Soft Comput
DOI 10.1007/s00500-016-2284-x

@ CrossMark

METHODOLOGIES AND APPLICATION

An empirical study of some software fault prediction techniques

for the number of faults prediction

Santosh S. Rathore! - Sandeep Kumar!

© Springer-Verlag Berlin Heidelberg 2016

Abstract During the software development process, pre-
diction of the number of faults in software modules can be
more helpful instead of predicting the modules being faulty
or non-faulty. Such an approach may help in more focused
software testing process and may enhance the reliability of
the software system. Most of the earlier works on software
fault prediction have used classification techniques for clas-
sifying software modules into faulty or non-faulty categories.
The techniques such as Poisson regression, negative binomial
regression, genetic programming, decision tree regression,
and multilayer perceptron can be used for the prediction of
the number of faults. In this paper, we present an experi-
mental study to evaluate and compare the capability of six
fault prediction techniques such as genetic programming,
multilayer perceptron, linear regression, decision tree regres-
sion, zero-inflated Poisson regression, and negative binomial
regression for the prediction of number of faults. The exper-
imental investigation is carried out for eighteen software
project datasets collected from the PROMISE data repository.
The results of the investigation are evaluated using average
absolute error, average relative error, measure of complete-
ness, and prediction at level [measures. We also perform
Kruskal-Wallis test and Dunn’s multiple comparison test to
compare the relative performance of the considered fault pre-
diction techniques.

Communicated by V. Loia.

B Sandeep Kumar
sandeepkumargarg @ gmail.com

Santosh S. Rathore
sunnydec @iitr.ac.in

Department of Computer Science and Engineering, Indian
Institute of Technology Roorkee, Roorkee, India

Published online: 28 July 2016

Keywords Software fault prediction - Zero-inflated Poisson
regression - Genetic programming - Multilayer perceptron -
Kruskal-Wallis test - Dunn’s multiple comparison test

1 Introduction

From software development perspective, dealing with soft-
ware faults is a vital and foremost important task. Presence
of faults not only deteriorates the quality of the software,
but also increases the development and maintenance cost of
the software (Menzies et al. 2010). Therefore, identifying
which software module is likely to be fault prone during early
phases of software development may help in improving the
quality of software system. By predicting number of faults'
in software modules, we can guide software testers to focus
on faulty modules first.

The objective of software fault prediction is to detect
faulty software modules before the testing phase by using
some structural characteristics of the software system. Soft-
ware fault prediction model is generally constructed using
the fault dataset from the previous releases of similar soft-
ware projects, and later, it is applied to predict faults in
the currently under development software system. A vari-
ety of techniques has been used earlier for software fault
prediction (Basili et al. 1993; Khoshgoftaar et al. 1997;
Catal 2011; Rathore and Kumar 2016a). Most of the tech-
niques focused on classifying software modules into faulty
or non-faulty categories. However, this type of prediction
does not provide enough logistics to allot the limited quality
assurance resources efficiently and optimally. Some of the
faulty software modules can have relatively larger number

I Number of faults and fault counts both are same term. We used them
interchangeably in this paper.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-016-2284-x&domain=pdf

S. S. Rathore, S. Kumar

of faults compared to other modules and may require some
extra efforts to fix them. So, allocating the quality assurance
resources solely based on faulty and non-faulty information
may result in inefficient use of resources.

The idea of the prediction of number of faults is attrac-
tive because it provides the probability that a certain number
of faults will occur in the given software module that best
describes the fault occurrence pattern of the given software
system. This type of prediction can be very useful for the
quality assurance team to narrow down the testing efforts to
the modules having more number of faults.

Count models such as Poisson regression and negative
binomial regression can be used to estimate the proba-
bility that certain number of faults will occur in each
software module. Apart from count models, some other pre-
diction techniques such as multilayer perceptron, decision
tree regression, and genetic programming can also be used
for predicting the fault occurrences in software modules.
Khoshgoftaar et al. have evaluated count models for the
number of faults prediction and found that count models
were able to predict the number of faults accurately (Gao
and Khoshgoftaar 2007). Some of the authors such as Afzal
et al. (2008), (Rathore and Kumar 2016) and (Khoshgof-
taar et al. 1992a), have investigated genetic programming,
decision tree regression, and multilayer perceptron in the
context of the prediction of number of faults and found that
these techniques performed significantly accurate. However,
no comprehensive investigation is available in the literature
that has compared count models and other fault prediction
techniques such as genetic programming, multilayer percep-
tron, and decision tree for the prediction of number of faults
in given software modules. Gao and Khoshgoftaar (2007)
performed a comparative study of five count models for the
prediction of number of faults. They used hypothesis test-
ing and other statistical measures to evaluate the relative
performance of the considered count models. However, no
evaluation was provided to assess the potential of the used
count models for the prediction of number of faults. Addition-
ally, no comparison was provided with other fault prediction
techniques.

This paper presents a comprehensive investigation of
six different fault prediction techniques for the predic-
tion of number of faults. The techniques investigated are
negative binomial regression (NBR), zero-inflated Poisson
(ZIP) regression, multilayer perceptron (MLP), genetic pro-
gramming (GP), decision tree regression (DTR), and linear
regression (LR). Out of these six techniques, LR, MLP, NBR,
and ZIP have been reported in various existing studies for the
number of faults prediction, whereas it has been found that
DTR and GP have been explored by only few researchers
for the number of faults prediction and need further inves-
tigation. The experimental study is performed for eighteen
software project datasets collected from the PROIMSE data

@ Springer

repository (Menzies et al. 2016). The prediction accuracy and
performance of the built fault prediction models are eval-
uated using average absolute error, average relative error,
measure of completeness, and prediction at level | measures.
The relative performance of six fault prediction techniques is
evaluated by Kruskal-Wallis test and Dunn’s multiple com-
parison test. The analysis and observations from this work
can be helpful to obtain the ensemble of these methods for the
prediction of number of faults. A similar study of the ensem-
ble methods on the prediction of software maintainability has
been recently reported in the literature (Elish et al. 2015).

The remainder of the paper is organized as follows. Sec-
tion 2 describes the related work. Detail of fault prediction
techniques along with the calibration of fault prediction mod-
els is given in Sect. 3. Performance evaluation measures are
also discussed in the same section. Section 4 discusses the
details of experimental design and the results of the presented
empirical study. A comparative analysis of the proposed work
with other similar existing works is given in Sect. 5. Section 6
discusses the possible threats to the validity of the study. The
conclusions are given in Sect. 7.

2 Related work

Some of the techniques used for predicting the number
of software faults include negative binomial regression
(Ostrand et al. 2004), count models (Gao and Khoshgoftaar
2007), genetic programming (Afzal et al. 2008), generalized
linear regression (Graves et al. 2000), and neural network
(Rathore and Kumar 2015b).

Graves et al. (2000) reported a study for the prediction
of number of faults using generalized linear regression tech-
nique. The study has been performed using various change
history metrics collected from a large telephone switching
system. The results suggested that the module size and other
used complexity metrics produced the poor prediction accu-
racy. The best results were obtained by the combination of
software metrics including modules age, changes made to
module, and the ages of the changes. However, no perfor-
mance measure was used to evaluate the appropriateness of
generalized linear regression for the prediction of number of
faults.

Ostrand et al. have performed a study for the prediction
of number of faults and fault density using negative bino-
mial regression (NBR) technique (Ostrand et al. 2004). A
NBR model has been developed that predict the number of
faults and fault density for the next release of the software
system. The prediction was performed over two large indus-
trial software systems. The results showed that developed
fault prediction model was accurately predicting the num-
ber of faults in the software systems. Similar type of studies
was reported in Ostrand et al. (2005a,b). Janes et al. (2006)

An empirical study of some software fault prediction techniques for the number of faults...

performed an experimental investigation for the identifica-
tion of defect-prone classes using design metrics. The study
was performed over five real-time telecommunication sys-
tems using three count models (Poisson regression, NBR,
and zero-inflated NBR). The results found that zero-inflated
NBR model produced the best performance among the other
used count models.

In another study, Liguo (2012) performed an investigation
to explore the effectiveness of negative binomial regression
(NBR) technique to predict fault counts in given software
modules. The performance of negative binomial regression
model was compared with logistic regression model. The
results found that in predicting software modules being fault-
prone, logistic regression model outperformed NBR model.
However, the results also suggested that NBR produced bet-
ter prediction accuracy when used to predict multiple faults
in one module. In 2007, Gao and Khoshgoftaar (2007) per-
formed an empirical study to compare the performance of five
count models for the prediction of number of faults. The study
was carried out over two industrial software systems. The
results found that zero-inflated negative binomial regression
and hurdle negative binomial regression models produced
better prediction accuracy. In another similar study, (Khosh-
goftaar and Gao 2007) compared the performance of Poisson
regression (PRM) and zero-inflated Poisson regression (ZIP)
models with logistics regression model. The results found
that PRM and ZIP models have the similar prediction accu-
racies as the logistic regression models. Out of ZIP and PRM
models, ZIP model produced better prediction accuracy.

Scanniello et al. (2013) performed a study for software
fault prediction using a clustering approach, and fault predic-
tion models are built using the properties of classes in each
cluster. The experiments were performed over 29 releases
of eight open-source software systems. The results found
that the presented clustering approach performed signifi-
cantly accurate for the software fault prediction. Kpodjedo
etal. (2009) investigated the effectiveness of various software
design metrics for the prediction of number of defects and
defect density over three open-source software systems. The
fault prediction models were built using multi-dimensional
linear regression, logistic regression, and Poisson regres-
sion techniques. The results found that the combination of
design metrics with traditional software metrics significantly
improved the performance of the software fault prediction.
In 2010, Bacchelli et al. (2010) explored the use of popular-
ity metrics of software components for the software defect
prediction. The experimental study was carried out over
four open-source software systems, and principal component
analysis and regression analysis were used to build software
fault prediction models. Results indicated that the use of only
popularity metrics does not provide significant results for the
number of faults prediction. However, the use of popularity

metrics with other change metrics improved the fault predic-
tion results.

Afzal et al. (2008) performed a study for the prediction of
fault counts using genetic programming (GP). The prediction
model was based on weekly fault count data and was built
over three industrial software systems. The results showed
that GP model produced statistically significant results for
goodness of fit and predictive accuracy for fault count
prediction. In another study, Marinescu (2014) performed
an investigation for predicting changes and defects in the
given software modules using the genetic programming. The
experiments were performed over four open-source software
systems having various object-oriented metrics. The results
found that built fault prediction model predicted defects and
changes in the software modules with significant precision
and recall values. Recently, Rathore and Kumar (2015a)
presented an approach for the number of faults prediction
using genetic programming (GP) over several open-source
software projects. Their results found that GP model has
predicted number of faults in given software modules with
significant accuracy and completeness.

In 2015, Chen and Yutao (2015) performed a study for the
prediction of number of defects using different regression
techniques. The experiments were performed over six open-
source software projects, and results found that decision tree
regression produced the best fault prediction results among
the used different regression techniques.

Most of the studies reported in the literature focused on the
usage of count models for the prediction of number of faults.
Very few studies performed fault count prediction using other
set of techniques. The study reported in Gao and Khoshgof-
taar (2007) evaluated and compared various count models
for number of faults prediction. However, no comparison has
been provided with other fault prediction techniques. In con-
trast, our study aims to evaluate the performance of six fault
prediction techniques including two count model-based tech-
niques that are reported better than other count models-based
techniques in the literature and four other fault prediction
techniques for the number of faults prediction. We also per-
form statistical analysis to compare the relative performance
of used fault prediction techniques.

3 Fault prediction techniques

This section presents the description of six fault prediction
techniques that are used for building fault prediction mod-
els. We have used two count model-based techniques and
four other fault prediction techniques. The previous stud-
ies related to count models found that negative binomial
regression (Gao and Khoshgoftaar 2007) and zero-inflated
Poisson regression models (Khoshgoftaar and Gao 2007)
have produced significant results for fault prediction. There-

@ Springer

S. S. Rathore, S. Kumar

fore, we have selected these two techniques to perform the
comparative study. Previously, some authors also applied
linear regression and multilayer perceptron for the predic-
tion of number of faults in given software modules (Graves
etal. 2000; Khoshgoftaar et al. 1992a). Recently, genetic pro-
gramming has been used by researchers to predict the fault
counts in the software system (Afzal et al. 2008; Rathore
and Kumar 2015a). Based on these observations, these six
fault prediction techniques have been selected for building
and evaluating fault prediction models.

3.1 Count models

Count model is a form of generalized linear model that is
used to model the data, where the response variable is of
count type. Count model is used when response variable fol-
lows the distribution other than a normal distribution (Hilbe
2012). A mostcommonly used count model is Poisson regres-
sion model (PRM). Other used count models are negative
binomial regression (NBR), zero-truncated count models,
zero-inflated count models, and hurdle count models. Pois-
son regression and negative binomial regression are the two
basic types of count models. Other count models have been
derived from these models by combining different distri-
butions. For example, zero-inflated count models such as
zero-inflated Poisson regression and zero-inflated negative
binomial regression are the specific cases of PRM and NBR,
respectively, which is used to model the data with excessive
number of zeros in response variable. Similarly, hurdle-
Poisson regression and hurdle negative binomial regression
are the special cases of PRM and NBR, which assumed that
zeros and positives in the response variable are not come
from the same data generation process.

In addition to these count models, some other count mod-
els are also available, such as Poisson—inverse mixture model
and random effect count models (Cameron and Trivedi 2013).
However, it was observed these count models produced the
similar results as produced by basic count models presented
(Gao and Khoshgoftaar 2007). Therefore, these count models
are not included in the study.

3.1.1 Negative binomial regression

Negative binomial regression is a Poisson—-Gamma mixture
model that addresses the overdispresion issue of the Pois-
son regression model (Greene 2011). Various maximization
methods such as Newton—Raphson method and Berndt—
Hall-Hall-Hausman (BHHH) can be used to estimate the
parameters of the negative binomial regression. The proba-
bility distribution function of negative binomial regression
can be obtained by the function given in Eq. 1.

@ Springer

F(yi+a])(o)a (Wi)yi
yill@™h) o=t +p !+

ey

Pr(yilx;) =

Where, gamma function is denoted by I"(.) and p rep-
resents the mean value. « is a constant parameter, and y;
represents the Poisson distribution. The expected value of y;
is given by E(y;|x;) = ¢%f = p;. Conditional variance is
given by Eq. 2.

Var(yi|xi) = (1 +ap;) = 5P (1 + ae®if))

Since both p and o are positive in negative binomial
regression, the value of conditional variance of y exceeds
the value of condition mean. If « = 0, then condition vari-
ance becomes equal to the conditional mean (see Eq. 2) and
the negative binomial regression reduced to Poisson regres-
sion. Further details of negative binomial regression can be
found in Hilbe (2012).

3.1.2 Zero-inflated Poisson regression

Zero-inflated model is used to model the dataset with an
excessive number of zeros in the response variable. It is a
commonly occurring phenomenon in the software fault pre-
diction process. A zero-inflated Poisson regression (ZIP) is
a special case of Poisson regression to handle zero-inflated
count data.

ZIP model was first introduced by Lambert (1992). It
assumes that all zeros in the data occur from two sources, i.€e.,
perfect and non-perfect sources. Perfect source represents the
modules in which no faults occur, and the non-perfect source
represents the modules in which the number of faults fol-
lows the Poisson distribution. In ZIP, parameter 1 is used to
denote the probability of the modules from perfect source,
and 1 — ¢ is used to denote the probability of the modules
from non-perfect source. The probability density function of
response variable under ZIP is given by Eq. 3.

Vi + (1 — e,
el [L;-Vi

(1= ¥ She,

yi=0
yi=1,23...
3)

Pr(yi|xi, pi, ¥i) = [

Additionally, two other link functions given in Egs. 4 and
5 have been used to obtain the ZIP model,

In(wi) = X;p “

N
logit(y;) = lnl -

= Xly 6)

where y = [y0, ¥1, Y2, ..., Yk] 1S an unknown parameter
vector of dimensions (k + 1) * 1.

An empirical study of some software fault prediction techniques for the number of faults...

The expected mean and variance of ZIP model are given
by Egs. 6 and 7, respectively,

E(yi = wi(1 — ;) (6)
Var(yi) = (1 — ¥i) (i + ipd) (7

Maximum likelihood estimation (MLE) technique has
been used to estimate the parameter values of ZIP. The detail
of the ZIP can be found in Cameron and Trivedi (2013).

Probability density functions given in Eqs. 1 and 3 are used
to define the relative likelihood of the independent variables
in NBR and ZIP, respectively. The parameters of nega-
tive binomial regression and zero-inflated Poisson regression
are estimated by using the maximum likelihood estimation.
Since some of the software metrics have relatively large val-
ues, we have performed a square root transformation of these
metrics. We also took the logarithmic transformation of LOC
metric. These transformations helped us to fit the models
better in term of the log likelihood ratio. The construction
of NBR and ZIP models has been done using STATA tool.?
The parameters of these models are initialized as follows.
Newton—Raphson is used as optimization technique, stan-
dard error type is selected as robust, and maximum number
of iterations can be up to 16000. Rests of the parameters are
initialized with their default values.

3.2 Other fault prediction techniques
3.2.1 Linear regression

Linear regression is a statistical technique that establishes
a relationship between a dependent variable and one or
more independent variables using some statistical formula
(Cohen et al. 2002). The model is in the form of an equation
where dependent variable is represented in terms of indepen-
dent variables. The general form of linear regression can be
described using Eq. 8.

Y=by+b1 X1 +bXo+---+b,X, (8)

where Y represents the dependent variable and X1, X,
... X, represent independent variables. Factors by, b, .. .,
b, are the coefficients of the independent variables. The addi-
tional constant by is called intercept. It shows the prediction
that the model would make if all the Xs were zero. The val-
ues of the coefficients and intercept are estimated by least
squares method (Strutz 2011).

A linear regression model is of two types (Draper and
Smith 1998). (a) Univariate linear regression, where depen-
dent variable is influenced by only one independent variable,

2 Stata: Data Analysis and Statistical Software. http://www.stata.com/.

and (b) multivariate linear regression, where dependent vari-
able is influenced by more than one independent variables. In
our study, we have used multivariate linear regression model.

We have used Weka® implementation of linear regression
to calibrate the fault prediction models. Least square method
is to estimate the parameter values for linear regression. Rests
of the parameters are initialized to the default values.

3.2.2 Multilayer perceptron

Multilayer perceptron (MLP) or simply neural network (NN)
is a prediction algorithm that is inspired from the working of
the biological neural network (Kotsiantis 2007). MLP con-
sists a series of processing elements interconnected through
the connection weights in the form of layers. During the train-
ing phase, based on the domain knowledge, they develop an
internal representation that maps the input stimulus space to
the output response space. MLP utilized a supervised learn-
ing technique called back-propagation algorithm for training
the network.

The working of MLP can be described using Egs. 9 and
10.

nety = wigx1 + wox2 + -+ - + WikXm + by 9
Oy = f(nety) (10)

For the kth processing element, MLP computes a weighted
sum of its input elements x; (independent variable) and
basis by using some statistical formula. This weighted sum is
then processed by activation function to generate the output
Ok. Wik, Wak, - - . , Wyk are the weights associated with each
input layer. Function f{.) denotes the activation function.

The working of MLP can be described as follows. The
training data are iteratively fed into the neural network. After
each iteration, the output of the neural network is compared
with the desired output and error is calculated. The error is
used to update the weight of the hidden layer and again feed-
back to the neural network. The weight is updated in such a
way that after each iteration error decreases and neural net-
work model produces the output that is closer to the desired
output.

We have used Weka implementation of multilayer per-
ceptron to construct fault prediction model. The parameter
values for the multilayer perceptron are initialized as follows:
To train the neural network, we have used back-propagation
algorithm, and sigmoid is used as the activation function.
Number of hidden layers is five. For the rest of the parame-
ters, default value as define in Weka is used.

3 Weka Data Mining Tool. http://www.cs.waikato.ac.nz/ml/weka/.

@ Springer

http://www.stata.com/
http://www.cs.waikato.ac.nz/ml/weka/

S. S. Rathore, S. Kumar

3.2.3 Genetic programming

Genetic programming (GP) is an evolutionary algorithm that
mimics the working of biological evaluation to find the best
possible solution to perform a user specified task (Smith
1980). It is a search-based algorithm, which searches the
optimal solutions to perform a given computational task. GP
is a specialized case of genetic algorithm (GA), but com-
pared to GA, the population structure (individual) of GP is
not fixed length character string (Goldberg 1989). The indi-
viduals in GP are expressed as syntax trees with the nodes
indicating the instructions to execute and are called func-
tions. The leaves of the tree are called terminals, which may
consist of independent variables of the problem and random
constants.

Generally, genetic programming starts with an arbitrarily
generated population of a potential solution space. Sub-
sequently, it iteratively transforms an initial population of
potential solutions into the next generation of the potential
solutions by applying genetic operators (typically crossover
and mutation). The individuals who will survive in the next
iterations are selected using a fitness function. The whole
process is continued in this manner until the termination
condition is met, which is generally bound to the maximum
number of generations. The single best individual who has
survived after the termination condition met is chosen as
resulting solution and used for prediction.

The genetic programming model has been constructed
using GPLAB version 3.0 toolbox (a genetic programming
toolkit) available for the MATLAB programming language.
Use of genetic programming for fault prediction requires
tuning of various control parameters. Depending upon the
characteristics of the software project, users can select vari-
ous parameter values accordingly. GPLAB toolbox provides
the interface to the user to select values of the various con-
trolling parameters. All the controlling parameters with their
default values are defined in the availableparams.m file of
GPLAB toolbox. In order to decide best suitable parame-
ter values for corresponding datasets, we have performed
a series of experiments and adjusted the parameter values
after the experiments. Initially, we tried different function
sets and selection methods and kept rest of the parameter val-
ues fixed. Iteratively, we have varied others parameter values
such that the error between actual value and predicted value
minimized. Once we determine the best possible values for
all the required parameters, we run all the experiments with
these values.

In each iteration of genetic programming, the priority of
each individual from the population is ranked based on the
values of the fitness function. Fitness function is a type of
objective function that is used to identify, how good a poten-
tial solution is relative to the other potential solutions. It helps
to select which potential solution will continue in the next

@ Springer

Table 1 Control parameter values used for the GP implementation

Control parameters Value
Population size 200
Number of generation 1000

Limited to maximum
generation value

Termination condition

Function set {4+, —, *,sin,cos,/,log}
Terminal set {x}
Tree initialization Ramped

half-and-half
Genetic operator Crossover, mutation
Selection method Roulette wheel

Elitism Replace

generation and which will die. The fitness function in our
experiments is the square root of the absolute difference
between the predicted values and the actual values of the
number of faults in all fitness cases, as given in Eq. 11.

Fitness = (1/n) > sqrt(|(E; — Ei) an

i=1

where E; is the predicted value of the number of faults in a
software module and E; is the corresponding actual value of
the number of faults and 7 is the number of modules. Since,
in our datasets, some of the attributes contain outlier values.
Therefore, square root of the difference is used to mitigate
the effect of outliers on the selection of potential solution for
the next generations. Table 1 shows the values of the main
parameters used in building the GP models. The rest of the
parameter values are kept default as available in GPLAB
toolbox.

3.2.4 Decision tree regression

Decision tree regression is a type of decision tree for inducing
trees of regression models. It is also known as M5P algo-
rithm, which is an implementation of Quinlan’s M5 algorithm
(Quinlan et al. 1992). M5P algorithm combines the capa-
bility of conventional decision tree with linear regression
functions at the nodes (Wang and Yao 2013). In M5P algo-
rithm initially, a conventional decision tree algorithm is used
to build a tree. This decision tree uses a splitting criterion
that minimizes the intra-subset variation in the class values
of instances that go down each branch. The attribute which
maximizes the expected error reduction is chosen as the root
node. The standard deviation reduction is calculated using
the formula given in Eq. 12.

An empirical study of some software fault prediction techniques for the number of faults...

|7; |
‘ It x sd(T;) 12)

SDR = sd(T) —

Next, the tree is pruned back from each leaf. Finally, a
smoothing procedure is used to compensate the sharp dis-
continuities, which will inevitably occur between adjacent
linear models at the leaves of the pruned tree.

We have used Weka implementation of M5P algorithm.
For experimentation, the minimum number of instances to
allow at a leaf node is set to 4. Rests of the parameters are
initialized with their default values.

3.3 Performance evaluation measures

We have used four different performance evaluation mea-
sures to evaluate the prediction results. These performance
evaluation measures are average absolute error, average rela-
tive error, prediction at level [, and measure of completeness.
The description of these measures is given in this section.

(1) Average absolute error (AAE): AAE measures the aver-
age magnitude of the errors in a set of prediction. It
shows the difference between the predicted value and
the actual value. It is defined by Eq. 13.

AAE = (1/m) > |(¥; = Yy)] (13)

i=1

(ii) Average relative error (ARE): ARE calculates how
large the absolute error is compared with the total size
of the object measured. It is defined by Eq. 14.

ARE = (1/n) D" |(Y; = Y)I/(Yi + 1) (14)

i=1

Here, Yi is the predicted number of faults in a soft-
ware module and Y; is the corresponding actual value
of faults. n is the number of modules. In the case of
ARE, sometimes value of ¥; can be zero. To mitigate
this issue, we added ‘1’ with the value of Y; at the
denominator to make the definition always well defined
(Khoshgoftaar et al. 1992). A small value of AAE and
ARE measures indicates that we have a good prediction
model (Conte et al. 1986).

(iii) Prediction at level I: It measures the percentage of
observations whose value lies within /% of the actual
value (Conte et al. 1986). It is defined by Eq. 15.

Pred(l) = k/n (15)

Where k is the number of observations whose value
lies within /% of the actual values, [/ is the threshold

value, and 7 is the total number of observations. R.
Veryard (Veryard 2014) suggested that for a model to
be considered acceptable, value of 1 should be less than
or equal to 0.30. Therefore, we have used 0.30 as the
value of /. This means that the predicted value must be
within the 30 % range of the actual value to consider
the prediction acceptable for the given module.

(iv) Measure of completeness: Completeness of a predic-
tion model is defined as a ratio of the number of faults
found in the modules predicted as faulty to the total
number of faults in the software system (Briand and
Jurgen 2002). It indicates the percentage of faults that
have been found when we used the given prediction
model.

Completeness value higher than 100 % indicates that pre-
diction model has predicted a large number of faults falsely.
It will result in the increment of fault finding efforts. The low
value of completeness indicates that prediction model has left
many faults undetected. These faults would then slip through
the subsequent phases of software development, where they
require more efforts to detect.

4 Empirical case study
4.1 System description

We have used eighteen software project datasets publicly
available in PROMISE data repository® to perform the exper-
iments. Out of eighteen datasets, fifteen datasets belong to
the Apache Camel, Apache Xerces, Apache Xalan, Apache
Ant, and PROP projects. These fifteen datasets contain 20
object-oriented metrics. The rest of the three datasets belong
to Eclipse project® and contain various source code metrics.

PROP dataset has been collected from an industrial soft-
ware system, which was written in the Java programming
language. We have used V4, V40, V85, V121, V157, and
V185 versions of the PROP dataset. Xerces, Xalan, Ant, and
Camel are the Apache products, written in Java and C++ pro-
gramming languages, and are developed in an open-source
environment. Xerces is a Apache collection of software
libraries used for parsing, validating and manipulating XML.
Currently, its parsers are available for Java, C++, and Perl
programming languages. Camel is rule-based routing and
mediation engine that offers the interfaces for the Enterprise
Integration Patterns (EIPs). It is an integration framework,
which implements all EIPs. Xalan is an Extensible Stylesheet
Language Transformations (XSLT) processor that trans-

4 PROMISE data repository. http://openscience.us/repo/defect/.

> Eclipse data repository. https://www.st.cs.uni-saarland.de/softevo/
bug-data/eclipse/.

@ Springer

http://openscience.us/repo/defect/
https://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/
https://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/

S. S. Rathore, S. Kumar

forms XML documents into HTML. Currently, its parsers
are available in C++ and Java programming languages. Ant
is a software tool used for automating the software building
process. Ant contains various Java libraries and command
line tools to help in building Java applications. It is written in
Java programming language. Eclipse is an integrated devel-
opment environment (IDE) system, which contains a base
workspace and an extensible plug-in system for customizing
the environment. It is written in Java programming language.
Initially, it was developed by IBM corporation, and later,
it become openly available under the GNU General Public
License.

Most of the techniques used in this study require a rela-
tively large size of data to train the fault prediction model.
Therefore, we have selected datasets of medium size or larger.
In Venkata et al. (2000), it is defined that dataset having more
than 500 modules falls under the category of medium size.
Based on this criterion, we have selected eighteen datasets
out of the total datasets available in PROMISE data reposi-
tory. In this study, a software module is referred to as a class
in the given software system (Jureczko 2011).

The dependent variable, in our study, is the number of
faults in software modules. The fault dataset contained the
value of the number of faults that were found during the
various phases of software development. It includes the faults
found in requirement, design, coding, and testing. phases
of software system. These fault values were recorded in a
database associated with the other information of software
modules. A description of these datasets is given in Table 2.

Table 3 provides brief description of the used software
metrics. The detail description of these metrics can be found
in Jureczko (2011).

4.2 Experimental design

Using the methodologies discussed in Sect. 3, we have built
six software fault prediction models. We have used a cross-
validation approach to build and evaluate the fault prediction
models (Kohavi 1995). In K-fold cross-validation approach,
original fault dataset, D, is randomly divided into K mutually
exclusive folds Dy, D», ..., Dk of approximately equal size.
The learning technique is then trained and tested K times, and
each time itis trained over D/D; and is tested over D;. Overall
accuracy is estimated by averaging the results of each round.
The overview of the used cross-validation approach is given
in Fig. 1. The reason to choose cross-validation approach is
to avoid any biased results due to the lucky data splitting
(Gao and Khoshgoftaar 2007).

We have used tenfold cross-validation approach to per-
form the experiments. Each of the complete dataset is divided
into ten mutually exclusive folds of approximately equal size
. To partition the dataset for the cross-validation, we gener-
ate stratified fold of the dataset. Stratification is important for

@ Springer

Table 2 Description of the fault datasets used for the study

Dataset # Modules Non- # Faulty % of

commented Modules faults

LOC
PROP V4 3022 664KLOC 265 9.61
PROP V40 4053 848KLOC 467 13.02
PROP V85 3078 643KLOC 948 44.50
PROP V121 2998 628KLOC 426 16.56
PROP V157 2497 438KLOC 367 17.23
PROP V185 2826 593KLOC 269 10.52
Xerces 1.3 503 167KLOC 69 13.71
Xerces 1.4 589 141KLOC 438 74.36
Camel 1.2 609 66KLOC 217 55.35
Camel 1.4 873 98KLOC 145 19.91
Camel 1.6 966 113KLOC 189 19.56
Ant 1.7 746 208KLOC 167 22.38
Xalan 2.4 724 225KLOC 111 15.33
Xalan 2.5 804 304KLOC 388 48.25
Xalan 2.6 886 411KLOC 412 46.50
AS _eclipse 2.0 6730 796KLOC 976 14.50
AS _eclipse 2.1 7889 987KLOC 855 10.83
AS _eclipse 3.0 10594 1305KLOC 1569 14.81

cross-validation in creating K number of fold from the dataset
as it keeps the data distribution in each fold close to that in
the entire dataset (Witten and Frank 2005). We have used
RemoveFolds® filter available in the Weka machine learning
tool to partition the dataset. For each iteration, ninefolds are
used as training dataset and rest onefold is used as testing
dataset as shown in Fig. 1. This process goes through ten
iterations, and the results are averaged over the iterations.
For example, consider Camel 1.2 dataset, we have divided
Camel 1.2 dataset into tenfolds of approximately equal size.
Original Camel 1.2 dataset contained 609 modules. We have
divided it into tenfolds; therefore, each fold consists 61 mod-
ules (approximately). For the first iteration, first ninefolds
(548 modules, approximately) are used to train the learn-
ing technique and last fold (61 modules, approximately) is
used as test dataset to evaluate the performance of learning
technique. This process continues for the ten iterations, and
error rate of each iteration is averaged over the iterations to
calculate the overall error rate.

We have built different fault prediction models using six
different fault prediction techniques (as described in Sect. 3)
for eighteen software fault datasets. A total of 108 (6x18)
experiments have been performed in the presented study.
Finally, we have evaluated the performance of fault predic-
tion techniques using average absolute error (AAE), average

6 RemoveFolds Filter. http://weka.sourceforge.net/doc.dev/weka/
filters/supervised/instance/StratifiedRemoveFolds.html.

http://weka.sourceforge.net/doc.dev/weka/filters/supervised/instance/StratifiedRemoveFolds.html
http://weka.sourceforge.net/doc.dev/weka/filters/supervised/instance/StratifiedRemoveFolds.html

An empirical study of some software fault prediction techniques for the number of faults...

Table 3 Description of the software metrics

Metric Description

WMC Number of methods defined in a class

CBO Count the number of classes coupled to class

RFC Count the number of distinct methods invoke by a class in response to a received message

DIT Depth of a class within the class hierarchy from the root of inheritance

NOC Number of immediate descendants of a class

IC Count the number of coupled ancestor classes of a class

CBM Count the number of added or redefined methods those are coupled with the inherited methods

CA Count the number of dependent classes for a given class

CE Count the number of classes to which a class depends

MFA Shows the fraction of the methods inherited by a class to the methods accessible by the functions defined
in the class

LCOM Subtraction of method-pairs that do not share a field to the method-pairs that do

LCOM3 Counts the number of connected components in a method graph

CAM Computes the cohesion among methods of a class based on the parameters list

MOA Count the number of data members declared as class type

NPM Number of public methods defines in a class

DAM Computes the ratio of private attributes in a class

AMC Measures the average method size for each class

LOC Counts the total number of lines of code of a class

CcC Counts the number of logically independent paths in a method

Other Software Metrics pre, NOM_sum, NSM_avg, ArrayCreation, Arraylnitializer, ArrayType, CharacterLiteral,

ConditionalExpression, ContinueStatement, DoStatement, FieldAccess, Javadoc, LabeledStatement,
ParenthesizedExpression, PrefixExpression, QualifiedName, ReturnStatement, SuperMethodInvocation,
SwitchStatement, ThisExpression, ThrowStatement

Software Fault
Dataset

1 23 456 7|3|9|10| 10-folds Cross-validation

approach
v /

Training folds Test fold :
>
Overall Error
E |

I O I [= e

LITTTITT M= & 0

1% iteration

2" iteration

3" iteration

Fig. 1 Overview of experimental design

relative error (ARE), prediction at level [, and measure of
completeness analysis. To assess the magnitude of differ-
ence among different fault prediction techniques, we have
performed Kruskal-Wallis test and Dunn’s multiple compar-
ison test.

4.3 Results and analysis

We initially examine the results of AAE and ARE analysis
of used fault prediction techniques. Later, we discuss the

results of prediction at level [, and measure of completeness,
Kruskal-Wallis test, and Dunn’s multiple comparison test.

4.3.1 AAE and ARE analysis

Table 4 shows the results of AAE and ARE (error rate) analy-
sis for all the eighteen datasets. Table contained the median
values of the absolute error and relative error for all the
datasets. A relative comparison based on the AAE and ARE
values showed that linear regression (LR) and decision tree
regression (DTR) techniques produced the lower error rate
values for most of the datasets and exhibited better predic-
tion accuracy compared to other considered fault prediction
techniques. Genetic programming and multilayer percep-
tron are the third and fourth best fault prediction techniques,
respectively. While negative binomial regression (NBR) and
zero-inflated poisson regression (ZIP) have produced rela-
tively lower prediction accuracy, the AAE and ARE values
of NBR and ZIP were higher compared to other used fault
prediction techniques.

Figure 2 shows the box-plot diagrams of AAE and ARE
measures. X-axis indicates the fault prediction techniques
under consideration, and y-axis indicates the median values
of the errors produced by the used fault prediction techniques.

@ Springer

S. S. Rathore, S. Kumar

Table 4 AAE and ARE analysis of six fault prediction techniques for all datasets

Datasets Linear Multilayer Decision tree Genetic Negative binomial ~ Zero-inflated
regression perceptron regression programming regression poisson regression
Xerces 1.3 AAE 0.56 0.74 0.34 0.46 1.24 0.96
ARE 0.39 0.5 0.2 0.33 1.16 0.77
Xerces 1.4 AAE 1.73 224 1.68 2.58 1.07 0.98
ARE 0.57 0.68 0.47 1.03 0.5 0.42
Camel 1.2 AAE 1.07 0.98 1.01 1.02 0.94 0.81
ARE 0.61 0.51 0.56 0.6 0.6 0.57
Camel 1.4 AAE 0.48 0.63 0.43 0.62 0.84 0.66
ARE 0.27 0.38 0.24 0.41 0.73 0.5
Camel 1.6 AAE 0.67 0.92 0.63 0.7 0.93 0.84
ARE 0.4 0.64 0.35 0.41 0.78 0.68
Ant 1.7 AAE 0.38 0.53 0.39 0.61 0.97 1.37
ARE 0.2 0.27 0.2 0.4 0.88 1.1
Xalan 2.4 AAE 0.23 0.33 0.25 0.23 1.18 0.92
ARE 0.12 0.22 0.14 0.16 1.08 0.81
Xalan 2.5 AAE 0.54 0.75 0.56 0.49 0.79 0.78
ARE 0.39 0.51 0.4 0.34 0.55 0.56
Xalan 2.6 AAE 0.53 0.63 0.52 0.68 1.01 1.06
ARE 0.33 0.36 0.3 0.45 0.71 0.6
Prop V4 AAE 0.11 0.14 0.12 0.11 0.64 0.45
ARE 0.06 0.08 0.06 0.08 0.61 0.41
Prop V40 AAE 0.2 0.22 0.19 0.23 0.75 0.26
ARE 0.1 0.12 0.1 0.16 0.73 0.23
Prop V85 AAE 0.91 0.89 0.83 0.93 1.12 0.89
ARE 0.49 0.46 0.43 0.46 0.64 0.44
Prop V121 AAE 0.26 0.28 0.27 0.26 0.64 0.4
ARE 0.15 0.13 0.14 0.18 0.56 0.26
Prop V157 AAE 0.31 0.37 0.34 0.46 0.69 0.65
ARE 0.16 0.19 0.17 0.32 0.57 0.49
Prop V185 AAE 0.19 0.24 0.21 0.21 0.81 0.32
ARE 0.1 0.11 0.12 0.16 0.78 0.22
AS_Eclipse 2.0 AAE 0.24 0.29 0.24 0.3 0.64 0.33
ARE 0.14 0.14 0.13 0.19 0.53 0.18
AS_Eclipse 2.1 AAE 0.15 0.16 0.16 0.15 0.57 0.44
ARE 0.08 0.07 0.08 0.1 0.52 0.37
AS_Eclipse 3.0 AAE 0.23 0.23 0.24 0.3 0.62 0.32
ARE 0.13 0.11 0.13 0.19 0.52 0.17
(a) (b) The different parts of box-plot show the minimum, maxi-
3 1.4

25

12

1

0.8

1.5

I

|

0.6

sl O d e =B

0.4 1
0.2 4
0

LR MLP DTR GP NBR ZIP

LR MLP DTR GP NBR ZIP

Fig. 2 Box-plot analysis for AAE and ARE measures for all the

datasets

@ Springer

mum, median, first quartile, and third quartile of the samples.
The line in the middle of the box shows the median of the
samples. The results of box-plot analysis are summarized as
below:

— With respect to AAE measure, DTR technique produced
the lowest median value, LR, MLP, and GP produced
moderate median values, whereas NBR and ZIP pro-

An empirical study of some software fault prediction techniques for the number of faults...

Table 5 Kruskal-Wallis test: AAE over all datasets

Table 6 Kruskal-Wallis test: ARE over all datasets

Kruskal-Wallis test for AAE

Kruskal-Wallis test for ARE

K (observed value) 185.725
K (critical value) 11.07
DF 5

p value (two-tailed) <0.0001
Alpha 0.05

K (observed value) 324.435
K (critical value) 11.070
DF 5

p value (two-tailed) <0.0001
Alpha 0.05

HO: the samples come from the same population. Ha: The samples do
not come from the same population. As the computed p value is lower
than the significance level alpha=0.05, we reject the null hypothesis
HO and accept the alternative hypothesis Ha

duced the highest median values. GP produced the lowest
minimum values, LR, DTR and MLP produced moder-
ate minimum values, and NBR and ZIP produced the
highest minimum values. For maximum value, ZIP and
NBR produced the lowest values, LR and DTR produced
moderate values, and GP and MLP produced the highest
values.

— Withrespect to ARE measure, LR and DTR produced the
lowest median values, GP and MLP produced moderate
median values, and NBR and ZIP produced the high-
est median values. Similarly, LR and DTR produced the
lowest minimum values, MLP and GP produced mod-
erate minimum values, and ZIP and NBR produced the
highest minimum values. DTR produced the lowest max-
imum value, LR, GP, and MLP produced the moderate
maximum values, and NBR and ZIP produced the highest
maximum values.

— Overall, it is clear from the figures that for both the mea-
sures (AAE and ARE), LR and DTR have performed
similar and outperformed other considered fault predic-
tion techniques. GP and MLP performed moderately,
while NBR and ZIP performed relatively poor compared
to other used fault prediction techniques.

To further analyze, whether the performance difference of
six fault prediction techniques is statistically significant or
not, we have performed Kruskal-Wallis test on the fault pre-
diction techniques under consideration. Since the predicted
value of faults follow non-normal distribution, we have ana-
lyzed the data using the Kruskal-Wallis test (Casella 2008).
Kruskal-Wallis (also known as one-way ANOVA by rank)
is a nonparametric test used to test whether the samples are
drawn from the same population or not. Absolute error and
relative error values of each dataset are used to perform the
Kruskal-Wallis test. During tenfold cross-validation, each
of the dataset was split into ten parts. So, there are 180
comparison points giving during this test. The results of
Kruskal-Wallis test are presented in Tables 5 and 6.

HO: The samples come from the same population. Ha: The samples do
not come from the same population. As the computed p value is lower
than the significance level alpha=0.05, we reject the null hypothesis
HO and accept the alternative hypothesis Ha

The results of the Kruskal-Wallis test indicate that the
six used fault prediction techniques considered in this study
have statistically significant performance difference from
each other for at least one sample. During this test, the sig-
nificant value, i.e., « is set to 0.05, indicating 95 % of the
confidence interval (Juristo and Moreno 2013). For both the
AAE and ARE measures, p value is lower than the value of «,
and thus, the alternate hypothesis is accepted, which depicts
that the six fault prediction techniques under consideration
performed significantly different from each other.

Further, we have conducted multiple comparison test to
determine the samples in which a significant difference has
been found in the Kruskal-Wallis test. We proceeded with
Dunn’s multiple comparison test with mean as dependent
variable (Bland and Altman 1995). If the difference of the
group mean surpasses the critical value, then we can con-
clude that the difference is significant at given p value. Table 7
shows the results of multiple comparison test for AAE and
ARE measures. The tables also contained the minimum, max-
imum, mean, and standard deviation values of each fault
prediction technique (sorted in ascending order). The obser-
vations drawn from the Dunn’s multiple comparison test are
as summarized below:

— With respect to AAE measure, treatments involving NBR
and ZIP techniques have performed significantly differ-
ent from the other fault prediction techniques. For the rest
of the treatments, no significant differences have been
found.

— Withrespect to ARE measure, treatments involving DTR,
NBR, and ZIP techniques have performed significantly
different from the other considered fault prediction tech-
niques. For all other treatments, no significant difference
has been found.

— Overall, it was found that LR, GP and MLP fault pre-
diction techniques did not perform significantly different
from each other, whereas DTR, NBR and ZIP fault pre-
diction techniques performed significantly different from
the other considered fault prediction techniques.

@ Springer

S. S. Rathore, S. Kumar

"Jp ‘SIS 1000°0> osIsel dIZ snsIoA YaN "Jp SIS 1000°0> LYS'LET dIZ snsIoA YaN

"Jip 315 1000°0> CTLOSLT dIZ sns1doA 4D "Jp 31§ 1000°0> 687°691 dIZ sns1doA 4D

"Jp 31§ 1000°0> cCToLe YN snsioa D "Jp 31§ 1000°0> 9€0°L0¢E YN snsioa 4D

"Jp 31§ 1000°0> 96T96¢ dIZ sns1oA Y Ld “Jp 31§ 1000°0> €€6'LTT dIZ sns1oA Y LA

"Jp 31§ 1000°0> 90 16% YAN snsioa ¥ 1A "Jp 318 1000°0> 18¥°69¢ YAN snsioa LA

“Jp 31§ 000°0 €81°1CI dD snsioa ¥ 1d ‘H1P ON SLOO i8¢ dD snsioAa ¥ LA

“Jp 31§ 1000°0> 9€0'861 dIZ sns1oA JTIN “Jp 31§ 1000°0> TE€T°6ET dIZ sns1oA 4TI

“Jp 31§ 1000°0> 981°¢6¢ YAN snsioa 4 TN “Jp 31§ 1000°0> 8L9°TLT YAN snsioa 4 TN

‘HIP ON S81°0 $96'CC dD snsioa I TN ‘HIP ON 96C°0 8SETE dD snsioa JTN

“Jp 31§ £00°0 61786 YLd snstoA 4 TN ‘H1P ON S00°0 €08'C6 LA snsra 4T

“Jp -31S 1000°0> €0L'99C dIZ snsIoA YT “Jp 31§ 1000°0> 19€°L0T dIZ SnSIoA YT

“Jip -31S 1000°0> €68'19% YAN snsioa Y1 “Jp 31§ 1000°0> 806'77¢ YAN snsIoa YT

‘HIP ON S00°0 1€9'16 dD SnsIoA YT ‘HIP ON 6¥C°0 TLY'LE dD SNSIoA YT

‘HIP ON 69¢°0 €65°6C YL SnsIA YT ‘HIP ON 4350 LS 0T YL SnsIoA JT

‘1P ON LEO0 L99'89 d'TIA SnsIoA YT ‘HIP ON 820°0 1€TTL d'TIA SnsIoA T

S)nsoy onyea d “JIp AN[0Sqy SjuouIyeaI], S)nsoy onyea d “JIp 9IN[0SqY sjuoujeaI],

081 = U 0$'96 = on[ea [eANLIO ‘¢0'0 =onfea d 081 = U 0S'96 = on[ea [eANLIO ‘¢¢("'() =on[es d

99C°0 ¥0L0 96L'1 9%0°0 081 daIN LY9'0 §96°0 L9S9 ¥L0°0 081 daN
6£¢°0 116°0 G88'C 0€0°0 081 diZ 108°0 6180 £€€6'9 9%0°0 081 diz
60¢°0 19€°0 L91°C 8200 081 dD 0180 £79°0 yeLs 8200 081 dd
06C°0 LYE0 0L9'1 S¥0°0 081 dTN 9%5°0 129°0 L96'C €L0°0 081 dTN
61°0 0LT0 G880 9¢0°0 081 d1 8¢¥'0 LOS°0 Iv¥'C 6500 081 d1
€10 ¥ST0 we'l 000 081 d1a 2840 18%°0 €8¢°C 6L0°0 081 d1da
uonerAdp (s UBQIA! WNWIXB]A WNWTUTA SUOTIBAISSAQ J[qeLIeA as UBIIA WNWIXBA WNWIUTA SUONBAIISqO JlqeLIeA
mseow TV AMSea]N VYV

(QuarapIp JueoyIuSIs ="JIp ‘SIS pue 20UAIYIP ou ="JIp ou),. ‘YV Put FVV JoJ :1s3) uosuedwos sfdnnw s,uun £ [qel,

pringer

Qs

An empirical study of some software fault prediction techniques for the number of faults...

Camel 1.2
150

400

Camel 1.4

100

50

=
]

LR MLPDTR GP NBR ZIP

Prop V4
600

300
200

100

600

LR MLPDTR GP NBR ZIP

Prop V40

300

Camel 1.6
400

200

100

LR MLPDTR GP NBR ZIP

Prop V85

500
400 +
300
200
100 -+

=
I

LR MLPDTR GP NBR ZIP

Prop V185

500
400
300
200
100

LR MLPDTR GP NBR ZIP

Ant 1.7

300

200

100

400

| 300

200
T 100
4 [

LR MLPDTR GP NBR ZIP

Xalan 2.4

Xerces 1.3

Xerces 1.4
150

300

200 1
1 100

LR MLPDTR GP NBR ZIP

Prop V121

100

50

LR MLPDTR GP NBR ZIP

Prop V157
300

LR MLPDTR GP NBR ZIP

Xalan 2.5

200 +

100 +

0 -
LR NN DTR GP NBR ZIP

Xalan 2.6

500 300 600

150

400 -+
300
200
100

200

100 -

|
=

LR MLPDTR GP NBR ZIP LR MLPDTR GP NBR ZIP

AS_eclipse 2.0 AS_eclipse 2.1
300 500 300

150
500
400 - 100 100
300
200 - 50 50
100 -
L 0 0

LR MLPDTR GP NBR ZIP

LR MLPDTR GP NBR ZIP LR MLPDTR GP NBR ZIP

AS_eclipse 3.0

400
300 +
200 -+
100 -+

—_)
IS =3

o S S

4 y y

S

|

LR MLPDTR GP NBR ZIP LR MLPDTR GP NBR ZIP

Fig. 3 Completeness analysis of six fault prediction techniques for all
datasets, (x-axis shows the name of the considered fault prediction tech-
niques, and y-axis shows the completeness value achieved by each fault

— DTR technique produced the lowest mean values for both
AAE and ARE measures. LR, MLP and GP techniques
produced the moderate mean values, while NBR and ZIP
techniques produced the higher mean values.

4.3.2 Measure of completeness

The results of measure of completeness analysis are given in
Fig. 3. Each subfigure is labeled with the name of the dataset
for which the study was performed. A prediction model with
completeness close to 100 % is preferred. It is clear from the
figures that for the most number of datasets (13 out of 18),
genetic programming has achieved the completeness close
to 100 %. While in rest of the datasets, DTR, LR and MLP
achieved completeness close to 100 %, NBR and ZIP tech-
niques generally performed poor for completeness measure.

4.3.3 Prediction at level | analysis

Figure 4 shows the results of pred(0.3) of each fault predic-
tion technique for all eighteen datasets. It can be seen from
the figures that generally GP and DTR techniques produced

200 -+
100 +
0 -

LR MLPDTR GP NBR ZIP

prediction technique). GP genetic programming, MLP multilayer per-
ceptron, LR linear regression, NBR negative binomial regression, ZIP
zero-inflated poisson regression, DTR decision tree regression

the higher pred(0.3) value compared to other fault predic-
tion techniques. LR and MLP performed moderately, while
NBR and ZIP performed poorly for this evaluation measure.
However, none of the fault prediction technique achieved the
highest pred (0.3) value consistently, but generally, for all the
datasets the top four slots are occupied by DTR, GP, MLP,
and LR techniques. When considering the results of six used
fault prediction techniques using all four-performance evalu-
ation measures, a number of observations can be drawn. The
observations based on the empirical study have been sum-
marized below:

— For AAE measure, decision tree regression produced the
lowest mean value and it generally outperformed all other
fault prediction models, while negative binomial regres-
sion model performed worst for AAE measure.

— For ARE measure, again decision tree regression has
produced the best prediction results followed by linear
regression, multilayer perceptron, and genetic program-
ming, respectively.

— Overall, among the considered fault prediction tech-
niques in the study, decision tree regression, genetic

@ Springer

S. S. Rathore, S. Kumar

Camel 1.2 Camel 1.4 Camel 1.6 Xerces 1.3 Xerces 1.4
100 30 100 100 100
80 80
60 - 60

80 0 80

60 60 -
40 40 40 -
20 - 20 20 -
0 - 0 0 -

LN MLPDTR GP NBR ZIP LN MLPDTR GP NBR ZIP

:

LN MLPDTR GP NBR ZIP

40 4 40 4
20 - 20 A
0 - 0 -

LN MLPDTR GP NBR ZIP LN MLPDTR GP NBR ZIP

Prop V4 Prop V40 Prop V85 Prop V121 Prop V157
100 100 100 100 100
80 - 80 - 80 80 80 -
60 60 60 60 - 60 -
40 40 40 40 40
20 20 4 20 - 20 - 20 -
0 - 0 0 0 0

LN MLPDTR GP NBR ZIP LN MLPDTR GP NBR ZIP

Prop V185 Ant 1.7
100 100 100

LN MLPDTR GP NBR ZIP

Xalan 2.4

LN MLPDTR GP NBR ZIP LN MLPDTR GP NBR ZIP

Xalan 2.5 Xalan 2.6

80
60
40
20 -

<
S
'

LN MLPDTR GP NBR ZIP LN MLPDTR GP NBR ZIP

AS_eclipse 2.0 AS_eclipse 2.1

1
80 80 - 80 80
60 60 -+ 60 60
40 4 40 - 40 40
20 20 20 20 A
(O 0 0 -

LN MLPDTR GP NBR ZIP

00 100

LN MLPDTR GP NBR ZIP LN MLPDTR GP NBR ZIP

AS_eclipse 3.0

=

100 100 100
80 80 80
60 60 60
40 40 40
20 20 20

0 0 0

LN MLPDTR GP NBR ZIP LN MLPDTR GP NBR ZIP

Fig. 4 Pred(0.3) for each model for all datasets, (x-axis shows the
name of the considered fault prediction techniques, and y-axis shows
the pred(0.30) value achieved by each fault prediction technique). GP

programming, multilayer perceptron, and linear regres-
sion achieved better prediction accuracy. The results of
measure of completeness and pred(0.3) analysis also con-
firmed the prediction capability of these techniques.

4.4 Significant metrics for the prediction of number of
faults

In this section, we discuss important set of software metrics
that can be used for the prediction of number of faults. We
have analyzed the results of the linear regression analysis
and identified the set of software metrics that can be used
for building the fault prediction models for the prediction
of number of faults. Table 8 shows the sets of significant
metrics after applying the linear regression analysis on dif-
ferent eighteen datasets. It is clear from the table that out of
twenty considered object-oriented metrics, ‘lcom’, ‘wmc’,
‘loc’, ‘ca’, and ‘ce’ are the metrics, which are identified as sig-
nificant metrics for most of the datasets. Further, ‘rfc’, ‘npm’,
‘dit, ‘cbo’ ‘moa’, and ‘mfa’ are the metrics, which are occur-
ring as significant metrics for significant number of datasets.

@ Springer

LN MLPDTR GP NBR ZIP

genetic programming, MLP multilayer perceptron, LR linear regression,
NBR negative binomial regression, ZIP zero-inflated poisson regression,
DTR decision tree regression

Out of twenty-one source code metrics, ‘Pre’, ‘NOM
_sum’, ‘NSM _avg’, ‘Arraylnitializer’, ‘ArrayType’, ‘Java
doc’, ‘DoStatement’, ‘QualifiedName’, and ‘SuperMethod-
Invocation’ are the metrics, which are identified as signif-
icant metrics for most of the datasets having source code
metrics. Further, NORM _ThrowStatement’, ‘LabeledState-
ment’ and ‘NORM _ConditionalExpression’ are the metrics,
which are occurring as significant metrics for the some of the
datasets.

5 Comparative analysis

In this section, we perform a comparative analysis of
the presented work with the existing works. In this study,
we have evaluated the performance of six software fault
prediction techniques. Out of six techniques, four tech-
niques linear regression (LR), multilayer perceptron (MLP),
negative binomial regression (NBR), and zero-inflated Pois-
son regression (ZIP) have been evaluated by the various
researchers earlier, whereas the techniques genetics program-
ming (GP) and decision tree regression (DTR) are evaluated

An empirical study of some software fault prediction techniques for the number of faults...

Table 8 Significant set of software metrics identified after linear regression analysis

Datasets Significant metrics

Xerces 1.3 wmg, dit, cbo, rfc, Icom, ca, ce, npm, Lcom3, loc, moa, mfa, cam, ic, cbm, amc, and max_cc
Xerces 1.4 wmg, dit, rfc, lcom, ca, ce, npm , loc, dam, moa, cam, cbm, and max_cc

Camel 1.2 noc, lcom, ce, npm, loc, dam, moa, ic, cbm, max_, and avg_cc

Camel 1.4 wmg, dit, noc, cbo, rfc, lcom, ca, ce, npm, loc, moa, mfa, ic, and amc

Camel 1.6 wmg, dit, noc, rfc, Icom, ca, npm, lcom3, loc, dam, moa, cam, ic, and max_cc
Ant 1.7 wmg, rfc, lcom, ce, npm, loc, moa, amc, max_cc, and avg_cc

Xalan 2.4 wmc, dit, cbo, rfc, lcom, ca, ce, loc, moa, mfa, and cbm

Xalan 2.5 wmg, dit, rfc, lcom, ca, ce, npm, loc, and amc

Xalan 2.6 dit, cbo, rfc, Icom, ca, ce, npm, lcom3, loc, dam, mfa, cbm, max_cc, and avg_cc
Prop V4 wmgc, cbo, lcom, ca, npm, loc, dam, cam, ic, cbm, and amc

Prop V40 wmgc, cbo, Icom, ca, ce, npm, lcom3, loc, dam, moa, mfa, and cam

Prop V85 wmgc, noc, cbo, Ilcom, ca, ce, lcom3, loc, dam, cam, ic, cbm, and amc

Prop V121 wmg, dit, rfc, lcom, ca, ce, npm, lcom3, loc, moa, and amc

Prop V157 wmg, cbo, rfc, Icom, ca, ce, loc, cam, and ic

Prop V185 wmgc, dit, noc, cbo, rfc, Icom, ca, ce, npm, lcom3, loc, mfa, cam, and avg_cc

AS_ Eclipse 2.0

pre, NOM_ sum, NSM_ avg, ArrayType, CharacterLiteral, ConditionalExpression, DoStatement,

FieldAccess, Javadoc, LabeledStatement, QualifiedName, ReturnStatement,
SuperMethodInvocation, SwitchStatement, ThisExpression, NORM_ CharacterLiteral, NORM_
CompilationUnit, NORM_ ConditionalExpression, NORM_ NumberLiteral, NORM_
SwitchStatement, and NORM_ ThrowStatement

AS_ Eclipse 2.1

pre, NOM_ sum, ArrayCreation, Arraylnitializer, ArrayType, DoStatement, Javadoc,

LabeledStatement, QualifiedName, SuperMethodInvocation, ThrowStatement, NORM_
CharacterLiteral, NORM_ ConditionalExpression, NORM_ NullLiteral, NORM_
SynchronizedStatement, NORM_ ThrowStatement, and NORM_ Modifier

AS_ Eclipse 3.0

pre, NSM_ avg, Arraylnitializer, DoStatement, Javadoc, MethodDeclaration, NullLiteral,

QualifiedName, SingleVariableDeclaration, StringLiteral, SuperMethodInvocation,
WhileStatement, InstanceofExpression, NORM_ ConditionalExpression, NORM_ Initializer,
NORM_ SwitchCase, and NORM_ TypeLiteral

by few researchers only for the prediction of number of faults
and need further evaluation on the more number of datasets.
In this work, along with the four known fault prediction tech-
niques (LR, MLP, NBR, and ZIP), we have also explored the
capabilities of GP and DTR for the prediction of number
of faults. There are some of the similar works available in
the literature related to the empirical analysis of some fault
prediction models. Table 9 summaries these available works.
It can be seen from the table that most of the earlier stud-
ies reported the contextual information of the fault prediction
model along with the other fault prediction model building
information, such as detail of the techniques used and cali-
bration of the fault prediction model. Only a couple of studies
provided the information regarding the significant set of met-
rics for the prediction of number of faults. In this work, we
have provided the information regarding the significant set
of metrics and provided a comparative analysis of the exper-
imental results with the existing works. Further, it can be
observed that most of the available works have considered
only few fault prediction techniques for empirical analysis.
In Table 10, the summary of the results reported in vari-
ous available works is presented. The table shows only those

studies, which have reported their results in terms of error
rate measures and are shown.

6 Threats to validity

In this section, the possible threats that may affect the validity
of our experimental investigation are presented.

Construct Validity We have evaluated the effectiveness
of six fault prediction techniques in terms of error rate,
pred(0.3), and completeness measures. We have used eigh-
teen software project datasets from the PROMISE data
repository. However, other open-source as well commercial
datasets are available, which can be used for evaluation.
Further, some other evaluation measures such as precision,
recall, and analysis of association between predicted and
actual values can also be used.

Internal Validity In this paper, we have used six fault pre-
diction techniques to build the fault prediction models. Some
of the techniques such as GP and others may require the
optimization of various control parameters. We have tried to
optimize the control parameters best to our efforts. However,

@ Springer

S. S. Rathore, S. Kumar

Table 9 Summary of comparative analysis

Reported work

Aim of the study

Contextual infor-

Model building

Information of Fault prediction models

mation reported information significant soft- analyzed
reported ware metrics
Scanniello et al. Intra-release defect Yes Yes No A clustering approach
(2013) prediction using
clustering approach
Marinescu Evaluation of genetic Yes Yes No Genetic programming
(2014) programming for changes
and defects prediction
Kpodjedo et al. Evaluation of design Yes Yes Yes Poisson regression
(2009) metrics for defect
prediction
Bacchelli et al. Evaluation of developer Yes Yes Yes Principal component and
(2010) metrics for the prediction regression analysis
of defect-prone classes
Chen and Yutao Evaluation of regression Yes Yes No Linear regression, bayesian
(2015) techniques for predicting regression, support vector
defect numbers regression, nearest neighbor
regression, decision tree
regression and gradient boosting
regression
Afzal et al. Fault count prediction using Yes Yes No Genetic programming
(2008) genetic programming
Gao and Study of count models for Yes Yes No Poisson regression, negative
Khoshgoftaar software quality binomial regression, zero-inflated
(2007) estimation poisson and negative binomial
regression and hurdle regression
Graves et al. Number of faults prediction Yes Yes No Generalized linear regression
(2000) using generalized linear
regression
Our Work Study of six fault prediction Yes Yes Yes Linear regression, multilayer

techniques for the number
of faults prediction

perceptron, decision tree
regression, genetic programming,
negative binomial regression and
zero-inflated poisson regression

with the use of different fault datasets and with different set
of software metrics, control parameter values may vary.

External Validity We have performed the experimental
investigation over the datasets available in public data reposi-
tories. The system developed in the organization may possess
different fault pattern. One needs to take care of the under-
lying pattern of software system before applying any fault
prediction technique.

7 Conclusions and future work

This paper evaluated and compared the performance of six
fault prediction techniques for the prediction of number of
faults in given software modules. We have used four known
fault prediction techniques, i.e., LR, MLP, NBR, and ZIP for
the prediction of number of faults. In addition, we have inves-
tigated two techniques, i.e., GP and DTR, which until now

@ Springer

have not been fully explored for the prediction of number
of faults. The experiments were performed for eighteen soft-
ware project datasets available publicly. AAE, ARE, measure
of completeness, and prediction at level [measures have been
used to evaluate the results of fault prediction models. In
addition, Kruskal-Wallis test and Dunn’s multiple compar-
ison test were performed to assess the relative performance
of the used fault prediction techniques. The results found
that among the used different fault prediction techniques,
decision tree regression, genetic programming, multilayer
perceptron, and linear regression demonstrated better pre-
diction performance for all the datasets under consideration.
The analysis of results obtained from Kruskal-Wallis test
and Dunn’s multiple comparison test suggested that except
negative binomial regression (NBR) and zero-inflated Pois-
son regression (ZIP) techniques all other techniques have
performed significantly accurate for the prediction of num-
ber of faults. Generally, NBR and ZIP techniques produced

An empirical study of some software fault prediction techniques for the number of faults...

Table 10 Summary of results of related works

Khoshgoftaar and Gao (2007)

(Our work)

Evaluation
measures

Z1P

PR

Z1P

NBR

GP

DTR

MLP

LR

1.388-1.61 (fit data)
1.47-1.75 (test data)

0.639-0.663 (fit data)

1.55-1.75 (fit data)

0.57-1.23 0.25-1.37

0.11-1.7 0.13-2.2 0.12-1.68 0.107-2.57

AAE

1.67-1.99 (test data)
0.68-0.762 (fit data)

0.50-1.15 0.16-1.1

0.06-0.61 0.7-0.68 0.06-0.56 0.7-1.03

ARE

0.66-0.68 (test data)

0.73-0.76 (test data)

Scanniello

Chen and Yutao (2015)

Afzal et al.
(2008)

Evaluation
measures

etal. (2013)

Clustering
approach

GBR

BRR SVR NNR DTR

LR

GP

0.0-0.33

AAE
ARE

04-24

0.4-2.5 0.5-2.3 0.4-2.9

0.35-2.6
0.4-2.1

Within-project ~ 0.4-2.7

0.16-0.0992

0.3-2.1

0.3-2.2

0.4-2.0

04-23

0.4-2.0

Cross-project

the worst prediction accuracy. Thus, it is observed that the
count models (NBR and ZIP) generally underperformed as
compared to other considered fault prediction techniques. In
the future, it may be tried to investigate and evaluate ensem-
ble of these methods for the number of faults prediction to
overcome the limitations of individual techniques.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Informed consent This article does not contain any studies with human
participants.

References

Afzal W, Torkar R, Feldt R (2008) prediction of fault count data using
genetic programming. In: IEEE International conference on Mul-
titopic, INMIC’08, pp 349-356

Bacchelli A, DAmbros, M, Lanza M (2010) Are popular classes more
defect prone?. In: Fundamental approaches to software engineer-
ing, Springer, pp 59-73

Basili V, Briand L, Melo W (1993) Object-oriented metrics that predict
maintainability. J Syst Soft 23(2):111-122

Bland JM, Altman DG (1995) Multiple significance tests: the bonferroni
method. BMJ 310(6973):170

Briand L, Jurgen W (2002) Empirical studies of quality models in
object-oriented systems. Adv Comput J 56:97-166

Cameron AC, Trivedi PK (2013) Regression analysis of count. Cam-
bridge University Press, Cambridge

Casella G (2008) Statistical design. Springer, New York

Catal C (2011) Software fault prediction: a literature review and current
trends. Expert Syst Appl J 38(4):4626-4636

Chen M, Yutao M (2015) An empirical study on predicting defect
numbers. In: Proceedings of software engineering and knowledge
engineering conference, SEKE’15, 2015, pp 397402

Cohen J, Cohen P, West SG, Aiken LS (2002) Applied multiple regres-
sion and correlation analysis for the behavioral sciences, 3rd edn.
Routledge, London

Conte SD, Dunsmore HE, Shen VY (1986) Software engineering
metrics and models. Benjamin-Cummings Publishing Co. Inc,
Redwood City

Draper NR, Smith H (1998) Applied regression analysis, 3rd edn. Wiley,
Hoboken

Elish MO, Aljamaan H, Ahmad I (2015) Three empirical studies on
predicting software maintainability using ensemble methods. Soft
Comput J 19(9):1-14

Gao K, Khoshgoftaar TM (2007) A comprehensive empirical study of
count models for software fault prediction. IEEE Trans Softw Eng
50(2):223-237

Goldberg DE (1989) Genetic algorithms in search optimization and
machine learning, 1st edn. Addison-Wesley Longman Publishing
Co.Inc, Boston

Graves T, Karr A, Marron J, Siy H (2000) Predicting fault incidence
using software change history. IEEE Trans Softw Eng 26(7):653—
661

Greene WH (2011) Econometric analysis. 7th edn. Pearson, New York

@ Springer

S. S. Rathore, S. Kumar

Hilbe JM (2012) Negative binomial regression, 2nd edn. Jet Propulsion
Laboratory California Institute of Technology and Arizona State
University, California

Janes A, Scotto M, Pedrycz W, Russo B, Stefanovic M, Succi G (2006)
Identification of defect-prone classes in telecommunication soft-
ware systems using design metrics. Inf Sci J 176(24):3711-3734

Jureczko M (2011) Significance of different software metrics in defect
prediction. Softw Eng Int J 1(1):86-95

Juristo N, Moreno AM (2013) Basics of software engineering experi-
mentation. Springer, New York

Khoshgoftaar T, Pandya A, More H (1992a) A neural network approach
for predicting software development faults. In: Third international
symposium on software reliability engineering, pp 83-89

Khoshgoftaar TM, Munson JC, Bhattacharya BB, Richardson GD
(1992b) Predictive modeling techniques of software quality from
software measures. IEEE Trans Softw Eng 18(11):979-987

Khoshgoftaar TM, Ganesan K, Allen BE, Ross DF, Munikoti R, Goel N,
Nandi A (1997) Predicting fault-prone modules with case-based
reasoning. In: Proceedings of the eighth international symposium
on software reliability engineering, ISSRE ’97. IEEE computer
society

Khoshgoftaar TM, Gao K (2007) Count models for software quality
estimation. IEEE Trans Reliab 56(2):212-222

Kohavi R et al (1995) A study of cross-validation and bootstrap for
accuracy estimation and model selection. IICAI 14:1137-1145

Kotsiantis SB (2007) Supervised machine learning: a review of clas-
sification techniques. In: Proceedings of the 2007 conference on
emerging artificial intelligence applications in computer engineer-
ing: real word Al systems with applications in e health, HCI,
Information Retrieval and Pervasive Technologies, The Nether-
lands, pp 3-24

Kpodjedo S, Ricca F, Antoniol G, Galinier P (2009) Evolution and
search based metrics to improve defects prediction. In: 1st Inter-
national symposium on search based software engineering, 2009,
pp 23-32

Lambert D (1992) Zero-inflated poisson regression, with an application
to defects in manufacturing. Technom J 34(1):1-14

Liguo Y (2012) Using negative binomial regression analysis to predict
software faults: a study of apache ant. Inf Technol Comput Sci J
4(8):63-70

Marinescu C (2014) How good is genetic programming at predicting
changes and defects?. In: 2014 16th International symposium on
symbolic and numeric algorithms for scientific computing, IEEE,
pp 544-548

Menzies T, Milton Z, Burak T, Cukic B, Jiang Y, Bener A (2010) Defect
prediction from static code features: current results, limitations,
new approaches. Autom Softw Eng J 17(4):375-407

Menzies T, Krishna R, Pryor D (2016) The promise repository of empir-
ical software engineering data. North Carolina State University.
http://openscience.us/repo

@ Springer

Ostrand TJ, Weyuker EJ, Bell RM (2004) Where the bugs are. In: Pro-
ceedings of 2004 international symposium on software testing and
analysis, pp 86-96

Ostrand TJ, Weyuker EJ, Bell RM (2005a) Predicting the location and
number of faults in large software systems. IEEE Trans Softw Eng
31(4):340-355

Ostrand TJ, Weyuker EJ, Bell RM (2005b) Predicting the location and
number of faults in large software systems. IEEE Trans Softw Eng
31(4):340-355

Quinlan JR et al. (1992) Learning with continuous classes. In: 5th
Australian joint conference on artificial intelligence, vol 92, pp
343-348

Rathore SS, Kumar S (2015a) Predicting number of faults in software
system using genetic programming. In: 2015 International confer-
ence on soft computing and software engineering, pp 52-59

Rathore SS, Kumar S (2015b) Comparative analysis of neural network
and genetic programming for number of software faults prediction.
In: Presented in 2015 national conference on recent advances in
electronics and computer engineering (RAECE’15) held at IIT
Roorkee, India

Rathore SS, Kumar S (2016a) A decision tree logic based recom-
mendation system to select software fault prediction techniques.
Computing, 1-31. doi:10.1007/s00607-016-0489-6

Rathore SS, Kumar S (2016b) A decision tree regression based approach
for the number of software faults prediction. ACM SIGSOFT
Softw Eng Notes 41(1):1-6

Scanniello G, Gravino C, Marcus A, Menzies T (2013) Class level
fault prediction using software clustering. In: 2013 IEEE/ACM
28th international conference on automated software engineering,
IEEE, pp 640-645

Smith SF (1980) A learning system based on genetic adaptive algo-
rithms. PhD thesis, Pittsburgh, PA, USA. AAI8112638

Strutz T (2011) Data fitting and uncertainty. Vieweg and Teubner Verlag
Springer, New York

Venkata UB, Bastani BF, Yen IL (2006) A unified framework for defect
data analysis using the mbr technique. In: Proceeding of 18th IEEE
international conference on tools with artificial intelligence, ICTAI
’06, 2006, pp 3946

Veryard R (2014) The economics of information systems and software.
Elsevier Science, Amsterdam

Wang S, Yao X (2013) Using class imbalance learning for software
defect prediction. IEEE Trans Reliab 62(2):434—443

Witten IH, Frank E (2005) Data mining: practical machine learning
tools and techniques. Morgan Kaufmann, Burlington

http://openscience.us/repo
http://dx.doi.org/10.1007/s00607-016-0489-6

	An empirical study of some software fault prediction techniques for the number of faults prediction
	Abstract
	1 Introduction
	2 Related work
	3 Fault prediction techniques
	3.1 Count models
	3.1.1 Negative binomial regression
	3.1.2 Zero-inflated Poisson regression

	3.2 Other fault prediction techniques
	3.2.1 Linear regression
	3.2.2 Multilayer perceptron
	3.2.3 Genetic programming
	3.2.4 Decision tree regression

	3.3 Performance evaluation measures

	4 Empirical case study
	4.1 System description
	4.2 Experimental design
	4.3 Results and analysis
	4.3.1 AAE and ARE analysis
	4.3.2 Measure of completeness
	4.3.3 Prediction at level l analysis

	4.4 Significant metrics for the prediction of number of faults

	5 Comparative analysis
	6 Threats to validity
	7 Conclusions and future work
	References

