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Abstract Systemic risk research is gaining traction across

diverse disciplinary research communities, but has as yet

not been strongly linked to traditional, well-established risk

analysis research. This is due in part to the fact that sys-

temic risk research focuses on the connection of elements

within a system, while risk analysis research focuses more

on individual risk to single elements. We therefore inves-

tigate how current systemic risk research can be related to

traditional risk analysis approaches from a conceptual as

well as an empirical point of view. Based on Sklar’s

Theorem, which provides a one-to-one relationship

between multivariate distributions and copulas, we suggest

a reframing of the concept of copulas based on a network

perspective. This provides a promising way forward for

integrating individual risk (in the form of probability dis-

tributions) and systemic risk (in the form of copulas

describing the dependencies among such distributions)

across research domains. Copulas can link continuous node

states, characterizing individual risks, with a gradual

dependency of the coupling strength between nodes on

their states, characterizing systemic risk. When copulas are

used for describing such refined coupling between nodes,

they can provide a more accurate quantification of a sys-

tem’s network structure. This enables more realistic sys-

temic risk assessments, and is especially useful when

extreme events (that occur at low probabilities, but have

high impacts) affect a system’s nodes. In this way, copulas

can be informative in measuring and quantifying changes

in systemic risk and therefore be helpful in its manage-

ment. We discuss the advantages and limitations of copulas

for integrative risk analyses from the perspectives of

modeling, measurement, and management.

Keywords Copulas � Individual risk � Risk

analysis � Systemic risk

1 Introduction

Systemic risk is gaining increasing attention in theoretical

and applied science disciplines due to the growing com-

plexity of the world and the rise in data availability (Page

2015). The recent global risk report published by the World

Economic Forum (WEF 2018) highlights the growing

vulnerability to systemic risks and the limited under-

standing of its management, today and in the future. While

research on systemic risk is not new—it has been discussed

in ecology, for example, since the 1970s (Scheffer and

Carpenter 2003)—recent events, in particular the global

financial crisis of 2007/08, have increased interest on the

part of researchers and practitioners to unprecedented
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levels (Boss et al. 2004; Thurner and Poledna 2013;

Hochrainer-Stigler et al. 2018). A distinguishing feature of

systemic risk is its emphasis on the connection between

individual risks; it is therefore also called network risk

(Helbing 2013). Contrary to systemic risk, individual risk

focuses on single elements. Importantly, while the real-

ization of individual risks may lead to a disaster in part of

the system, the realization of systemic risk, by definition,

leads to a breakdown, or at least a major dysfunction, of the

whole system (Kovacevic et al. 2014).

Given the importance of assessing current and emerging

systemic risks—be it in relation to ecological, financial, or

socioeconomic systems (Centeno et al. 2015)—it is

worthwhile investigating how systemic risk research can be

related conceptually as well as empirically to well-estab-

lished risk analysis approaches (Aven 2016). Systemic risk

research focuses on the interdependencies of elements

within a network (Helbing 2013). The failure of one or

more of the interdependent elements can cause cascading

effects throughout the network, eventually leading to sys-

tem malfunction or collapse. In contrast, risk analysis

focuses on probabilities of events, with probability distri-

butions typically serving as general representations of risk

(Pflug and Römisch 2007). Based on these observations,

we address the question how the two disciplinary focal

points, interdependencies and probabilities, can be merged.

We suggest that the concept of copulas (Nelsen 2006),

originally used for modeling multivariate distributions, can

provide an answer to this question.

In general, a system or network contains elements that

are interconnected. These elements can be ‘‘at risk,’’

understood here as individual risk. A copula approach can

model the interdependencies among the elements within

the network, in combination with the risk of the individual

elements described by distributions. Therefore, copulas can

provide an integrative perspective. More formally, our

starting point is Sklar’s Theorem (1959), which provides a

one-to-one relationship between multivariate distributions

and copulas. Based on Sklar’s Theorem, a copula enables

the separation of a multivariate distribution into its mar-

ginal distributions (describing the individual risks in a

standardized form, see Eq. 1) and the copula (describing

the coupling of the individual risks in a standardized form,

see Eq. 1). Taking a network perspective, we interpret the

marginal distributions as describing the individual risks to

continuous node states and the copula as describing the

dependency between these node states within the network.

Apart from the benefit of enabling an integrated and

standardized analysis of individual risk and systemic risk,

we further argue that a copula approach can bring more

realism to systemic risk models. As a case in point, gradual

degradation processes and gradual dependencies are often

neglected in systemic risk research, but are common in the

real world. In ecology, for example, species extinction

manifests as a gradual degradation process of the species’

biomass (Borrvall et al. 2000). In finance, banks can

experience gradual increases in stress eventually leading to

default (May and Arinaminpathy 2010). In the natural

hazard domain, catastrophic events are graduated in their

severity (Grossi and Kunreuther 2005). These examples

clearly underscore the widespread importance of gradual

degradation processes. Even more importantly, degradation

is often contingent on the severity of the disturbance of

other elements within the network. For example, while

non-extreme water discharge levels across European river

basins have been shown to be independent of each other, it

was recently confirmed that large-scale atmospheric pro-

cesses can result in strongly correlated extreme discharges

across river basins, leading to massive flooding (Jongman

et al. 2014). In food webs, interactions between predators

and prey follow a nonlinear process and are dependent on

gradual changes of species’ biomasses within the network

(McCann 2000; Folke et al. 2004). Given these observa-

tions, we propose that a copula approach provides a

promising way forward across research domains for a more

refined description of coupling between nodes, and con-

sequently, for a more realistic systemic risk analysis,

because it can combine continuous node states (via the

individual risk distribution of each element) with gradual

degradation processes that are contingent on such node

states (via a copula model). In the following, we provide a

discussion of the advantages and limitations of copulas for

integrating individual risk and systemic risk in terms of

modeling, measurement, and management.

2 Copulas to Model Systemic Risk

Copulas originate from probability theory. From a statis-

tical point of view, copulas are useful for modeling mul-

tivariate distributions of continuous random variables. The

copula method goes back to Sklar’s Theorem (1959, 1973),

which states that the joint distribution function H of any

continuous random variables X and Y can be written as

H x; yð Þ ¼ C FX xð Þ;FY yð Þð Þ x; y 2 R ð1Þ

with marginal probability distributions FX(x) and FY(y) and

(two-dimensional) copula C: [0,1]2 ? [0,1]. If FX and FY

are continuous, C is uniquely defined. The functions FX

and FY are also known as cumulative distribution func-

tions, and their inverse functions are known as quantile

functions. While the copula contains the information about

the structure of the dependency in a neatly standardized

form across the unit square, the marginal distributions

contain the information about the individual risks. There

are many different copula types (Gaussian, Clayton,
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Gumbel, Frank, and Joe—to mention just a few), each

describing different types of dependence structures,

including independence (McNeil et al. 2015). In multi-

variate copula models (that is, with more than two random

variables), there are several methods for structuring the

dependency of random variables, including minimax

approaches or vines (Bedford and Cooke 2002; Kurowicka

and Cooke 2006; Kurowicka and Joe 2010; Timonina et al.

2015). It is beyond the scope of this article to discuss these

different copula types in detail, and we refer the interested

reader to Nelsen (2006) and McNeil et al. (2015).

For the purpose of illustration, we consider a network

that consists of seven nodes, each being exposed to indi-

vidual risk to its node state characterized by a gamma

distribution (with mean 10 and variance 20). We assume

for simplicity that this risk is a downside risk, that is, it

represents loss or degradation (for example, biomass loss

or monetary loss). We assume further that nodes are cou-

pled by a Joe copula to describe increasing tail dependency

(through Kendall’s rank correlation coefficient q, see for

example Hofert and Mächler 2011) in the system. Figure 1

shows how individual risks of two nodes are linked through

the bivariate Joe copula1 for q = 0.8 (for other values of q,

see the row of panels at the top of Fig. 2)

For two nodes, the corresponding quantile functions are

shown in Fig. 1. As in Eq. 1, the quantile function of the

nodes are coupled through the copula. Due to the nature of

the Joe copula, as seen in Fig. 1, lower quantiles show

loose dependency, while higher quantiles show tight

dependency. For normal events affecting nodes 1 and 2

(lower left corner of the scatterplot), having low severity

and occurring with high probability, the copula indicates a

loose connection between them. For extreme events (upper

right corner of the scatterplot), having high severity and

occurring with low probability, the copula indicates a tight

connection between them. Depending on the research

domain, the tighter coupling can be interpreted, for

example, as a higher risk of spreading when diseases are

becoming particularly prevalent or as a higher dependency

when natural hazard-induced disasters are particularly

severe or the default of banks results from particularly

large monetary losses. A copula can model such contingent

nonlinear dependencies between individual risks.

As a statistical concept, a copula is instrumental if the

underlying drivers and interactions among elements within

a complex system are not well known, but increasing tail

dependency is often expected for theoretical reasons or

follows from empirical observations. The phenomenon of

increasing tail dependency as shown in Fig. 1 is especially

noticeable in physical processes such as water discharge

levels across basins. In the work of Jongman et al. (2014),

Fig. 1 Individual risks of nodes

1 and 2 (described by gamma

distributions and their quantile

functions) and their

interdependency (described by

the Joe copula). Dots in the

scatterplot can be observed as

joint observations of the states

of nodes 1 and 2. The density of

dots across the unit square

indicates the copula values, and

the blue lines show the

corresponding copula contours.

The increasing tightness of the

connection between the nodes

(evidenced by the higher and

more narrowly concentrated

copula values in the upper right

corner compared to the lower

left corner) is highlighted by

considering two ranges of

disturbance levels (normal

events in green and extreme

events in red)

1 For the definition of the bivariate and the multivariate Joe copula,

see Joe (2014).
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large-scale atmospheric processes can result in strongly

correlated extreme discharges across river basins. While it

is not possible to physically model these processes (due to

data limitations and limited knowledge of key properties of

river structures, such as sediments that affect water runoff),

a copula approach circumvents this limitation by using

empirical observations (Timonina et al. 2015). This opens

up new possibilities to model risk management strategies.

For example, based on the findings in Jongman et al.

(2014) and Timonina et al. (2015), new stress tests for

flood financing instruments could be performed. This

revealed a high susceptibility of one core financing

instrument, the European Union Solidarity Fund, which

faces a significant risk of depletion following extreme flood

events (Hochrainer-Stigler et al. 2017).

The copula approach, however, may be of limited value

for exploring causal links and corresponding emergent

behavior that influence risk in complex systems. For

example, the modeling of self-organized systems with

tipping points—developed by Bak and Paczuski (1995) for

large dynamic systems that can self-organize into highly

interactive critical states in which even minor perturbations

can lead to systemic events—cannot be accomplished

through copula approaches alone and might instead call for

approaches using agent-based modeling (ABM) (Allen and

Gale 2000; Jain and Krishna 2001; Hanel et al. 2007;

Battiston, Gatti et al. 2012). Copula approaches are also of

limited value when nonlinearities within complex networks

need to be at the focus of analyses, and again, ABM

approaches are superior for investigating such behavior

(Poledna and Thurner 2016; for an overall discussion, see

Page 2015). Links between copula approaches and ABM

approaches are feasible and potentially beneficial for real-

world analyses that combine individual risk and systemic

risk (see the discussion in Poledna and Thurner 2016).

3 Copulas to Measure Systemic Risk

Risk at the system level can be measured by combining

individual risk estimates with a copula model for a given

network. Importantly, the influence of the interdependen-

cies between the individual risks on systemic risk can be

assessed (Borgomeo et al. 2015; Jeong et al. 2016).

To illustrate this, we use the already introduced seven-

node network model. Figure 2 illustrates how the failure of

a single node in this network can trigger, owing to the

existence of systemic risk, larger system-level losses as

failures between coupled nodes spread depending on the

dependency assumed for the coupling (as shown in the row

of panels at the top of Fig. 2). Single nodes are here

assumed to fail if node losses exceed a node’s value at risk

(VaR) at, for example, the 95% level (which means that

failures individually occur with 5% probability). With this

assumption, we calculate the expected total system-level

losses as

E
X7

i¼2

Li L1j �VaR0:95

 !
;

where E indicates the expectation value. Figure 2 demon-

strates how accounting for the copula-mediated depen-

dency of nodes within a network can be critical for more

accurately modeling total losses from a systems perspec-

tive. For the considered network, system-level losses would

be underestimated with errors of more than 100% if the

coupling between nodes were assumed to be constant

instead of copula-mediated, that is, severity-dependent.

Even for only moderate tail dependencies, as described by

the dependency parameter q, total losses are rising steeply.

In other words, with increasing tail dependency the risk of

system wide large losses is much higher given that a large

risk realizes in one specific node.

It is important to recognize that two networked systems

may have a close resemblance in terms of their nodes and

the individual probability distributions that characterize

each node; yet, depending on the node interdependencies,

the systems can be essentially different. This makes the

detection of systemic risk especially difficult. Increases in

individual risk may be less significant for the risk of the

whole system than increases in their interdependency.

Moreover, the dependency that triggers systemic risk may

occur only in extreme cases, which means that it cannot be

observed under normal circumstances (for illustration, see

Fig. 1). Copulas can therefore be useful for measuring

Fig. 2 Influence of a single-node failure on system-level losses for

different copula-mediated dependencies between nodes. The row of

panels at the top indicates the pairwise node coupling given by the Joe

copula. The circles in the bottom panel indicate numerical results for

different values of q, with the color shaded area summarizing how the

expected losses are steeply rising with q
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systemic risk. This is underscored by Pflug and Pichler

(2018), who have used a copula approach to introduce a

new measure of systemic risk defined by the difference in

risk (for example, using the value at risk as a risk measure)

on the system level between the independent and the

interdependent cases.

While it was assumed for illustration in Fig. 2 that each

node has the same individual probability distribution,

copula approaches readily apply to systems in which these

distributions differ among nodes. In this context, it is worth

highlighting that the description of the dependency

between nodes provided by a copula is independent of the

absolute scales of the disturbances impacting the separate

nodes, since copulas express the dependency based on

quantiles. Hence, in some systems even disturbances of one

node that are small compared to the system-level average

might result in a tight coupling with another node in the

network, which subsequently can result in large distur-

bances at the system level.

It is thus clear that copulas can be used both directly,

serving as a measure of systemic risk (for example, through

the dependency parameter and copula type), and indirectly,

providing the basis for estimating other measures of sys-

temic risk (for example, through assessing total losses

under dependency). At the same time, copulas as measures

of systemic risk have some shortcomings. For example, one

of the most prominent systemic risk measures in finance

today is the so-called DebtRank (Battiston, Puliga et al.

2012). DebtRank estimates the impact of one node on the

others and is inspired by the notion of centrality in a net-

work. The centrality of a node is defined by its distress on

other nodes in the network, and DebtRank can be consid-

ered an early-warning indicator for being ‘‘too central to

fail’’ (in addition to being ‘‘too big to fail’’; see the dis-

cussion by Poledna and Thurner 2016). While some copula

approaches, such as vine copula models and hierarchical

copula models (McNeil et al. 2015), can be used to obtain a

proxy of node centrality, they have limitations compared to

measures such as DebtRank. In particular, copulas

describing a node’s direct impact on another node do not as

such capture how additional indirect impacts on that same

node may arise from effects rippling through the network.

Yet a copula approach has an advantage over DebtRank in

that it integrates measures of individual risk and systemic

risk.

4 Copulas to Inform the Management of Systemic
Risk

Finally, a copula approach can help with considering

options for mitigating systemic risk. In the context of cli-

mate change, for example, a copula approach has proven

potentially useful in modeling future climate-related dis-

aster events by assuming different strengths of their inter-

relationships (for example, between drought duration and

intensity) and in assessing the consequences of mitigation

measures currently in place (Borgomeo et al. 2015; for

other applications in this context, see Jeong et al. 2016).

The most common risk mitigation option for financial risks

(not accounting for systemic risk) is risk transfer through

insurance (Haefeli and Liedtke 2012), and more generally,

risk diversification (Kessler 2014), which is therefore our

focal point for the brief discussion below.

In the context of systemic risk, it is often presumed that

diversification is needed for system stability (Haldane and

May 2011), a presumption that was analyzed in detail by

Battiston, Gatti et al. (2012), as well as others (Gai and

Kapadia 2010; Allen et al. 2012). However, when consid-

ering copula-mediated couplings, the picture is not so clear.

Already in the 1970s, May (1972) and others (Gardner and

Ashby 1970; Pimm and Lawton 1978) found contradictory

results regarding diversification; in particular, diversity can

also destabilize community dynamics (Tilman and Down-

ing 1996; McCann 2000) and can lead to a higher proba-

bility of contagion in the system (Battiston, Gatti et al.

2012). Again using the previously mentioned seven-node

network setup, Fig. 3 illustrates how diversification can aid

Network 

Dependency
parameter

ρ = 0 ρ = 0.8 ρ = 0, 0.33, 0.8 ρ = , 0.67,
0.8

System-level 
losses

VaR0.95 = 60 VaR0.95 = 129 VaR0.95 = 101 VaR0.95 = 103

0, 0.33

Fig. 3 Value at risk of system-level losses for different heterogeneous networks
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the management of systemic risk by modularizing the

strengths of tail dependency.

Generally speaking, risk diversification via modular-

ization can result in nonobvious changes in system-level

risk (Helbing 2013). Fortunately, with a copula approach

these changes are fully quantifiable, as shown in Fig. 3. We

consider again the 95% value at risk (VaR) for system-

level losses as a measure of systemic risk. The fully

independent network (q = 0) results in VaR0.95 = 60,

whereas with strong dependency (q = 0.8) this value

increases to VaR0.95 = 129. For illustrative purposes, we

compare the homogeneously connected network to modu-

larized scenarios with heterogeneous changes in the copula

dependency parameter. While various such scenarios could

be looked at, the main importance is that all of them can be

quantified and can be made comparable in a precise way.

As Fig. 3 illustrates, systemic risk can be substantially

decreased through modularizing dependency. But more

importantly, one can precisely quantify the increase in

system-level risk. For example, the two networks on the

right in Fig. 3 show a 2% increase of system-level risk due

to the increase of dependency between two previously

independent nodes. Hence, the impacts of different diver-

sification strategies (for example, in the form of modular-

izing dependency) can be precisely quantified. This could

be especially useful for practical applications, for example,

in cases in which some connectedness is considered

desirable, but not at the cost of allowing systemic risk to

rise above a critical level (Pflug and Pichler 2018).

5 Conclusion

It has recently been argued, for example, by Helbing

(2013) that systemic risk can be better understood by

moving from a component-oriented approach to an inter-

action- and network-oriented approach. Similarly, we have

called for treating individual risks and systemic risks

simultaneously, and have outlined how to utilize copulas

for this purpose. In this way, traditional risk analyses and

innovative systemic risk analyses can be further integrated.

Additionally, copulas have the advantage of linking con-

tinuous node states through gradual dependency, so that

models of systemic risk can become more realistic, more

accurate, and more easily connected with traditional risk

analysis approaches.

Despite these benefits, copula approaches are only one

of many frameworks for systemic risk analysis, and espe-

cially process-based approaches, such as agent-based

models (ABMs), have some advantages over copula

approaches: in contrast to copula models, ABMs use causal

models to derive emergent behavior at the system level,

and importantly, they can model emergent nonlinear rela-

tionships. Nevertheless, we argue that copula models pro-

vide a good entry point, conceptually as well as

empirically, for dealing with systemic risk from many

disciplinary perspectives. Different scales of integration

(from local to regional and global) can be examined with

different forms of copulas. Hybrid frameworks that use

copula approaches and ABM approaches together are

possible, for example, by using copula-based results as an

input to process-based approaches or by estimating copulas

as informative outputs from process-based models even

when not using them as model inputs. The most appropriate

approach will always depend on the research question,

system scale, data availability, and nature of the problem at

hand.

As experienced in the past, the realization of systemic

risk can have dramatic and possibly long-lasting impacts

(Little 2002; WEF 2018). Thus, it is important to develop

improved approaches for systemic risk analysis (Poledna

and Thurner 2016). The copula approach as discussed here

can advance current understanding and analyses of sys-

temic risk by providing a holistic picture of risk, from the

individual scale to the system scale.
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