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A B S T R A C T

Cold-formed steel (CFS) elements are increasingly used as main structural members in modern construction
practice. While flexibility of CFS cross-sectional shape allows achieving higher load carrying capacities by using
more efficient shapes, obtaining optimum design solutions can be a challenging task due to end-use constraints
and complex behaviour of CFS elements controlled by local, global and distortional buckling modes. This study
aims to develop a practical methodology for optimum design of CFS beam sections with maximum flexural
strength and minimum deflection under ultimate and serviceability load conditions, respectively, in accordance
with Eurocode 3 by taking into account manufacturing and end-use design constrains. Population-based Big
Bang–Big Crunch Optimisation method is employed to obtain optimum design solutions for twelve different CFS
cross-sectional prototypes. To verify the flexural strength and stiffness of the optimum beam sections, detailed
nonlinear finite element (FE) models are developed using ABAQUS by considering both material nonlinearity
and initial geometrical imperfections. It is shown that the optimised sections based on serviceability limit state
(SLS) and ultimate limit state (ULS) can provide, respectively, up to 44% higher effective stiffness and 58%
higher bending moment capacity compared to a standard lipped channel beam section with the same plate width
and thickness. Using plain channel and folded-flange sections generally leads to the best design solutions for SLS
and ULS conditions, respectively. Finally, the results of detailed FE models are used to evaluate the adequacy of
EC3 proposed procedures to estimate CFS beam capacity and deflection at ULS and SLS, respectively.

1. Introduction

Cold-formed steel (CFS) load-bearing members and structural sys-
tems are increasingly used in modern construction, for example in
modular buildings, stud wall systems, purlins, trusses, side rails and
cladding. Although CFS elements are susceptible to local/distortional
buckling, they can be more economical and efficient compared to si-
milar hot-rolled sections, due to their inherent advantages such as high
strength-to weight ratio, speed and efficiency of construction, and
especially higher flexibility in manufacturing various profiles and sizes
through cold-rolling or press-braking process at ambient temperature.
The flexibility in CFS cross-sectional shapes provides an excellent op-
portunity to achieve higher load carrying capacities by using more ef-
ficient design solutions. However, this can be a challenging task due to
typical manufacturing and end-use design constraints and complex
behaviour of CFS elements controlled by combinations of local, global
and distortional buckling modes. In general, optimisation of CFS
members may aim to obtain an optimal cross-sectional shape without

considering any restriction on the general shape of the sections (i.e. self-
shape optimisation) (e.g. [1–7]), or determine optimum relative di-
mensions of a predefined cross-section (i.e. size optimisation) (e.g.
[8–23]).

Different optimisation methods have been used for self-shape opti-
misation of thin-walled steel sections including Genetic Algorithm (GA)
[1,3,4], Direct Multi-Search (DMS) method [2], graph theory and ant
colony based algorithms [5], and gradient-based steepest descent
method and simulated annealing [6]. In most of these studies, a steel
sheet with a predefined total width is allowed to be bent at a certain
number of locations, while the Direct Strength Method (DSM) [24] is
generally adopted to estimate the compressive and bending capacity of
the members. While considerable enhancement of strength were re-
ported in all aforementioned self-shape optimisation methods, they may
lead to impractical complex shapes with high manufacturing costs and/
or difficulty in connecting to other structural components.

Several investigations have previously been conducted to optimise
predefined standard CFS profiles such as C channels, and I and Z shape
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beams (e.g. [15,16,19]). It is shown that optimising the cross-sectional
geometry of simply-supported CFS beams subjected to uniformly dis-
tributed vertical [10,12,13] or transverse load [14] can substantially
improve their flexural capacity. However, due to cross-sectional shape
restrictions in size optimisation methods, the efficiency of the optimised
sections may drop slightly from self-shape optimisation solutions [8,9].

Ye et al. [25] extended the effective width method in EC3 [26] to
design a new type of ‘folded-flange’ cross-section by considering the
possible occurrence of multiple distortional buckling modes. Subse-
quently they used Particle Swarm Optimisation (PSO) method to in-
crease the maximum flexural capacity of different cross-sectional pro-
totypes and demonstrate the efficiency of the proposed folded flange
sections. It was shown that, for the same amount of material, optimised
folded-flange sections can provide up to 57% higher bending capacity
compared to their standard counterparts. In another study, Ye et al.
[10] adopted the Particle Swarm Optimisation (PSO) method to de-
velop CFS beam sections with maximum flexural capacity, while
Eurocode 3 (EC3) [26] design regulations and a number of manu-
facturing limitations were considered as design constraints. By using an
extended EC3 effective width method, to take into account the possi-
bility of multiple distortional buckling modes, they developed an op-
timum innovative ‘folded-flange’ cross-section which could provide up
to 57% higher flexural capacity compared to a standard benchmark
section with the same plate width and thickness. In a follow-up study,
Ye et al. [17] proposed an advanced shape optimisation framework to
achieve maximum energy dissipation of CFS sections in uniaxial
bending by providing a link between detailed nonlinear finite element
analyses and PSO algorithm.

Various size optimisation methods have been also used to increase
the compressive capacity of CFS axial members, such as Genetic
Algorithm (GA) [18,19], Particle Swarm Optimisation (PSO) [22] and
Hough Transform [20]. Lee et al. [19] and Tian et al. [21] optimised the
geometry of CFS columns under compressive axial loads and proposed
optimum design curves for different prescribed load levels. The local-
flexural buckling strength of single CFS channels and global buckling
strength of the CFS storage pallet racking cross-sections, determined
according to the relevant EC3 (EN1993-1-3), have been also optimised
by Ye et al. [22] and Pastor et al. [23], respectively. In both studies, the
adequacy of the optimum cross-sections was examined by the results of
detailed FE analysis and experimental tests.

There is a general consensus that a structure must be designed to
resist both service and extreme load conditions with the acceptable
level of reliability during its effective life. However, the aforementioned
literatures mainly focused on Ultimate Limit State (ULS), which con-
ventionally represents the ultimate strength of the CFS structures under
extreme load events. It should be noted that the level of slenderness for
CFS elements is normally higher than hot-rolled steel counterparts, and
therefore, the Serviceability Limit State (SLS) is generally more critical
for CFS structures. For example, previous studies indicated that the
serviceability criteria can govern the design of CFS frame systems
especially in low-seismic regions, e.g. under wind loads [27]. Violation
of serviceability requirements (e.g. deflection limits) implies that the
structure would be unfit for normal service operations.

To address to above mentioned research gaps, this study aims to
provide a new framework for size optimisation of CFS beam members
under both serviceability and ultimate limit states by considering
manufacturing and design constraints. To obtain optimum cross-sec-
tions designed according to Eurocode design guidelines [26,28,29], a
computationally efficient Big Bang–Big Crunch (BB-BC) algorithm is
adopted. The relative dimensions of the cross-sections, inclination of
the flanges and lips, and adding features like different edge and inter-
mediate stiffeners are considered as the main design variables in the
proposed optimisation process. The efficiency of the optimum cross-
sections is then compared with a standard conventional lipped-channel
called “benchmark” section. Subsequently, detailed GMNIA Finite Ele-
ment (FE) models accounting for both material nonlinearity and initial

geometrical imperfections are employed using ABAQUS [30] to eval-
uate the adequacy of EC3 methodology to estimate CFS beam capacity
and deflection at ULS and SLS, respectively.

2. Eurocode design principals

Eurocode 3 (EC3) part 1-3 [26] specifies design requirements for
CFS products made from thin gauge coated or uncounted steel sheet or
strip. The EC3 design requirements are mainly based on limit state
design, in which the structural performance is evaluated against various
limiting conditions (e.g. ULS and SLS). In this paper, the flexural
strength and stiffness of CFS beam elements are quantified according to
the Effective Width Method adopted from EC3 part 1-3 [26] and EC3
part 1-5 [28]. The following subsections describe briefly the EC3 design
procedure.

2.1. Local buckling

The EC3 effective width method can take into consideration the
non-linear effect of local buckling, which leads to loss of strength in the
middle of an internal plate element supported along both longitudinal
edges, or in the free edge of an outstand element supported along one
longitudinal edge. Therefore, the main load-bearing areas of the cross-
section in compression zone are considered to be in the corner zones.
Subsequently, the centroidal axis shifts towards the tensile part of the
gross cross-section. The effective width of each internal and outstand
compression element is calculated through the following equation in
EC3 part 1-5:
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where ρ is the plate width reduction factor, and be and bare the effective
width and the total width of the plate, respectively. The effect of ap-
plied stress gradient is expressed by ψ, which is defined as the ratio of
the plate end stresses. λl is the slenderness ratio against local buckling
and relates the material yield stress fy to the elastic local buckling stress
of the plate σcr :

=λ
f
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y
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Estimation of the effective cross-section subjected to bending moment
in EC3 generally requires an iterative process. This is referred to the fact
that the stress gradient is changed due to shift of neutral axis of the
effective cross-section, which dependents on the loss of effective section
in compression zone. While the iterative process is considered optional
by EC3, in this study full iterations were carried out to achieve con-
vergence.

2.2. Distortional buckling

Distortional buckling describes the distortion of the cross-section
with rotation and translation at interior elements, leading to both in-
plane and out-of-plane displacements of constituent plates. EC3 takes
into account the local buckling and distortional buckling of CFS sections
by reducing the effective width and the effective thickness of the con-
stituent plates, respectively. The distortional slenderness, λd, can be
calculated based on a simplified model, in which the restraining effects
of the adjacent plates in the cross section are taken into account by
using equivalent elastic springs:

=λ f σ/d y cr s, (3)

where σcr s, is the elastic buckling stress of the plate-stiffener assembly
given by:
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In the above equation, K and As are the stiffness of the spring (per unit
length) and the effective cross-sectional area of the stiffener, respec-
tively. E is the Young's modulus and Is is the moment of inertia of the
stiffener about the centroid parallel to the plate element. K is a function
of the flexural stiffness of the adjacent plates and can be calculated
based on the deflection of the stiffener assembly under a unit load =u 1
(per unit length). EC3 also recommends to use an iterative process to
update the local slenderness ratio of the plates, λl, by replacing

=λ λ χl red l d, . χd is the reduction factor corresponding to the distor-
tional buckling resistance and can be calculated by using the relative
slenderness λd. It should be mentioned that fy should be substituted by

=σ χ f·com d y in each iteration for the calculation of λd. This optional
iteration loop was considered in this study until ≈ −χ χd n d n, ,( 1). In this
study, optional iteration loop was considered when the ratio of two
consecutive loops (

−

χ
χ

d n

d n

,

,( 1)
) is between 0.99 and 1.01.

2.3. Global buckling

Based on EC3 part 1-1 [29], the design global buckling resistance
moment of CFS beam members is taken as:

=M
χ W f

γb Rd
LT eff y

M
,

1 (5)

where Weff is the effective modulus of the cross section and γM1 is the
partial safety factor prescribed by EC3, which is equal to 1.0. Also, χLT
is the reduction factor corresponding to the lateral-torsional buckling
(or global slenderness ratio), which is calculated based on the elastic
critical moment of the beam member using the following equation:

=χ
W f

MLT
eff y

cr (6)

In common practice the CFS beams are generally laterally restrained by
a floor system, which means the global instability (e.g. lateral-torsional
buckling) of the CFS beam elements are practically prevented. There-
fore, the global buckling modes are not considered in the optimum
design of CFS beams in this study.

3. Problem definition

The aim of the optimisation process in this study is to maximise the
flexural capacity and stiffness of CFS beams under ULS and SLS con-
ditions, respectively, calculated based on EC3. A standard lipped
channel section that satisfies all EC3 design constraints (see Fig. 1) was
selected as the starting point of the optimisation process. This section
was also used as a benchmark to confirm the efficiency of the optimum
design solutions. The total coil width of the steel plate =L 453 mm and
its thickness =t 1.8 mm were kept constant during the proposed opti-
misation procedure to use the same amount of material in all cross
sections. The radius of the rounded corners for all cross sections was
assumed to be 3mm. The elastic modulus, yield stress and Poisson’s
ratio of the steel material were taken as 210 GPa, =f 450 MPay , and0.3,
respectively.

In this study, 12 different prototypes were selected including con-
ventional plain and lipped channels as well as those with single and
double intermediate stiffeners (in web or flanges), single and double
inclined edge stiffeners, and a newly developed folded flange channel.
All selected shapes can be manufactured through cold-rolling or press-
braking process (see Table 1) and can be potentially used in practical
applications. Each prototype was individually optimised using different
optimisation targets (ULS and SLS). The following EC3 design con-
straints and practical and manufacturing limitations were imposed to
each type of cross-sections as listed in Table 1:

(a) The minimum width of the flange (bearing width) was set to be

50mm as suggested by SCI Guide ED-017 guidance [31]. This criterion
was imposed to provide enough space for the connection of gypsum or
wood based boards and decking to the CFS beams by using screws.

(b) Based on the advice from the industrial collaborators of this
project, the size of single and double lips was taken to be ⩾c 10 mm,
and ⩾d 5 mm (see Table 1) to make the forming of edge stiffeners (lips)
feasible by using conventional rolling or press-brake machines.

(c) The minimum depth of the channel sections was assumed to be
200mm, which allows a bolted connection or bridging to be con-
structed. By considering the standard floor depth, the maximum height
of the web (beam depth) was also limited to 400mm.

(d) R1 and R2factors were determined so that the web and flange
intermediate stiffeners would be placed within the web height and
flange width, respectively.

(e) The EC3 limitations on the plates’ slenderness ratios (width to
thickness), relative dimensions of the channels and angle of edge stif-
feners were considered as design constraints as listed in Table 1.

(f) The opening angle and the leg length of the intermediate stif-
feners used in the web and flanges were set to be π/6and 15mm, re-
spectively, as recommended by the industrial partner of this project.

It should be noted that the design constrains listed in Table 1,
especially in terms of channel dimensions, are typically related to the
other elements connected to the CFS beam such as trapezoidal decking,
plywood boards and angle cleats.

4. Big Bang-Big Crunch algorithm

Big bang-big crunch (BB-BC) optimisation method was first pro-
posed by Erol and Eksin [32] based on the big bang and big crunch
theories of the universe evolution. In this method, the randomness of
the candidates and their convergence to the optimum solution represent
the energy dissipation and gravitational attraction in nature. Previous
studies demonstrated that, in general, the BB–BC optimisation method
can offer several advantages such as lower computational time, higher
convergence speed, and simpler programming compared to other con-
ventional heuristic algorithms such as Genetic Algorithm (GA), Particle
Swarm Optimisation (PSO) and Ant Colony Optimisation [33–35]. This
is especially important for the complex optimisation of CFS elements
due to their nonlinear behaviour affected by local and distortional
buckling modes.

In the BB–BC optimisation process, the candidate solutions are
randomly distributed over the search space (Big Bang phase) and then a
convergence operation is used to calculate a weighted average of the
candidate solutions (Big Crunch phase). In the big bang phase, the

Fig. 1. Standard CFS lipped channel section used as a benchmark (dimensions
in mm).
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candidate solutions are uniformly distributed over the search space.
The convergence operator in Big Crunch phase is then used to calculate
the fitness function of each candidate and update its current position.
The “centre of mass” is defined as the weighted average of the position
of candidate solutions with respect to the inverse of the penalized fit-
ness function, and is calculated as:
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where Xcm and Xi are the position of the centre of mass and ith candidate
in the n-dimensional search space, fi is the penalized fitness function for
ith candidate, andnc is the candidate population size.

The positions of the candidate solutions for the next iteration of the
Big Bang are normally distributed around the centre of mass, Xcm, using
the following equation:

= +X X σi
new

cm (8)

where Xi
new is the position of the new candidate solution i, and σ is the

standard deviation corresponding to a subset of the search space. In the
proposed method, σ decreases inversely with each succeeding Big Bang
iteration using the following equation:

= −σ rα X X
s

( )max min
(9)

where r is a random number from a standard normal distribution, α is a
parameter used to limit the size of the search space, Xmin and Xmax re-
present the lower and upper limits of the selected design variables, and
s is the number of Big Bang iterations. In this study, the number of
candidate population size (nc) and number of Big Bang iterations (s)
were taken, respectively, as 150 and 100 for the first 6 prototypes of
cross-sections, and 200 and 150 for the other prototypes. Parameterα
was also selected equal to 1.0. Fig. 2 shows the details of the flowchart
for the BB-BC algorithm used in this study.

It should be noted that, for the optimisation problems in this study,
the only design constraints are EC3 and manufacturing restrictions

Table 1
Selected CFS beam prototypes, design variables and optimisation constraints.

Prototypes ① ② ③ ④ ⑤ ⑥

Cross-section

Design variables x= b/L x1= b/L
x2= R1

x1= b/L
x2= R1

x1= c/b
x2= b/L
x3= θ1

x1= c/b
x2= b/L
x3= R1

x4= θ1

x1= c/b
x2= b/L
x3= R1

x4= θ1
EC3 design constraints b/t≤ 50 h/t≤ 500 b/t≤ 50 h/t≤ 500 b/t≤ 50 h/t≤ 500 0.2≤ c/b≤ 0.6

b/t≤ 60
c/t≤ 50 h/t≤ 500
π/4≤ θ1≤ 3/4π

0.2≤ c/b≤ 0.6
b/t≤ 60
c/t≤ 50 h/t≤ 500
π/4≤ θ1≤ 3/4π

0.2≤ c/b≤ 0.6
b/t≤ 60
c/t≤ 50 h/t≤ 500
π/4≤ θ1≤ 3/4π

Practical & manufacturing limitations (mm) 200≤ h≤ 400
b≥ 50

200≤ h≤ 400
b≥ 50
0.1≤R1≤ 0.9

200≤ h≤ 400
b≥ 50
0.1≤R1≤ 0.4

200≤ h≤ 400
b≥ 50
c≥ 10

200≤ h≤ 400
b≥ 50
c≥ 10
0.1≤ R1≤ 0.9

200≤ h≤ 400
b≥ 50
c≥ 10
0.1≤ R1≤ 0.4

Prototypes ⑦ ⑧ ⑨ ⑩ ⑪ ⑫

Cross-section

Design variables x1= c/b
x2= d/b
x3= b/L
x4= θ1

x1= c/b
x2= d/b
x3= b/L
x4= R1

x5= θ1

x1= c/b
x2= d/b
x3= b/L
x4= R1

x5= θ1

x1= c/b
x2= b/L
x3= R1

x4= R2

x5= θ1

x1= c/b
x2= d/b
x3= b/L
x4= R1

x5= R2

x6= θ1

x1= θ1
x2= θ2
x3= b
x4= c
x5= d

EC3 design constraints 0.2≤ c/b≤ 0.6
0.1≤ d/b≤ 0.3
b/t≤ 90
c/t≤ 60
d/t≤ 50 h/t≤ 500
π/4≤ θ1≤ 3/4π

0.2≤ c/b≤ 0.6
0.1≤ d/b≤ 0.3
b/t≤ 90
c/t≤ 60
d/t≤ 50 h/t≤ 500
π/4≤ θ1≤ 3/4π

0.2≤ c/b≤ 0.6
0.1≤ d/b≤ 0.3
b/t≤ 90
c/t≤ 60
d/t≤ 50 h/t≤ 500
π/4≤ θ1≤ 3/4π

0.2≤ c/b≤ 0.6
b/t≤ 60
c/t≤ 50 h/t≤ 500
π/4≤ θ1≤ 3/4π

0.2≤ c/b≤ 0.6
0.1≤ d/b≤ 0.3
b/t≤ 90
c/t≤ 60
d/t≤ 50 h/t≤ 500
π/4≤ θ1≤ 3/4π

7/12π≤ θ1≤ 5/6π
π/4≤ θ2≤ 3/4π
30≤ b≤ 48
50≤ c≤ 60
15≤ d≤ 60

Practical & manufacturing limitations (mm) 200≤ h≤ 400
b≥ 50
c≥ 10
d≥ 5

200≤ h≤ 400
b≥ 50
c≥ 10
d≥ 5
0.1≤R1≤ 0.9

200≤ h≤ 400
b≥ 50
c≥ 10
d≥ 5
0.1≤R1≤ 0.4

200≤ h≤ 400
b≥ 50
c≥ 10
0.1≤ R1≤ 0.4
0.2≤ R2≤ 0.8

200≤ h≤ 400
b≥ 50
c≥ 10
d≥ 5
0.1≤ R1≤ 0.4
0.2≤ R2≤ 0.8

200
≤ h+ 2bsin(θ1)≤
400
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imposed on the input design variables (see Table 1). Therefore, the
constraints can be easily handled by using a domain (max and min
values) for each design variable.

5. Optimum design of CFS beams

The optimisation framework was conducted on the selected proto-
types (see Table 1) by developing two programmes MATLAB [36] to
design CFS beams based on EC3 design regulations and to carry out BB-
BC. The optimisation process was aimed at obtaining the optimum re-
lative dimensions of each cross-section as well as the best positions of
the edge and intermediate stiffeners in web and flanges.

To ensure that the optimum results are consistent, each prototype
was optimised three times using randomly selected candidates. While
the maximum difference between the results obtained from the three
runs was always less than 1%, the best design solution was selected.
During the optimisation process, the convergence was normally
achieved after approximately 20 and 50 steps for the ①, to ⑥ and ⑦ to⑫

prototypes, respectively. As an example, the iteration history of the
optimisation process for the prototype ④ is shown in Fig. 3, where the
convergence is achieved after 18 iterations for all three cases.

5.1. Optimisation for Ultimate Limit State (ULS)

This section is aimed to optimise laterally braced CFS beams in
order to maximize their bending capacity at ULS. In this case, the op-
timisation target can be represented as a function of the effective
property of the cross-section defined by:

= ⩽ ⩽ = ⋯M x W f γ X X X i nMax ( ) / , ( 1, , )eff y M i
L

i i
U

0 (10)

where M x( ) and Weff are the design moment resistance and effective
section modulus of a cross-section about the major axis, respectively.

Weff is the ratio of effective second moment of inertia Ieff to the distance
from effective centroid to furthest compression fibre, calculated by
considering the contribution of all effective parts of the cross section.
γM0 is a partial safety factor used for ultimate limit state and is con-
sidered to be 1.0 as prescribed by EC3 [29]. The lower and upper bound
of each design variable (Xi

L and Xi
U ) are obtained based on the EC3

design requirements and the practical and manufacturing limitations
listed in Table 1.

Table 2 compares the flexural capacity and dimensions of the
standard section and those optimised based on maximum bending
moment capacity for all selected prototypes using the same amount of
material. The standard lipped channel section has been used as a
benchmark to assess the efficiency of the proposed optimisation
methodology. It is shown that the proposed optimisation method could
considerably (up to 58%) increase the maximum bending capacity of
the standard section. For better comparison, the effective cross-section
of the optimum solutions are presented in Table 3, in which the

YesNo

e o e o

e e e es e e o
mass

Start                        
BB-BC algorithm (MATLAB) 

e erate a ra om i i al 
o la o   

(cross-sec o  ime sio s) 

Start itera o  

Com te t ess c o  o  each ca i ate 
(e.g. e ral stre gth a  s ess) 

e  the ce tre o  mass 

tera o Ma  itera o

ege erate e  ca i ate aro  
the ce tre o  mass  

(cross-sec o  ime sio s) 

 

Fig. 2. Big Bang–Big Crunch algorithm flowchart.

Fig. 3. Iteration history of the optimisation algorithm (BB-BC) for prototype ④.
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effective parts of cross-sections are drawn by thick solid black lines. The
thickness of the effective parts are reduced in the location of the in-
termediate and edge stiffeners to take into account distortional buckling
modes as discussed in Section 2.2.

Based on the ULS optimisation results in Table 2, the following
conclusions can be drawn:

• The flexural capacity of the benchmark lipped channel is increased
by 30% only by optimising its relative cross-sectional dimensions
(prototype ④). An additional 10% higher flexural capacity can be
obtained by using an optimised CFS channel with double edge stif-
fener (prototype ⑦). It should be noted that the efficiency of the
proposed optimisation method would be considerably increased by
using more flexible design constrains (i.e. a wider range of input
design variables).

• In general, plain channel sections (prototypes ①, ② and ③) do not
provide efficient design solutions even after optimisation. This is
referred to the fact that plain channels are generally highly sus-
ceptible to the local buckling of flanges.

• The flexural capacity of the optimum single and double lipped
channels (prototypes ④ and ⑦) are not generally enhanced by in-
corporating intermediate stiffeners in the web (prototypes ⑤, ⑥, ⑧,
and ⑨). This is especially evident in the case of double intermediate
web stiffeners (prototypes ⑥ and ⑨). This shows the inefficiency of

using web stiffeners in the tension zone of the cross-section. Besides,
folding the intermediate stiffeners into the section results in a re-
duction of the web height (noting that total coil width is kept con-
stant), which in turn reduces the flexural capacity of the section.

• Comparison between prototypes ⑥ and ⑩, and prototypes ⑨ and ⑪

indicates that adding intermediate flange stiffeners can increase (up
to 17%) the moment capacity of the sections. The optimum location
of the flange intermediate stiffener is approximately in the middle of
the flange.

• As a general trend, it can be seen that optimised cross-sections tend
to adopt taller web and subsequently narrower flanges. Therefore,
all prototypes were optimised towards minimum specified flanges of
50mm. As shown in Table 2, using folded flange section (prototype
⑫) provides the highest flexural capacity among all selected pro-
totypes and offers 58% more flexural strength compared to the
benchmark section. The folded flange cross-section can be easily
manufactured (only 6 bends are needed) compared to the channels
with intermediate stiffeners, and therefore, can provide a practical
and efficient design solution.

5.2. Optimisation for Serviceability Limit State (SLS)

The serviceability limit state (SLS) is generally defined as the con-
dition beyond which a structure becomes unfit for service. Unlike ULS,

Table 2
Dimensions and flexural capacity of standard and optimum CFS beams for different prototypes at ULS.

Prototype h (mm) b (mm) c (mm) d (mm) ∘θ1
∘θ2 R1 R2 Mmax (kN m) M

M standard
max

max,

Standard 261 79 17 16.47 1
① 353 50 15.56 0.94
② 338 50 0.842 17.16 1.04
③ 323 50 0.195 15.81 0.96
④ 305 50 24 89 21.40 1.30
⑤ 290 50 24 91 0.774 21.22 1.29
⑥ 274 50 25 92 0.215 19.68 1.19
⑦ 285 50 27 7 90 23.63 1.43
⑧ 276 50 24 7 135 0.760 22.03 1.34
⑨ 263 50 24 6 135 0.250 20.41 1.24
⑩ 262 50 15 135 0.100 0.545 23.75 1.44
⑪ 258 50 12 6 135 0.256 0.555 21.86 1.33
⑫ 217 48 50 20 100 79 25.97 1.58

Table 3
The effective cross-section of optimum CFS beams for different prototypes at ULS.

Prototypes Benchmark ① ② ③ ④ ⑤ ⑥

Effective sections

Prototypes ⑦ ⑧ ⑨ ⑩ ⑪ ⑫

Effective sections

S.M. Mojtabaei, et al. Engineering Structures 195 (2019) 172–181

177



SLS depends more on the stiffness rather than the strength of a struc-
tural system. Based on Eurocode [37], the structural reliability under
either SLS or ULS can be represented by the following inequality:

⩾R Rd Ed (11)

where Rdis the design resistance andREd is the design load effect cal-
culated for persistent and transient design situations as follow:

∑= +
⩾

R γ G γ Q. .Ed
j

G j k j Q l k l
1

, , , ,
(12)

In Eq. (12), γG j, and Gk j, are the partial safety factor and characteristic
value for permanent action j, while γQ l, and Qk l, are the partial safety
factor and characteristic value of the leading variable action l, respec-
tively. Eurocode [37] distinguishes between SLS and ULS by means of
partial safety factors, which are =γ 1.35G j, and =γ 1.5Q l, for ULS and

= =γ γ 1G j Q l, , for SLS. While in general serviceability limit state loading
condition should be determined for each specific project, the ratio of
service to ultimate loads (or the ratio of average partial safety factors
for SLS over those for ULS) in this study was taken as 0.7 and kept
constant for different prototypes during the optimisation process.
Therefore, to design for serviceability based on EC3 [28], the maximum
compressive stress σcom Ed ser, . in each cross-section was calculated based
on the effective cross-section underMEd ser, =0.7Mmax as shown in Fig. 4:

To determine the effective second moment of area (Ieff ) of the CFS
beam section, the slenderness ratio is calculated from:

=λ λ
σ

f
¯ ¯p ser p

com Ed ser

y
,

, ,

(13)

For serviceability design, the optimisation problem can be formulated
as a minimisation of beam deflection subjected to pure bending mo-
ment, which is defined by:

= ⩽ ⩽ = ⋯f x
M L

EI
X X X i nMin ( )

8
, ( 1, , )Ed ser

fic
i
L

i i
U,

2

(14)

where f x( ) is the deflection of the CFS beam. Xi is the design variables
with the lower and upper bounds of Xi

L and Xi
U , specified in Table 1,

respectively. In order to provide reasonable comparison between the
behaviour of each prototype at its SLS, the length of the beam is kept
constant and equal to =L mm5000 . Ific is the effective second moment
of area, which is based on the service load. Eurocode 3 part 1-3 [26]
stipulates that the properties of the effective cross section explained in
Section 2 must be used in all SLS checks for CFS members. Also, it has
been mentioned that the second moment of area of CFS sections can be
estimated by an interpolation between effective and gross cross sections
for the design load combination using the following expression:

= − −I I
σ
σ

I I σ( ( ) )fic gr
gr

gr eff (15)

where Igr is the second moment of area of the gross cross section, σgr is
the maximum compressive bending stress based on the gross cross
section at serviceability limit state (SLS), and I σ( )eff is the second
moment of area of the effective cross section by considering local
buckling estimated based on maximum stress ⩾σ σgr (σ is the highest
absolute value of stress within the beam length). Subsequently, σ and
σgr can be calculated based on the following equations:

= =σ
M

W
M

I z/gr
Ed ser

ser

Ed ser

gr c ser

, ,

, (16)

= =σ M
W

f
eff

y
max

(17)

In the above equations, Wser andWeff are the section modulus for the SLS
and ULS, respectively, and zc ser, represents the distance of neutral axis
to extreme compression fibre in a CFS section associated with SLS. By
substituting Eq. (10) in Eq. (17), the maximum stress corresponding to
local buckling, σ , would be equal to the yield stress fy.

The cross-sectional dimensions, second moment of area and flexural
capacity of optimum sections for each prototype under service load
level are calculated as presented in Table 4. Based on the results, the
following observations can be drawn:

• The dimensions of the optimum plain channels (prototypes ①, ② and
③) for SLS are very similar to those optimised for ULS (the only
difference is in the optimum locations of the web stiffeners). Unlike
optimisation for ULS, optimum plain channels at SLS could provide
considerably higher effective stiffness (up to 44%) compared to the
benchmark lipped channel section. However, the flexural capacity
of the sections may be slightly (up to 10%) lower than the bench-
mark channel. This implies that, in general, optimum plain channels
are more efficient to satisfy SLS checks.

• The flexural stiffness of optimum plain and single/double lipped
channels (prototypes ①, ④ and ⑦) were reduced by incorporating
intermediate web stiffeners. Similar to the ULS optimisation, this
reduction is more evident in the case of double intermediate web
stiffeners (prototypes ③, ⑥ and ⑨). However, it can be seen from
Table 4 that using optimised intermediate flange stiffeners (proto-
types ⑩ and ⑪) could increase the effective stiffness and capacity of
the sections by up to 10% and 27%, respectively.

• By optimising the relative dimensions of the standard benchmark
section at SLS, the flexural stiffness and capacity of the section can
be increased by 37% and 11%, respectively. However, for the same
amount of material, optimisation of the channel section with folded
flanges (prototype ⑫) resulted in a noticeable increase (up to 52%)
in both effective stiffness and capacity of the standard section. This
highlights the efficiency of folded flange sections for both ultimate
and serviceability limit states.

• While a negligible difference (less than 4%) is seen between the
effective stiffness of the optimum beams with single and double
edge stiffeners (prototypes ④ and ⑦, respectively) at SLS, the flexural
capacity of the section with double edge stiffener is 13% higher than
the one with single edge stiffener. A similar trend is observed for the
sections with the intermediated web stiffeners (prototypes ⑤ and ⑥

compared to prototypes ⑧ and ⑨).

• Similar to the ULS optimisation, optimised cross-sections tend to use
taller web and narrower flanges. Therefore, all optimised sections
have the minimum specified flange width of 50mm. The main dif-
ferences between optimised shapes for ULS and SLS are the size and
angle of the edge stiffeners and the location of the intermediate web
and flange stiffeners.

• Optimisation of the CFS beam sections at SLS on average increased
the flexural stiffness and strength of the standard benchmark section
by 30% and 14%, respectively. However, comparisons between the
results presented in Tables 2 and 4 indicates that the sections opti-
mised at SLS exhibit on average 9% lower flexural strength com-
pared to those optimised at ULS.

6. Analytical investigation

The ultimate flexural capacity and deflection of the standard and
optimised cross-sections listed in Table 1 were determined at ULS and
SLS using detailed nonlinear FE models in ABAQUS [30], where theFig. 4. Beam deflection at SLS subjected to a uniform pure bending (MEd ser, ).
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effects of material nonlinearity and initial geometric imperfections
were taken into account. The results were then used to evaluate the
efficiency of the proposed optimisation method in obtaining sections
with reduced maximum deflection at SLS and increased ultimate ca-
pacity at ULS. The detailed FE models were also used to assess the
accuracy of Eurocode predictions for different prototypes. It should be
noted that the capability of detailed finite element (FE) models to si-
mulate both pre- and post-buckling behaviour of CFS sections has been
demonstrated in previous studies provided that appropriate element
types, material models and geometric imperfections are adopted
[22,38–40]. The adopted FE models have been also validated against a
series of experimental tests on CFS back-to-back channels conducted at
The University of Sheffield by the authors [13].

6.1. Detailed FE models

The detailed FE models of the CFS sections corresponding to the
selected prototypes were developed in ABAQUS [30] using a 4-noded
quadrilateral shell element with reduced integration (S4R). Based on a
comprehensive mesh sensitivity analyses, a mesh size of ×10 10 mm
was found to be appropriate since a further mesh refinement did not
make any noticeable change in the results. The stress-strain behaviour
of CFS plates was modelled by using the widely adopted constitutive
model proposed by Haidarali and Nethercot [41]:

= + ⩽

= + ⩾−

( )ε σ σ

ε ε σ σ

0.002 for

for

σ
E

σ
σ

n

σ σ
E

0.2

0.2
100( )

0.2

0.2

0.2
(18)

where σ0.2 and ε0.2 are the 0.2% proof stress and the total strain at σ0.2,
respectively. n is a shape parameter recommended by Gardner and
Ashraf [42] to be taken as 28 for grades 350 and 450 steel, and E is the
elastic modulus which is taken equal to 210 GPa. The effects of geo-
metrical imperfections were taken into account in CFS sections by
performing eigenvalue elastic buckling analysis which is available in
ABAQUS library [30] on the CFS beams. The obtained dominant
buckling mode (either local or distortional) was then incorporated in
the initial perfect geometry of the cross-section and scaled to the certain
magnitude extracted from the Cumulative Distribution Function (CDF)
values suggested by Schafer and Pekӧz [43]. In this study, a CDF value
of 50% was adopted (corresponding to t0.34 and t0.94 for local and
distortional imperfections, respectively). It should be mentioned that
the adopted CDF values are valid for the sections with the thickness (t)
less than 3mm [43], so they are suitable for the sections considered in
this study.

As shown in Fig. 5, the pinned support at the two ends of the CFS
beam about major axis was simulated by coupling the nodes at each end
section to the reference point defined in the mid-web, while the rotation
about the minor axis was prevented. The end sections were also

prevented from warping to be consistent with the assumption made for
the EC3 design calculations in Section 5. To avoid lateral-torsional
buckling, lateral bracings (representative of transitive beams in the roof
systems) were used at each L/4 along the length of beam (see Fig. 5).

While the pure bending moments at SLS (equal to 70% of the cal-
culated flexural capacity according to EC3) were directly imposed at
the two end sections of the beam, the external loads at ULS were si-
mulated by applying uniform rotations about the major axis of the two
end sections using a displacement control regime. FE analysis was
carried out using “Static, General” method analysis available in
ABAQUS library [30], which has been shown to be capable of accu-
rately predicting the flexural capacity and deformation of CFS elements
at both pre- and post- buckling range [10,17,44].

6.2. FE results of the standard and optimum sections

The results of the non-linear FE analyses were used to assess the
efficiency of the CFS beam sections optimised using different prototypes
(obtained in Section 5) compared to the benchmark section. Table 5
lists the maximum deflections and flexural capacities of the 12 selected
prototypes as well as the benchmark channel predicted by EC and FE at
SLS and ULS. Generally, the results obtained from EC are shown to be
reliable for both SLS and ULS. The average ratios of the calculated mid-
span deflection and flexural capacity using EC3 to the corresponding FE
results were 1.01 and 1.02 with standard deviation of 8% and 5%, re-
spectively. This implies that effective stiffness (Ific) and effective second
moment of area (Ieff ) calculated based on EC3 effective width method
provide reasonable predictions.

Fig. 6 compared the moment versus mid-span deflection curves for
the CFS beam with standard and optimum cross-sections (under ULS)
for prototypes ④ and ⑨ as representative examples. It is shown that the
proposed optimisation algorithm could increase both stiffness and
maximum capacity of the sections. Fig. 7 also illustrates the typical
failure mode of the CFS beam at ULS, which is due to the local/dis-
tortional buckling at the compression zone.

7. Summary and conclusions

A new optimisation framework was presented to develop more
economical laterally braced CFS beam based on serviceability and ul-
timate limit states, according to EC3 effective width method, by opti-
mising the relative dimensions of cross-sections and allowing for the
inclined single or double edge lips and triangular intermediate web and
flange stiffeners. To obtain optimum solutions, Big Bang–Big Crunch
(BB-BC) optimisation algorithm was adopted while design variables
were determined by taking into account EC3 design constraints as well
as a range of manufacturing and end-use limitations. The proposed
optimisation framework was applied on twelve different prototypes and

Table 4
Dimensions, effective second moment of area and flexural capacity of standard and optimum CFS beams for different prototypes at SLS.

Prototype Mser
Mmax

h (mm) b (mm) c (mm) d (mm) θ1 (deg) θ2 (deg) R1 R2 Ific ×( 10 )6 (mm4) Ific
Ific standard,

Mmax (kN m) M
M standard

max
max,

Standard 0.7 261 79 17 7.22 1 16.47 1
① 0.7 353 50 10.39 1.44 15.53 0.94
② 0.7 338 50 0.9 10.33 1.43 16.29 0.99
③ 0.7 323 50 0.1 9.01 1.25 14.86 0.90
④ 0.7 333 50 10 135 9.88 1.37 18.24 1.11
⑤ 0.7 318 50 10 135 0.9 9.20 1.27 17.68 1.07
⑥ 0.7 303 50 10 135 0.1 8.55 1.18 16.69 1.01
⑦ 0.7 323 50 10 5 90 9.65 1.34 20.61 1.25
⑧ 0.7 308 50 10 5 135 0.9 8.91 1.23 19.34 1.17
⑨ 0.7 293 50 10 5 135 0.1 8.23 1.14 17.96 1.09
⑩ 0.7 273 50 10 135 0.1 0.800 9.31 1.29 22.29 1.35
⑪ 0.7 263 50 10 5 135 0.1 0.319 8.71 1.22 20.86 1.27
⑫ 0.7 227 48 50 15 105 65 10.10 1.41 24.99 1.52
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the accuracy of the results at both SLS and ULS was examined through
detailed FE models. Based on the results presented in this paper, the
following conclusions could be drawn:

1. For the same amount of material, the proposed optimisation fra-
mework could increase the flexural capacity and stiffness of the
standard benchmark section by 58% and 44%, respectively. In
general, optimised cross-sections (at both SLS and ULS) tend to use
taller web and narrower flanges. The main differences between
optimised shapes for ULS and SLS are the size and the angle of edge
stiffeners as well as the location of the intermediate web and flange
stiffeners.

2. The optimum dimensions of the plain channels for SLS are very si-
milar to those obtained for ULS. While optimisation of plain channel
sections (including those with intermediate stiffeners) at ULS did
not provide efficient design solutions, using optimum plain channels
at SLS could offer considerably higher stiffness compared to the
benchmark lipped channel section. This implies that optimum plain
channels are more adequate for SLS requirements.

3. The flexural capacity and stiffness of the benchmark lipped channel
at ULS and SLS was increased by 30% and 37%, respectively, only
by optimising its relative cross-sectional dimensions. While an ad-
ditional 10% flexural capacity at ULS was obtained by using double
edge stiffeners, a negligible improvement in flexural stiffness was
observed at SLS.

4. The flexural capacity and stiffness of the optimum single and double
lipped channels at ULS and SLS, respectively, were not generally
enhanced by incorporating intermediate stiffeners in the web.
However, adding intermediate stiffeners in the flanges could in-
crease the flexural capacity and stiffness of the sections at ULS and
SLS by up to 17% and 10%, respectively.

5. It was shown that the newly developed folded flange channel can be
considered as the most desirable section owing to the fact that it is
capable to provide 58% and 41% higher bending capacity and
stiffness at ULS and SLS, respectively, compared to the standard
lipped channel section with the same amount of material.

6. The efficiency of the optimised CFS beam sections was assessed by
using detailed FE models accounting for material non-linearity and
initial geometric imperfections. The results of the FE simulations in
general confirm the accuracy of the mid-span deflection and flexural

Uniform rota on applied at 
the end sec on

Coupling the nodes 
of the end sec on 
to the reference 
node of the web

UX=UY=URY=URZ=0  
Boundary condi ons 
are applied to the 
reference point

UX =0          
Lateral bracings

Fig. 5. Boundary conditions in the FE models subjected to pure bending moment.

Table 5
EC3 and FE results of CFS beam with benchmark and optimum cross-sections in
terms of maximum deflection and flexural capacity at SLS and ULS, respec-
tively.

Prototype SLS ULS

δEC (mm) δFE (mm) δEC
δFE

M ECmax,
(kN m)

M FEmax,
(kN m)

M EC
M FE

max,
max,

Benchmark 23.8 22.9 1.04 16.47 16.94 0.97
① 15.5 17.6 0.88 15.56 14.94 1.04
② 16.5 17.9 0.92 17.16 16.36 1.05
③ 17.2 18.0 0.95 15.81 15.11 1.05
④ 19.2 21.9 0.88 21.40 22.36 0.96
⑤ 20.0 21.4 0.94 21.22 21.93 0.97
⑥ 20.3 19.4 1.05 19.68 19.62 1.00
⑦ 22.3 22.2 1.00 23.63 24.22 0.98
⑧ 22.7 20.3 1.12 22.03 22.68 0.97
⑨ 22.8 21.1 1.08 20.41 19.72 1.03
⑩ 25.0 23.2 1.08 23.75 21.12 1.12
⑪ 24.9 23.1 1.08 21.86 19.97 1.09
⑫ 25.8 24.3 1.06 25.97 23.92 1.09
Average 1.01 1.02
Standard deviation 0.082 0.055

Fig. 6. Moment versus mid-span deflection curve for the CFS beam with stan-
dard and optimum cross-sections for prototypes ④ and ⑨.
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capacity of the sections predicted by EC3 proposed methodology
(less than 12% error).
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