ∫
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= + −
+ −
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τ θ θ
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sin ( )

q u1 2 1 2 1 2

1 2
1 2

1 2
1 2

g

(49)

in which h θ( ) is the impulse response of the system given in Eq. (45).
Fig. 6 depicts the autocorrelation = +R τ E q t q t τ( ) [ ( ) ( )]q . This figure
shows that R τ( )q is practically dampened out at large values of τ .

Knowing R τ( )q along with employing Eq. (29), R x τ( , )wi can also be

Fig. 3. Frequency response of the building under study to the base acceleration
input in a logarithmic scale; (a) The magnitude part (in decibel) (b) The phase
part (in degree).

Fig. 4. Unit impulse response of the system due to the base acceleration input.

Fig. 5. Spectral density of the earthquake excitation modeled as a band limited
white noise.

Table 4
Expected scaled relative deflection ( ′′E w t E u t[ (1, )]/ [ ( )]i g ) of different floors.

First floor Second floor Third floor Fourth floor Fifth floor

1.0331 0.938 0.7637 0.5665 0.2691
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derived as

= + = = …R x τ E w x t w x t τ
l
l

φ x R τ i( , ) [ ( , ) ( , )] ( ) ( ) , 1, 2, , 5w i i
i i
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1
2

2

2

i

(50)

The spectral density s ω( )q can be simply expressed in terms of ′′s ω( )u
as
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Then considering Eq. (29), the spectral densities S x ω( , )wi become
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The spectral density S ω( )q of the building with characteristics given
in Tables 1 and 2 is graphically displayed in Fig. 7 in a logarithmic
scale. Considering the similarities between Eqs. (51) and (52), the
spectral densities of the floors movements will be similar to that of the
q t( ).

The spectral density function S x ω( , )wi is important in several ways.
First it implicitly indicates the frequency content of the w x t( , )i along
with the contribution of each frequency in this random response. Most
importantly, the area under the S x ω( , )wi curve represents the mean
square value of the response, which is an important statistical para-
meter in design of the buildings against the random loads.

∫= = …
−∞

+∞
E w t S ω dω i[ (1, )] (1, ) , 1, 2, ,5i w

2
i (53)

Table 5 lists these mean square deflections for different floors at
different extents of the frequency bands a, and different damping ratios
ζ . Based on the information provided in this figure, one can conclude
that increasing the damping ratio leads to a decrement in the mean
square response, while increasing the extent of the frequency limit of

the input acceleration yields higher values for the mean square re-
sponse.

5. Conclusion

Investigation of the dynamic response of the buildings under
earthquake loads is an important step in the design of these construc-
tions. Such a study can be complicated in different ways. First, the
nature of the earthquake excitations is random which intricates the
simulations. Also, buildings are multi-body systems consisting of rigid
masses (representing the floors) interconnected to some flexible beams
(representing the walls). As far as the authors knew, the researchers had
not yet provided an accurate multi-body distributed parameter model
for the vibratory behavior of such structures, but they usually con-
sidered a simple lumped parameter model for the system. So, the ob-
jective of the current paper was to provide a more comprehensive and
accurate model for dynamic analysis of buildings under the effect of
random loads. The equations of motion and the corresponding
boundary conditions were derived based on Hamilton's principle. The
exact eigen value problem were solved and analytical expressions were
derived for mode shapes of the system which were validated via FEA.
Then utilizing a single mode assumption, the response of the building to
stochastic motion of the support were also simulated based on the
random vibration theory and closed-form expressions were provided for
different statistical parameters of the response in terms of those of the
excitation. Specifically, the mean, autocorrelation, spectral density and
the mean square of the relative deflection of the floors were obtained
and the effect of different design parameters on the random response of
the structure were discussed.

The current study provided a new frame work for improving the
dynamic models of complex structures in response to random earth-
quake excitations. This new frame work which takes the distribution of
mass and stiffness of the system into account can still be improved in
several ways. For example, in this paper, a linear elasticity theory was
exploited for the analysis. However, when a structure experience
earthquake, the system may go to the nonlinear regime and a nonlinear
distributed parameter structural modeling followed by a subsequent
nonlinear random vibration analysis seems to be necessary. Moreover,
considering the rock-bed effects and possible non-stationarity of the
inputs may ameliorate this research. Despite all these, the developed
multi-body continuous model and the qualitative and quantitative
analysis provided for the stochastic simulation of the building in this
paper can be employed to better address the design requirements of
these constructions in a more accurate way.
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Fig. 6. Scaled values of the autocorrelation function of q t( ), R τ( )q .

Fig. 7. Spectral density function S ω( )q at different damping values in a loga-
rithmic scale.

Table 5
Scaled mean square deflection ( × × −E[w (1, t)]/( S φ (1) l /l ) 10i

2
0 i 1 i

2 6) at dif-
ferent values of ζ and a.

ζ

0.05 0.10 0.15 0.20

a 2 1.0382 0.5183 0.3450 0.2583
3 1.0394 0.5195 0.3462 0.2596
4 1.0397 0.5198 0.3465 0.2598
5 1.0398 0.5198 0.3465 0.2599
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Appendix A

= = …− −A i1 1, 2, , 5i i4 3,4 3 (A1)

= = …− −A i1 1, 2, ,5i i4 3,4 1 (A2)

= = …− −A s i 1, 2, ,5i i i4 2,4 2 1, (A3)

= = …−A s i 1, 2, ,5i i i4 2,4 2, (A4)

= = …− −A s s isinh( ) 1, 2, ,5i i i i4 1,4 3 1, 1, (A5)

= = …− −A s s icosh( ) 1, 2, , 5i i i i4 1,4 2 1, 1, (A6)

= − = …− −A s s isin( ) 1, 2, ,5i i i i4 1,4 1 2, 2, (A7)

= = …−A s s icos( ) 1, 2, ,5i i i i4 1,4 2, 2, (A8)

= + = …− −A s s β ω s isinh( ) cosh( ) 1, 2, ,5i i i i i i4 1,4 3 1,
3

1,
2

1, (A9)

= + = …− −A s s β ω s icosh( ) sinh( ) 1, 2, ,5i i i i i i4 1,4 2 1,
3

1,
2

1, (A10)

= + = …−A s s β ω s isin( ) cos( ) 1, 2, ,5i i i i i i4 ,4 1 2,
3

2,
2

2, (A11)

= − + = …A s s β ω s icos( ) sin( ) 1, 2, , 5i i i i i i4 ,4 2,
3

2,
2

2, (A12)

= − = …+ +A μ s i 1, 2, ,4i i i i4 ,4 2 1, 1
3 (A13)

= = …+ +A μ s i 1, 2, ,4i i i i4 ,4 4 2, 1
3 (A14)

= − = …+ − +A l s l icosh( )/ 1, 2, , 4i i i i i4 1,4 3 1, 1 (A15)

= − = …+ − +A l s l isinh( )/ 1, 2, , 4i i i i i4 1,4 2 1, 1 (A16)

= − = …+ − +A l s l icos( )/ 1, 2, ,4i i i i i4 1,4 1 2, 1 (A17)

= − = …+ +A l s l isin( )/ 1, 2, , 4i i i i i4 1,4 2, 1 (A18)
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