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• This paper proposes a dynamic slave controller assignment that prevents the network crash by planning slave controller assignment ahead of the
controller failures.

• We identify the controller chain failure phenomenon caused by existing slave assignment schemes and illustrate it with examples.
• We formulate the SCA problem that considers the latency between the switch and controller, the load balancing among controllers after the controller

failures, the robustness of controller, and prove its NP-completeness.
• We design DSCA to solve SCA problem.
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a b s t r a c t

Multi-controller is a scalable control plane solution for the large-scale Software-Defined Networking
(SDN). To achieve high resilience, an SDN switch can connect one master controller for normal operation
and one slave controller that backup the function of the master controller. Once the master controller
fails, one of the slave controllers will be assigned to switches to works as the new master controller.
However, the inappropriate slave controller assignmentmay cause controller chain failure,where running
out of the capacity of the assigned controller, even crash the entire network. In this paper, we propose
a dynamic slave controller assignment that prevents the network crash by planning slave controller
assignment ahead of the controller failures. We first describe the controller chain failure phenomenon:
due to unreasonable slave controller assignment, the entire networkmay crash when one controller fails.
To prevent the phenomenon, we formulate the slave controller assignment problem as a multi-objective
mixed optimization problem that considers latency, load balancing and robustness, and prove its NP-
complete complexity. We solve the problemwith a dynamic slave controller assignment (DSCA) scheme.
It firstly checks whether there are controller failures in state detectionmodule, then completes the elastic
slave assignment and generates a new slave assignment for switches in efficient slave assignmentmodule.
Finally, in role adjustment module, it changes the roles of some controllers and reconnects switches.
Simulation results show our solution can decrease the worst case latency under controller failures by
35.1% averagely, and reduce the probability of network crash.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Software-Defined Networking (SDN) innovates the design phi-
losophy of network with the centralized control, open interface
and network programmability [1]. Many networks (e.g., data cen-
ter (DC) [2], wide area network (WAN) [3]) begin to employ SDN
to improve network performance and service quality. The original
SDN design only deploys one controller in the network, and it does
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not have enough control abilities to manage the network with in-
creasing traffic and scale [4]. Several researchers propose to deploy
the logically centralized but physically distributedmulti-controller
to improve the scalability of the control plane for multi-domain
SDN, such as HyperFlow [5], and Kandoo [6]. In the multi-domain
network, each domain has one local controller named the domain
controller to manage the switches and process flow requests from
its domain, and controllers of different domains communicatewith
each other about their domain information to ensure a consistent
network view [7].

As the number of underlying network devices and traffic in-
crease, the controller will have a high burden on processing flow
requests, leading to a higher probability of controller failure. A
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controller could also fail when the server or virtual machine run-
ning the controller experiences the hardware failure or software
crash [8]. In order to improve the resiliency of the multi-controller
control plane, some SDN protocols (e.g., OpenFlow 1.2) propose to
use a backupmechanism [9]. Each controller has two roles: master
and slave. Typically, for a switch, its master controller is respon-
sible for processing the flow requests, while its slave controller is
used for backup. Each controller informs its role to switches via
a role request message. In a domain, the domain controller plays
a master role for switches in the domain, but the switches can
also connect to the controllers of other domains and set them as
the slave roles. If the master controller of one switch does not
work, this switch will be reconnected to its predetermined slave
controller, which will work as a new master controller for the
switch.

However, few researchers consider how to choose the slave
controllers for switches, especially under the controller failure
scene. Inefficient slave controller assignment (e.g., statically as-
signing slave controller to switch according to the hop relation-
ship) could seriously degrade network performance and even lead
to controller chain failure, which would collapse the overall net-
work. Moreover, the controller chain failure can be described as
followings: one controller failure can cause another controller
failure, and even crash the entire network in the worst case. More
details will be shown in Section 2.

Motivated by these concerns, in this paper, we propose a dy-
namic slave controller assignment (DSCA) scheme to construct
a fault-tolerant control plane. We formulate a slave controller
assignment (SCA) problem, considering latency, load balancing and
robustness to assign the slave controller for switches. DSCA not
only considers the availability and capacity of controllers but also
plans ahead for controller failures to prevent network crashing.
In DSCA, we consider that one or more controllers could fail, and
our primary objective is to dynamically assign slave controllers to
switches’ newmasters to guarantee the good fault-tolerant perfor-
mance of control plane under controller failures. We summarize
our main contributions as follows:

• We identify the controller chain failure phenomenon caused
by existing slave assignment schemes and illustrate it with
examples.

• We formulate the SCA problem that considers the latency
between the switch and controller, the load balancing among
controllers after the controller failures, the robustness of
controller, and prove its NP-completeness.

• We design DSCA to solve the SCA problem by collaborating
the designed modules. Once identifying controller failures in
state detection module, efficient slave assignment module
will implement the elastic slave assignment, and then role
adjustment module changes the roles of some controllers.
Besides, the improved heuristic algorithms are loaded on the
corresponding modules to increase efficiency.

• We evaluate the performance of DSCA against baseline
schemes. Results show that DSCA can effectively reduce the
worst case latency under controller failures by 35.1% aver-
agely, and decrease the probability of network crashing.

The rest of paper is organized as follows. Section 2 presents the
motivation of this paper. Section 3 models and formulates SCA
problem in the network. Section 4 presents the DSCA. Section 5 ex-
hibits our performance evaluation. Section 6 introduces the related
works. Section 7 concludes the paper.

2. Motivation

In this section, we firstly introduce the controller chain failure
existed in the existing slave controller assignment, and then ex-
plain why the slave controller assignment needs to be improved.

2.1. Controller chain failure

In the distributed multi-domain and multi-controller SDN net-
work, when a master controller fails due to hardware or software
failure, the predetermined slave controllers will be instantly as-
signed to the switches managed by the failed controller. Although
both the multi-controller and backupmechanism (e.g., master and
slave) have improved the scalability and reliability of SDNnetwork,
the existing works have no sufficient research on planning slave
controller assignment after controller failure. Generally, the exist-
ing slave controller assignment rigidly predetermines the nearest
controller of switch as slave role, but this assignment is flawed and
will bring about a potential threat introduced as controller chain
failure. Further, we will use a simple example in Fig. 1 to illustrate
controller chain failure phenomenon.

Fig. 1(a) shows an SDN network with three controllers (C1–C3)
and six switches (S1–S6). The network is partitioned into three
domains (Domains 1–3). One controller can control at most three
switches. In case of controller C1 failure, the switches in the Do-
main 1 are disconnected with C1, as shown in Fig. 1(b). According
to the existing slave controller assignment, the nearest controller
C2 is assigned to the switches of Domain 1, and its role is changed
from slave to master. Thus, all switches of the failed controller
C1 are connected to C2. Unfortunately, due to the constraint of
controller capacity, C2 cannot simultaneously manage its own
domain’s switches (S3 and S4) and the newly added switch (S1
and S2). The flow requests sent by these four switches (S1 to S4)
will exhaust the capacity of C2, then C2 fails, as shown in Fig. 1(c).
Similarly, in Fig. 1(d), S1 to S4 will be reconnected to C3, and C3
also fails because of running out of controller capacity. Finally, all
controllers in the network are in the failed state, and the entire
network is crashed.

Therefore, it presents an interesting phenomenon by this ex-
ample: in multi-controller SDN network, one controller failure can
cause another controller failure, and even crash the entire network
in the worst case. We call this phenomenon controller chain failure.

2.2. Requirement for improving slave controller assignment

Based on the above example, we can find that the existing slave
controller assignment is defective and likely to generate controller
chain failure that causes serious damage to the network. Therefore,
it is necessary to improve slave controller assignment to achieve
the fault-tolerant control plane. Through analyzing, the primary
cause of this problem is the static and inflexible assignment of slave
controllers without considering the overall situation of network
(e.g., controller capacity, flow request). Thus, we propose a new
idea to improve the slave controller assignment, which not only
considers the capacity and availability of controller, but also dy-
namically determines switches’ slave controllers based onnetwork
condition.

For example, in Fig. 2, when C1 fails in the network, both S1 and
S2 need to connect to new controller. Differing from the existing
scheme, we firstly determine C2 and C3 as the slave controller of
S1 and S2, respectively. Then, C2 and C3 will be assigned to S1
and S2 to act as the switches’ master controllers. Obviously, this
improvement has two advantages: (1) controller capacity is fully
utilized but not exceeds themaximum threshold; (2) the controller
chain failure has been eliminated effectively.

Therefore, integratedwith the above examples and analyses,we
can conclude that the improvement for slave controller assignment
is necessary, and our proposal could minimize the impact of con-
troller failure on network and further enhance the fault-tolerant
ability of control plane.
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Fig. 1. An example of controller chain failure.

Fig. 2. Our proposal for improving slave controller assignment.

3. Modeling and formulation

In this section, we give the detailedmodeling of slave controller
assignment in the multi-controller SDN network, which mainly
considers latency, load balancing and robustness. Then, we formu-
late the slave controller assignment (SCA) problem as the multi-
objective mixed optimization and prove its NP-completeness.

3.1. Network model

SDN network is represented by an undirected graph G = (V , E),
where V and E are node set and link set, respectively. C =

{c1, c2, . . . , cm} and S = {s1, s2, . . . , sn} are the sets of controllers
and switches deployed in the network. We assume all controllers
have been deployed in the topology in advance [10]. Meanwhile,
the entire network is partitioned into several domains, and each
domain only deploys one controller. According to OpenFlow pro-
tocol, a controller can not only act as themaster role for one switch,

Table 1
Notations.
Notation Definition

V = {vi} Set of nodes
E = {eij} Set of links
M Number of controllers
N Number of switches
C = {cm} Set of controllers
FC Set of failed controllers
S = {sn} Set of switches
smn Binary variable:

smn = 1 shows cm is master of sn , otherwise smn = 0
sn(k) Binary variable:

sn(k) = 1 shows ck is slave of sn , otherwise sn(k) = 0
D = {Dm} Set of domains
f (t)n Flow request of switch sn in the time t
Um Capacity of controller cm
dij Latency of shortest path between node vi and vj .
Lm Load of controller cm

but also as the slave role for another switch. Here, in order to
simplify the connection relationships, we assume that each switch
can be simultaneously connected to one controller as its master
and another one as its slave. Specifically, we define binary variable
smn , where smn = 1 represents cm is themaster controller of switch sn,
otherwise smn = 0.Meanwhile, binary variable sn(k) = 1 represents
ck is the slave controller of switch sn, otherwise sn(k) = 0. Please
note that the flow request of a switch refers to the number of
flows whose header does not match with any of the flow table
entries, and all unmatched flows are forwarded to its master
controller. Correspondingly, the controller’s loads are the sum of
flow requests sent by all switches in the same domain. The primary
notations are summarized in Table 1.
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Fig. 3. The connection relationships between switch and controller.

3.2. Slave controller assignment formulation

The objective of this paper is to achieve a fault-tolerant control
plane through improving slave controller assignment under the
controller failure scene. Therefore, we firstly introduce some rel-
ative metrics that include latency, load balancing and robustness,
to evaluate the slave controller assignment. Then, we formally
formulate the slave controller assignment problem.

3.2.1. Latency between switch and controller
Latency is an important evaluation index in SDN network, and

here we mainly consider the latency between switches and con-
trollers and relax the latency between controllers. Therefore, the
latency between switch sn and controller cm is dmn, which rep-
resents the latency of the shortest path. The existing researches
mainly focus on optimizing the latency between switch and its
master controller, but there is a lack of planning for the latency
between switch and its slave controller. Once the switch of the
failed controller connects to its slave controller that has the large
latency, the rate of flow transmission will be degraded obviously.
For switch sn and its slave controller ck, we compute slave con-
troller latency Dslave

n−k in Eq. (1). Specifically, one controller can be
simultaneously assigned to several switches as slave. For example,
in Fig. 3, C2 plays as a slave controller for S1 and S3. Therefore,Dslave

k
is the sum of latencies of controller ck acting as slave role in Eq. (2),
and Dslave is the sum of latencies of all controllers acting as slave
roles in Eq. (3).

Dslave
n−k = dnk · sn(k) (1)

Dslave
k =

N∑
n=1

dnk · sn(k) (2)

Dslave
=

M∑
k=1

N∑
n=1

dnk · sn(k) (3)

3.2.2. Controller load balancing
The purpose of load balancing is to ensure that each controller

capacity is effectively allocated and equitably used, thereby satis-
fying the network’s QoS requirements. In general, the load of con-
trollermainly focuses on processing the flow requests (e.g., Packet-
in messages) sent by switches. Therefore, in order to facilitate the
subsequent calculation, we define the controller load and load
variance.

Definition 1 (Controller Loads). In an SDN network, controllers are
responsible for processing the flow requests of switches based on
the global view. Therefore, the flow request rates of switches in one

domain are defined as the loads of domain controller. The loads of
controller cm could be computed with Eq. (4).

Lm =

N∑
n=1

smn · f (t)n (4)

Definition 2 (Load Variance). Based on Definition 1, we can get the
loads of each controller. To express the controller load balancing,
we introduce load variance computed in Eq. (5), where L is the
average value of controller loads. According to the mathematical
meaning of the variance, we can conclude that the smaller LV, the
more balanced the distribution of controller loads.

LV =
1
M

M∑
m=1

(Lm − L)2 (5)

L =
1
M

M∑
m=1

Lm (6)

Because the focus of this paper is improving the fault-tolerant
ability of control plane, we assume controller loads condition of
normal network has been optimized in advance by referring [11].
When there are controller failures in the network, we consider
the load balancing after the slave controller has been assigned
to switches of the failed controller as the master roles. Thus, the
reassigned controller loads consist of two parts: the original loads
and the newly added loads, as shown in Eq. (7). We suppose there
are r failed controllers in the network. Then, we recalculate the
load variance LVfailure after controller failures with Eq. (8).

L∗

k =

N∑
n=1

skn · f (t)n +

N∑
i=1

si(k) · f (t)i (7)

LVfailure =
1

M − r

M−r∑
k=1

(L∗

k −
1

M − r

M∑
k=1

L∗

k)
2 (8)

3.2.3. Robustness of slave controller assignment
In the large-scale SDN, the flow request rate of switch shows

strong dynamism because of complex traffic requirements [12].
The dynamic changes in demand result in dynamic changes of the
utilization of capacity for controller. Assigning the undercapacity
controller to the switch, which has the high flow request rate,
may bring about new controller failure because of running out of
controller capacity. Therefore, the robustness is also an important
consideration when assigning slave controllers to switches.

There are two assignment patterns from the perspective of
network traffic. On the one hand, assigning slave controller to
switch is based on peak flow request rate. This way can effectively
avoid controller chain failure once the master controller fails. But
it requires the slave controller to reserve plenty of idle capacities,
lowing the utilization of controller capacity. On the other hand,
assigning slave controller to switch is based on the average flow
request rate. Thismethod can reduce the reserved capacity of slave
controller but not adapt to the network with drastic fluctuating
traffic. Thus, it is necessary to fully consider the flow request of
switch to assign slave controller, ensuring the robustness.

In terms of the dynamic flow request rate of switch, its expec-
tation and standard deviation can be computed based on historical
log data. For a given switch, the expectation of flow request rate
represents the average level of flow consumed controller capacity.
Moreover, the standard deviation of flow request rate reflects
how much the flow fluctuates. Therefore, through referring the
expectation and standard deviation of switch’s flow request rate,
we could achieve better robustness of slave controller assignment
if the appropriate controller with rational capacity is assigned to
the switch as the slave.
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Fig. 4. An example of robustness of slave controller assignment.

For example, in Fig. 4, there are three SDN domains, and the
available capacities of three controllers are 600 packets/s (C1),
500 packets/s (C2) and 400 packets/s (C3), respectively. In domain
2, switch S1’s flow request rate is almost steady (400 packets/s),
while S2’s flow request rate is fluctuated (200∼300 packets/s).
Considering the robustness, when C1 and C3 are assigned to S1 and
S2 as slave controller respectively, the performance of the control
plane can be guaranteed even if C2 fails. It is also helpful to address
controller chain failure (Section 2).

Based on the ideamentioned above, we introduce somemetrics
to describe the robustness of slave controller assignment. E(f (t)n)
and σ (f (t)n) are denoted as the expectation value and the standard
deviations of flow request rate of switch sn. Then, we analyze the
usage of the controller capacity in detail.

Definition 3 (Control Capacity of a Controller). One controller de-
ployed in a SDN domain should control the switches in the domain,
and those switches will occupy the corresponding capacity, which
is defined as control capacity. Thus, the control capacity of con-
troller ck is computed as UCon

k in Eq. (9), where skn shows ck is the
master controller of sn.

UCon
k =

N∑
n=1

skn · f (t)n (9)

Definition 4 (Reserved Capacity of Controller). For a controller,
when it is assigned to some switches as slave role, it must reserve
ahead certain capacity for slave connections. Therefore, we call the
reserved capacity of controller ck as URes

k in Eq. (10), where si(k)
shows ck is the slave controller of si.

URes
k =

N∑
i=1

E(f (t)i) · si(k) (10)

When a controller is ready to play the slave role for some
switches, the sum of its control capacity and its reserved capacity
must not exceed the maximum threshold of capacity, as shown in
Eq. (11).

UCon
k + URes

k ≤ Uk (11)

Based on the above definitions, when evaluating the robust-
ness of slave controller assignment, we must consider maximum
capacity, control capacity and reserved capacity of the controller.
Meanwhile, due to the fluctuant flow request rate of switch, we
introduce an assignment weight, which is related to the standard
deviation of flow request rate, to correct the result. For example,
the assignment weight wk of slave controller ck is computed in

Eq. (12). Further, the robustness of slave controller ck can be ex-
pressed in Eq. (13).

wk =

∑N
n=1 σ (f (t)n) · sn(k)∑N

n=1 σ (f (t)n)
(12)

Rk = (Uk − UCon
k − URes

k ) · wk

= (Uk − UCon
k − URes

k ) ·

∑N
n=1 σ (f (t)n) · sn(k)∑N

n=1 σ (f (t)n)
(13)

The average of the robustness of all slave controllers is defined
as R in Eq. (14), where M ′ is the number of controllers acted as
slaves. Generally, all controllers in the network should participate
in the slave assignment to ensure the full utilization of control
resources.

R =
1
M ′

M ′∑
k=1

Rk (14)

3.2.4. The SCA problem formulation
The purpose of this paper is to achieve the fault-tolerant control

plane through improving slave controller assignment. Therefore,
how to reasonably assign controllers as slaves to switches becomes
a key point, and we define it as slave controller assignment (SCA)
problem. Based on the above metrics (latency, load balancing, ro-
bustness), we formulate SCA as follows.

Objective min F = {F1, F2, F3} (15)

Subjected to⎧⎨⎩ F1 = Dslave

F1 =
⏐⏐LV − LVfailure

⏐⏐
F3 = Z − R

(16)

∀n ∈ N
M∑

m=1

smn = 1 (17)

∀n ∈ N
M∑

m=1

sn(k) = 1 (18)

0 ≤ |FC | ≤ M (19)

|FC | ≤ |C − FC | (20)

∀cm ∈ C,

N∑
n=1

smn · f (t)n < Um (21)

M∑
m=1

N∑
n=1

smn · f (t)n <

M∑
m=1

Um (22)

∀n ∈ N,m ∈ M smn ∈ {0, 1} (23)

∀n ∈ N,m ∈ M sn(k) ∈ {0, 1} (24)

Eq. (15) shows the objective function of the multi-criteria op-
timization problem. Eq. (16) represents the multiple criteria, in-
cluding latency, controller load balancing, and robustness, where
LV and LV failure respectively indicate the load variance of controllers
in normal state and failed state, and Z is a constant. To normalize
the model, the robustness is subtracted by a fixed constant to
transfer to minimize. Eq. (17) shows a switch only has one master
controller in the network. Eq. (18) indicates each switch can select
one controller as slave role from its backup controller set. Eq. (19)
promises there is no chance of all controllers failing in the network.
Eq. (20) presents failed controllers’ quantity is less than the normal
controllers’. Eqs. (21) and (22) show that controllers have enough
capacities to process the flow requests sent from their controlled
switches. Eqs. (23) and (24) are integral constraints which ensure
that all the decision variables take values either 0 or 1.
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Fig. 5. DSCA architecture for fault-tolerant control plane.

Theorem 1. SCA is NP complete.

Proof. We prove the NP completeness of SCA by considering a de-
cision version of the problem, and showing a reduction from con-
troller placement problem (CPP) [10]. Moreover, CPP has proved
the NP completeness of master controller assignment. An instance
of CPP is: for a given SDN network G with a controller set C and
a switch set S, is there a subset C ′

∈ C such that
∑

C ′∈C scn ̸= 0?
For a comparison, we set an instance of SCA. We assume that there
are two controllers c1, c2 and |S| switches. When assuming c1 as
master controller, it meets CPP and

∑
C ′∈C sc1n ̸= 0. Then, we can

get c2 ∈ C\{c1}. At this time, SCA still assigns c2 to one of switch
from S as slave. Thus, this operation can be reduced to a specific
CPP with one determined controller. Similarly, C ′

∈ C\{c1} and∑
c2∈C sc2n ̸= 0. Finally, the reductions can be done within the

polynomial time, which completes the proof.

4. Dynamic slave controller assignment

In this section, we introduce a dynamic slave controller as-
signment (DSCA) scheme, which includes the modules of state
detection, efficient slave assignment, and role adjustment, to solve
the SCA problem formulated in Section 3.

4.1. Overview of DSCA

Fig. 5 shows the overview of DSCA, which consists of three
parts: state detection module, efficient slave assignment module,
and role adjustment module. The input of DSCA is the network
data, including the topology connection and flow request rates of
switches.

State detection module, as the first module, checks whether
there are controller failures. Further, it has two output results: if
the existing failed controllers cause controller chain failure (de-
scribed in Section 2), they will be labeled and delivered to efficient
slave assignment module. Otherwise, they are delivered to role
adjustment module to implement original slave assignment.

Efficient slave assignment module is the core part of DSCA,
and it will complete the elastic slave assignment according to the
controller failure condition and generate a new slave assignment
for switches.

Role adjustment module changes the roles (e.g. master and
slave) of some controllers based on the types of slave assignment
(new or original). Finally, the adjustment results are respectively

delivered to state detection module and data plane to update
network states, including the load information of controllers and
connection relationships between switches and controllers.

Based on threemodules design and the corresponding feedback
process, DSCA can effectively weak the impact of controller failure
on the network and construct the fault-tolerant control plane. The
detailed introductions are described as follows.

4.2. State detection module

In DSCA, state detection module is mainly responsible for de-
tecting controller failures and further determines the type of fail-
ures. Specifically, Fig. 6 shows the workflow of the module. Firstly,
thismodulewill collect the network data (e.g. topology connection
and flow request rates of switches) from data plane. We assume
that the control plane has generated an original slave assignment
scheme in the stage of network design to cope with uncertain
controller failure, such as assigning the nearest controller to switch
as slave. Then, it will judge whether there are controller failures
in the network. Here, the controller failure includes two mean-
ings: hardware failure due to sudden breakdown, and software
failure caused by the depletion of controller capacity. Both failures
will make controller lose efficiency. In the multi-controller SDN
network, controllers can periodically synchronize state informa-
tion with each other to maintain the network status consistency.
In this paper, we follow this idea and introduce a simple and
effective controller failure checking method by referring to the
existing works [13–15]. Once several controllers cannot receive
the heartbeat messages that are sent from the specific controller
during a state synchronization, then we consider this controller is
failed. For example, a network has three controllers: C1, C2, and
C3. If controllers C1 and C2 cannot simultaneously synchronize
network state with C3 through heartbeat messages, we consider
C3 is failed. Further, for these failed controllers, this module judges
whether they will cause controller chain failure by precomputing
the original slave assignment. If so, this kind of controllers will
be added into the failed controller set FC and then go to efficient
slave assignment module. Otherwise, the failed controllers will go
to the role adjustment module to implement the original slave
assignment.

4.3. Efficient slave assignment module

Efficient slave assignment module is the key part of DSCA,
and it can implement the rational slave controller assignment to
the switches of failed controllers to avoid controller chain failure
and achieve fault tolerance. In Section 3, we have formulated
the SCA problem and proved its NP-completeness. SCA problem
has three optimization objectives, which include minimizing la-
tency, minimizing load variance and maximizing the robustness.
For this multi-objective mixed optimization problem, we propose
the heuristic method to solve it. However, the traditional heuristic
methods (e.g. genetic algorithm, greedy algorithm) are suitable for
solving the problemwithin twooptimization objectives. Therefore,
we propose a new method based on the improved simulated an-
nealing algorithm. Simulated annealing [16] is a popular choice for
finding an optimum of the problems that have large search space,
so we select simulated annealing. The main idea of simulated
annealing is to accept solutions that areworse than the current one
with some probability. A specific parameter named as temperature
is proposed to control this process. The probability of accepting
worse solutions decreases with temperature. The probability of
accepting worse solutions decreases with the difference between
objectives of current and new solution.

However, the original simulated annealing easily falls into the
local minimum and loses the current optimal solution due to prob-
abilistic choice. Therefore, a new algorithm, named State-aware
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Fig. 6. The workflow of state detection module.

Simulated Annealing (SSA), is proposed to efficiently solve the SCA
problem. The improvement of SSAmainly includes two aspects. For
one thing, we propose an efficient slave controller encoding based
on the characteristics of slave controller assignment to improve
operating efficiency of algorithm. For another thing, we design
the new principle of temperature changing to adjust temperature
to warming or cooling state, which can avoid the local optimum.
In Fig. 7, we present the workflow of efficient slave assignment
module, which includes SSA algorithm shown in gray rectangle
field.

4.3.1. Slave controller encoding
The objective of efficient slave assignment module is to gener-

ate a new slave controller assignment for those switches whose
master controller fails. Therefore, it is necessary to design an effi-
cient encoding way for failed controllers and its managed switches
to improve the efficiency of SSA algorithm. Failed controller set is
FC = {c1, c2,. . . , cr}, where r is the number of failed controllers. The
switches managed with failed controllers are set as FS = {s1, s2,
. . . ,}. New slave assignment is SA = {SA1, . . . , SAk, . . . , SAM−r }, and
SAk is the slave assignment scheme of the kth normal controller, as
shown in Eq. (25).

SAk = {s1(k), s2(k), . . . , s|FS|(k)} (25)

For convenience,we use a set of binary numbers to encode slave
controller assignment, where si(k) = 1 represents the controller ck
is assigned to si as new slave. For example, Fig. 8 shows FS = {s1,
s2, s3, s4, s5} and SA = {SA1, SA2}. The value of SA1 in s2 is equal to 1,
which represents that controller c1 is assigned to switch s2 as the
new slave.

4.3.2. Temperature changing principle
The temperature changing is an important feature of simulated

annealing. The original simulated annealing algorithm only im-
plements temperature cooling to accept or reject new solution.

Fig. 7. The work flow of efficient slave assignment module.

Fig. 8. An example of slave controller encoding.

However, this way may plunge into local optima. Thus, we pro-
pose new temperature changing principle, including the process
of temperature warming and cooling.

Temperature changing principle. During the iteration of SSA
algorithm, if the value of fitness function (objective function) al-
ways keeps local maximum, the temperature rises again but al-
ways lowers than the initial temperature. Otherwise, if its value
keeps localminimum, the temperature continues to fall. Moreover,
we introduce the warming factor a and cooling factor b, as shown
in Eq. (26) and Eq. (27), where T is temperature and I is the number
of iterations.

TI = a · TI−1 (1 < a) (26)

T ′

I = b · T ′

I−1 (0 < b < 1) (27)

4.3.3. State-aware simulated annealing (SSA) algorithm
Based on the above preparations, we implement SSA algorithm.

SSA takes the failed controller set FC and the annealing parameters
as inputs and returns the new slave controller assignment to the
next module. Further, the annealing parameters contain initial
temperature T0, number of iterations Imax, the warming factor a,
cooling factor b and final temperature Tf .

SSA starts with an initial temperature and reduces gradually
until arriving at final temperature. SSA firstly encodes slave con-
troller assignment and initializes the temperature and iteration
(Line 1–2). Then, SSA randomly selects a solution as the starting
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Table 2
State-aware simulated annealing algorithm.
Algorithm 1 State-aware simulated annealing (SSA) algorithm

Input: FC, T0, Tf , Imax, a, b
Output: NSA
1: Encode slave controller assignment
2. T = T0 , i = 1
3: Generate initial solution SA
4: Compute Γ (SA) = min(Dslave,

⏐⏐LV − LVfailure
⏐⏐ , Z − R)

5: while T ≥ Tf do
6: if Feasibility(SA) = 1 then
7: NSA = SA, Γ (NSA) = Γ (SA)
8: endif
9: Get the new solution SA

′

10: Compute Γ (SA
′

)
11: ∆ = Γ (SA

′

) − Γ (SA)
12: Generate p between 0 and 1
13: if P(SA

′

) ≥ p then
14: SA

′

= SA, Γ (SA
′

) = Γ (SA)
15: endif
16: i++

17: if Imax iterations are performed at T
18: Implement temperature changing principle, and i = 1
19: endif
20: endwhile
21: Return new slave assignment NSA

point (Line 3) and computes its objective values Γ (SA) based on
Eqs. (15)–(16). Specifically, Γ (SA) is composite value, considering
Dslave, |LV − LVfailure| and Z-R (Line 4). Here, we can adopt a solution
obtained by greedy method as the start. Each solution is a set
SA = {SA1, . . . , SAk, . . . , SAM−r }, where m − r is the number of
controllers under the active states. Further, SSA searches the best
feasible solution so far and its objectives. A solution is recorded
if its objectives are less than the last solution. In each iteration, a
random neighbor SA′ of the current solution SA is generated and
computed its objective values (Line 9–10).

According to Eq. (28), we accept the new solution with proba-
bility P. If the new solution is rejected, we change the temperature
and generate another solution. The process will continue until the
temperature arrives at the final temperature. The probability of
accepting a solution is a function of temperature. There are two
cases in terms of new solutions. On the one hand, if the new
solution is better than current one, it will be accepted due to
e(−∆/T ) > 1. On the other hand, if the new solution is worse
than the current one, it will be accepted unless e(−∆/T )

≥ p,
where ∆ is the difference between objectives of new and current
solutions, and p is a number between 0 and 1. We consider the
two solutions are neighbors if they differ by at most one switch.
In order to ensure the steady state, the algorithm should iterate
enough times. After ending iteration, wemodified the temperature
based on temperature changing principle (Line 18). Finally, SSA
outputs a new slave assignment NSA (Line 21). The pseudo-code
of SSA algorithm is shown in Table 2.

P(SA′) = e(−∆/T )
= e(−(Γ (SA)−Γ (SA′))/T ) > p (28)

For algorithm 1, its time complexity mainly depends on the
initial temperature T0, final temperature Tf and iterations Imax.
For each temperature level, the algorithm will iterate Imax times.
Moreover, the time complexity of while loop in Algorithm 1 is
O(MN). Therefore, the time complexity of algorithm 1 is O(MNI).

4.4. Role adjustment module

Role adjustment module has two functions in DSCA. On the one
hand, it is responsible for adjusting the roles of controllers (master
or slave) based on the inputs of state detectionmodule and efficient
slave assignment module. On the other hand, it not only feedbacks

Table 3
Efficient role adjustment algorithm.
Algorithm 2 Efficient Role Adjustment (ERA) algorithm

Input: OSA,NSA
Output: smn and sn(k) for each switch, new network state
1: Accept outputs of state detection module and efficient slave assignment
module
2. Determine type: OSA?NSA?OSA ∪ NSA?
3: switch (type)
4: case OSA
5: while (OSA ̸= φ)
6: Changing controller’s role smn = 1 and sn(m) = 0
7: endwhile
8: case NSA
9: while (NSA ̸= φ)
10: Changing controller’s role smn = 1 and sn(m) = 0
11: endwhile
12: case OSA ∪ NSA
13: while (OSA ̸= φ ∪ NSA ̸= φ)
14: Changing controller’s role smn = 1 and sn(m) = 0
15: endwhile
16: Update network state to state detection module and data plane
17: Return new network state

the updated network state into state detection module, but also
informs the updated network state into the switches of data plane.
Obviously, on the basis of the workflow of DSCA shown in Fig. 5,
if both original and new slave assignment exist, the original slave
assignment sent by state detection module directly reaches role
adjustmentmodule, while the new slave assignment reaches later.
However, no matter which types of slave assignment (original or
new) are processed, the network state always needs to be up-
dated. In order to improve the processing efficiency, we propose
a combinational processing method, which implements updating
state after both original and new slave assignment completed, as
shown in Fig. 9. Therefore, compared with individual processing,
the combinational processing could reduce the times of updating
state once the original slave assignment and new slave assignment
exists side by side.

Correspondingly, we design an efficient role adjustment (ERA)
algorithm in Table 3. The input of algorithm is original slave assign-
mentOSA and new slave assignmentNSA. Firstly, we determine the
type of input (Line 2). If input only containsOSA orNSA, we directly
adjust the controller role, and output binary variables smn and sn(k)
for each switch (Line 4–11). Otherwise, we process OSA or NSA
according to the order of arrival, and update the network state until
both OSA or NSA are completed (Line 12–13). Moreover, we get the
smn and sn(k). Finally, the algorithm outputs the updated network
state to data plane and state detection module, respectively. The
pseudo-code is shown in Table 3.

In Algorithm 2, it contains three while loops. For each while
loop, its time complexity is O(K ), where K is the number of con-
trollers needed to change roles. Therefore, we can conclude that
the time complexity of Algorithm is O(K ).

5. Simulation and evaluation

In this section, we evaluate the effectiveness of DSCA through
simulations. Actually, we will discuss the simulation setting and
results.

5.1. Simulation setting

Simulation experiments are designed to verify the performance
of the proposedmethod. There are several settings for experiments
as follows.

(1) Experiment platform
We select OpenDaylight [17] as the experimental controller

and use Mininet [18] as the test platform. OpenDaylight supports
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Fig. 9. Comparison of individual and combinational processing in role adjustment module.

Table 4
The characteristics of network topologies.
Topology ABILENE BELNET CHINACOM

Node 11 21 42
Link 14 31 66

multiple versions of OpenFlow protocols. Both OpenDaylight and
Mininet run on servers in the formof virtualmachines. Specifically,
the configuration of server includes Intel Core i5, 3.1 GHz and 8 GB
RAM. The operation system is Ubuntu 16.04. Further, DSCA, the
proposed solution, is loaded on OpenDaylight as an application.

(2) Topology setting
We select the authoritative network topologies from Topology

Zoo [19] to make the experiments more persuasive. Topology Zoo
is a project to collect data network topologies from around the
world. It currently has over two hundred and fifty networks. We
adopt three topologies (ABILENE, BELNET, CHINACOM) from the
Topology Zoo. These three topologies are the most used network
topologies in related literature, and their topology information has
been known to us. Besides, their topology scales gradually expand.
The characteristics of the selected network topologies are shown
in Table 4. We use the latitude and longitude information of the
selected network to calculate latency between network nodes.

(3) Parameter setting
We adopt Iperf [20] to generate TCP flows to represent the

network traffic. The flow requests generated by switches are be-
tween 200 to 500 kilo packets/s.Moreover, themaximal capacity of
controller is 9×106 packets/s based onOpenFlow1.2 protocol. Due
to the limitation of link bandwidth, we set the number of switches
controlled by each controller is between 5 to 20 [21]. The algorithm
file of the multi-objective mixed optimization is generated using
MATLAB and sent it to CPLEX optimizer to solve [22].

(4) Compared schemes
Static: All switches in a domain select the same fixed controller

as slaves. (e.g. switches controlled with controller 1 only select
controller 2 that has minimum hop as slave)

Round: All switches in a domain select other controllers as
slaves according to the predetermined slave controller order.
(e.g. switches controlled with controller 1 select controller 2, 3, 4,
5 as slave in turn).

DSCA: All switches in a domain dynamically select different
controllers as their slave controllers using the scheme present in
Section 4.

5.2. Simulation results

5.2.1. Latency
Here, the latency mainly refers to the latency between switch

and controller, as shown in Eq. (3). The worst case latencies of
DSCA and compared schemes while considering controller fail-
ures are presented in Fig. 10. We have deployed 12 controllers
in the network in advance, and the maximum number of failed
controllers does not exceed the half of deployed controllers to
make the experimental data be meaningful for comparison. This
is because the latencies of three schemes will be extremely large
if all controllers fail in the network. Thus, we vary the number of

failed controllers from0 to 6 for three networks, and the results are
shown in Fig. 10(a) to Fig. 10(c).We can see that comparedwith the
other two schemes, DSCA keeps worst case latency in a low level
as the number of failed controllers increases.

The reasons can be explained as follows. When there is no
controller failure in the network, all schemes have the same ex-
perimental results. With the increasing of the number of failed
controllers, the worst case latency of Static sharply increases due
to lack of planning for controller failures. Once a controller failure
brings about controller chain failure, the controller performance
cannot be effectively guaranteed and the worst case latency in-
creases significantly. Though Round scheme designs a polling as-
signment mechanism for slave controller, the polling order just
depends on the capacities of controllers. For Round scheme, if the
slave controller that has the large hop is assigned to switch as
new master, the worst case latency is still in a high level. Since
the one of objectives of DSCA is to minimize the latency between
switch and controller, it will plan ahead for controller failure and
dynamically assign slave controllers to switches considering the la-
tency constraint. Once detecting controller failure in the network,
DSCA will transform the corresponding controllers from slave to
master role. DSCA is less affected by controller failures, and its
worst case latency averagely decreases 35.1% comparedwith Static
and Round.

Because the worst case latency could not present the distri-
bution of latencies between switches and controllers, we further
compute the cumulative distribution function (CDF) of latencies
under controller failure scene in Fig. 11. No matter in ABILENE,
BELNET or CHINACOM, we can see that the maximum latency
between switch and controller of DSCA is lower than the other two
schemes’. Therefore, we conclude that the latency of DSCA is better
than Static and Round in case of controller failure. In other words,
DSCA has a better fault-tolerant performance.

5.2.2. Controller load balancing
In the multi-controller network, all controllers have different

loads, while themore balanced the distribution of controller loads,
the better the performance of control plane. Thus, we compute
RootMean Squared Error (RMSE) in Eq. (29) of all controllers based
on Eq. (5) and Eq. (8) to evaluate the load balancing performance of
three schemes. Lm and L

′

m are the controller loads before and after
controller failure, respectively.

RMSE =

√∑m
i=1(Lm − L′

m)
m

(29)

Here, a smaller RMSE means a better performance of load bal-
ancing. If all controllers have the same loads, the value of RMSE
is 0. Fig. 12 describes controller RMSE value for three schemes,
and r represents the number of failed controllers in network. Here
we set r = 1, r = 2, and r = 3, respectively. In Fig. 12, the
box indicates the center half of the data. It is clearly seen that
DSCA has the lowest RMSE value, Round is the second, and Static
is the highest. Meanwhile, we also observe that DSCA’s RMSE is
less influenced by the increment of number of failed controllers.
Round’s RMSE has the greater fluctuant range and it performs well
if and only if r = 1. There are three reasons. Firstly, because
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Fig. 10. Worst case latency of various schemes in three networks: (a) ABILENE; (b) BELNET; (c) CHINACOM.

Fig. 11. CDF of latency of various schemes in three networks: (a) ABILENE; (b) BELNET; (c) CHINACOM.

Static scheme fixedly assigns slave controllers to switches without
considering controller loads, Static’s RMSE is always in a higher
value under the controller failure scenario. Secondly, when there
is only one failed controller in the network, Round can search the
rational slave controllers for the switches of the failed controller
by polling. If the number of failed controllers increases, Round will
lose efficiency because the predetermined polling order is broken.
Thirdly, benefiting from the efficient slave module and feedback
process design, compared with the other two schemes, DSCA can
dynamically adjust the assignment of slave controllers according to
the failure condition, and ensure the load balancing performance of
controller under the situation of controller failures. Hence, under
different failure scenarios (r = 1, 2, 3), DSCA can always keep
its controller RMSE in a lower level and achieve controller load
balancing in case of controller failures.

5.2.3. Network crash probability
The objective of this paper is to improve the fault-tolerant

performance of control plane. Intuitively, the more controller fail-
ures the network bears, the better its fault-tolerant performance.
Therefore, in this experiment, we observe network crash probabil-
ity pcrash caused by controller failures, which can be computed in
Eq. (30). M∗ and M represent the number of failed controllers and
total controllers, respectively.

pcrash =
M∗

M
(30)

Fig. 13 shows the results of three schemes in different networks.
Analogizing experiment 1, we vary the number of failed controllers
from 0 (minimum) to 12 (maximum), and observe the changing of
network crash probability. It is clearly seen that DSCA outperforms
Static and Round consistently, and also substantially, for different
failure scenes but the extremes 0 and 1. More importantly, the
curves representing DSCA have a slower growth rate than Static
and Round. When there is no controller failure in the network,
all schemes behave similarly. As the number of failed controllers
increases to 5, the probability of network crash for DSCA is less
than half of that for Round. Specifically, DSCA has stayed below

0.2 in different networks averagely, while Round has increased
above 0.8. Afterwards, though the differences between all schemes
diminish, Fig. 13 shows that DSCA reaches near 100% of network
crash probability later than both Static and Round schemes.

The above results can be explained as follows. Static does not
consider the instance of insufficient capacity of the nearest con-
troller, which is likely to produce the controller chain failure. Thus,
the network crash probability of Static grows quickly with the
increment of failed controllers. Round performs better than Static
scheme when there are a few failed controllers in the network.
However, the stiff polling order of Round will lose efficiency if
existing plenty of failed controllers. Compared with Static and
Round, DSCA plans head for controller failure and dynamically
executes efficient slave controller assignment. Therefore, DSCA can
suffer more failed controllers and achieve high robust and fault-
tolerant control plane.

5.2.4. Performance of heuristic
The core of DSCA is the efficient slave assignment module,

which is developed by heuristic method. In order to show the
performance of improved simulated annealing, we set original
simulated annealing as comparison to evaluate latency optimiza-
tion and running time. The settings of basic parameters are as
follows. The range of temperature is from 0.01 to 20. We set the
iteration Imax = 300, and warming factor a = 1.05 and cooling
factor b = 0.95. Specifically, the original simulated annealing
only has a cooling factor. We execute each instance for 50 times
and compute the average result for data reliability. Fig. 14 shows
the latency optimization and running time results of two methods
in CHINACOM network. We can see that the improved simulated
annealing proposed by this paper outperforms better than the orig-
inal simulated annealing in terms of latency optimization, while
the difference of running time of these two methods is small. The
reasons are as follows.We improve simulated annealing algorithm
by designing the specific slave controller encoding and tempera-
ture changing principle to speed up the execution efficiency and
avoid the local optimal. Though the running time of the improved
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Fig. 12. Controller RMSE of various schemes in three networks: (a) ABILENE; (b) BELNET; (c) CHINACOM.

Fig. 13. Network crash probability of various schemes in three networks: (a) ABILENE; (b) BELNET; (c) CHINACOM.

method is slightly higher than the original method’s, it brings a
higher optimization benefit such as greatly reducing latency under
controller failures. Moreover, the performance of algorithm can be
further improved by increasing iterations and adjusting tempera-
ture parameters.

6. Related work

There are several researches on the fault-tolerant control plane,
which could be divided into two aspects: reliable control plane and
failover design of control plane.

6.1. Reliable control plane

In the initial SDN design, there is only one single controller in
the network. For coping with the large-scale network, some re-
searchers propose to deploymulti-controller, which can be divided
into two aspects: flat architecture (e.g., HyperFlow [3], Onix [4]),
and hierarchical architecture (e.g., Kandoo [5]). The purpose of
multi-controller not only improves the scalability of SDN, but
also increases the reliability of control plane. Based on this pro-
posal, several works investigate the reliable control plane com-
bined with multi-controller. Hu et al. [23] define a new metric,
named expected percentage of control path loss, to characterize
the reliability of SDN. Meanwhile, Reliability-aware Controller is
demonstrated as an NP-hard problem, and several placement al-
gorithms are examined to solve this problem. Lucas et al. [24]
propose Survivor, a controller placement strategy, to address the
single path between switch and controller failure. Survivor cor-
rectly explores the path diversity problem and considers capacity-
awareness proactively for controller deployment to avoid con-
troller overload. However, it is lack of considering multi-controller
failures scene. Song et al. [25] study the reliability of SDN from the
perspective of control path. They mainly focus on the reliability
challenges in a control path network between control layer and
data layer, and design control path reliability algorithms and a
novel control message classification and prioritization system to

enhance the reliability of SDN. Jiménez et al. [26] design an algo-
rithm called K-Critical that places controllers to achieve a robust
control. K-Critical discovers the minimum number of controllers
and their locations to create a robust control topology that deals
robustly with failures and balances the load among the selected
controllers. Stanislav et al. [27] introduce POCO, a framework for
Pareto-based Optimal COntroller placement, that provides opera-
torswith Pareto optimal placementswith respect to controller fail-
ure, isolated node, load balancing and inter-controller latency. The
availability of POCO is analyzed in detail via an evaluation featuring
numerous real-world topologies. Killi et al. [28] formulate a math-
ematical model for the capacitated controller placement that aims
to reduce theworst-case latency between switches and controllers
to deploy the limited number of controller.Meanwhile, the authors
also introduce a variant of the proposed model that minimizes the
worst-case latencies with and without failure together. The above
works mainly focus on researching how to deploymulti-controller
to improve the reliability and avoid failure, but they are static and
inflexible.

6.2. Failover design of control plane

It is clearly seen that stiff and fixed control plane design cannot
gurantee the real-time reliability of controllers under the net-
work with drastic traffic. Thus, several works propose to build
failover mechanism for control plane to achieve fault tolerance.
Neda et al. [29] design fast failover protection for control traffic
once there are disconnections between switches and the con-
trollers. By maximizing the possibility of fast failover, the au-
thors can achieve resilience-aware control-traffic routing. After
the OpenFlow 1.2 protocol has been proposed, the researchers
propose to use both master and slave controllers to implement
failover. Dixit et al. [30] propose ElastiCon, as a new controller
architecture, to periodically monitor the load on each controller,
detect imbalance and failure, and automatically balance the load
across controllers by migrating switches. Meanwhile, in order to
harmonize the migration, a novel switch migration protocol is
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Fig. 14. Performance of improved simulated annealing on CHINACOM: (a) Latency (b) Running time.

designed for enabling such as load shifting, which conforms to the
OpenFlow standard. Gonzalez et al. [31] design a new mechanism
considering consistency and fault tolerance of SDN controllers. Its
objective is to bring the performance of SDN Master–Slave con-
troller as close as possible to the oneofferedby single controller, re-
gardless ofwhether there is controller failure. Through introducing
a simple replication scheme, this mechanism executes consistency
and correction check, which influences the network performance
only during a few slots. Liang et al. [32] propose to construct a
scalable and crash-tolerant load balancing architecture, which can
dynamically shift the load across themultiple controllers by switch
migration. Moreover, this architecture also supports controller
failover without switch disconnection avoiding the single point
of failure problem. The prototype system is implemented in the
OpenDaylight controller. Xie et al. [33] research minimal fault-
tolerant coverage of controllers in the data center environment.
They solve this problem from three aspects: minimal coverage,
minimal fault-tolerant coverage, and the minimal communication
overhead among controllers. Correspondingly, the efficient algo-
rithms are designed to achieve those objectives. However, it does
not consider the dynamic traffic in the network. Based on the above
work, we can observe that the existing researchers mostly design
backup and failover mechanism to protect control plane, but they
focus on single controller failure and are lack of overall planning
for failures.

7. Conclusion

In this paper, we attempt to improve the fault-tolerant perfor-
mance of control plane from the perspective of slave controller
assignment and propose a dynamic slave controller assignment
(DSCA) scheme. Firstly, we describe controller chain failure phe-
nomenon caused by controller failure, which may crash the entire
network. Through analyses, we find that rational slave controller
assignment is the key to guarantee the fault-tolerant performance
of control plane. Then, we formulate the SCA problem, considering
latency, load balancing and robustness, as a multi-objective mixed
optimization. Further, DSCA is proposed to effectively solve the
SCA problem, and it can be divided into three modules including
state detection, efficient slave assignment and role adjustment.
More importantly, the improved heuristic algorithms are loaded
on the corresponding modules to increase efficiency. Simulation
results show that, compared with other schemes, DSCA can effec-
tively ensure the fault-tolerant performance of control plane and
minimize the impact of controller failure on the entire network.

In future work, we plan to provide more insights into the the-
oretical model and extend DSCA scheme to a large-scale network
with more real traffic to evaluate its performance.
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