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Abstract

Goldberg constructed an MDS code over F9 whose ternary image is the ternary Golay [12; 6; 6] code. Motivated by the
work, in this paper, we found all such MDS codes over F9 under some equivalence.
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1. Introduction

An [n; k] code C over Fq is a k-dimensional vector subspace of Fnq, where Fq is the :nite :eld of order q and q is
a prime power. The elements of C are called codewords. The Hamming weight wtH(x) of a codeword x is the number
of non-zero coordinates in x. The dual code C⊥ of C is de:ned as C⊥ = {x∈ Fnq | x · y = 0 for all y∈C}, where x · y
denotes the usual inner-product.

Let F3 ={0; 1; 2} be the :nite :eld of order 3 and let F9 =F3[�]=(�2 +1) be the :nite :eld of order 9. In this paper, we
consider codes over F3 and F9. Let Q be the set of nonzero squares in F9, that is, Q={1; 2; �; 2�}, and let N ={1+�; 1+
2�; 2+ �; 2+ 2�}. The Lee weight wtL(x) of a codeword x= (x1; x2; : : : ; xn) is de:ned as #{i | xi ∈Q}+2#{i | xi ∈N}. As
de:ned in [4], we consider a map � from Fn9 to F2n3 where �(x + �y) = (x; y) for x; y∈ Fn3. We say that the image �(C)
of a code C over F9 is the ternary image of C. The minimum Hamming weight dH (resp. Lee weight dL) of C is the
smallest Hamming weight (resp. Lee weight) among all nonzero codewords in C. It is obvious that wtL(x) = wtH(�(x)),
in addition, if C is an [n; k] code over F9 with minimum Lee weight dL then �(C) is a ternary [2n; 2k; dL] code where
an [n; k; d] code is an [n; k] code with minimum Hamming weight d. An [n; k; n− k + 1] code is called MDS (cf. [5]).
It is well-known that the ternary Golay [12; 6; 6] code G12 is the unique ternary code with these parameters, under the

usual equivalence (see e.g. [5, Chapter 20, Theorem 20]). Goldberg [4] constructed a [6; 3] code C such that its ternary
image �(C) is the Golay code G12 (see also [1] for other ternary images of larger codes over F9). This motivates us to
consider a classi:cation of such codes, that is, codes C over F9 with �(C) = G12. To do this, we consider the following
de:nitions of equivalence of codes over F9. Let C and C′ be codes over F9. If there is a monomial matrix P over F3
such that C=C′ ·P={x ·P | x∈C′}, we say that two codes C and C′ are signed-permutation equivalent and a monomial
matrix P such that C=C ·P is called a signed-permutation automorphism. The set of signed-permutation automorphisms
is called the signed-permutation automorphism group of C. Moreover, if there is a monomial matrix P over F9 with
entries in {0; 1; 2; �; 2�} such that C = C′ · P, we say that C and C′ are �-equivalent and a monomial matrix P such that
C = C · P is said to be an �-automorphism. The set of �-automorphisms is said to be the �-automorphism group of C.
Obviously, if two codes C and C′ are signed-permutation equivalent then they are �-equivalent. Note that the Lee weight
of a codeword x is invariant under the �-equivalence.
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In this paper, we give two classi:cations of codes over F9 whose ternary images are the Golay codes under the
signed-permutation equivalence and the �-equivalence. There are four such [6; 3] codes over F9 under the signed-permutation
equivalence and there is a unique such [6; 3] code over F9 under the �-equivalence.

2. Results

Lemma 1. If C is a code over F9 whose ternary image is the ternary Golay [12; 6; 6] code then C is an MDS [6; 3; 4]
code.

Proof. Let C be a [6; 3; d6 3] code and x be a codeword of Hamming weight at most 3. Then a codeword �x contains
1 in at least one of its coordinates for some �∈ F9. Hence the Lee weight of �x is at most :ve.

The converse assertion is not true in general. Consider the code with the following generator matrix



1 0 0 1 2� + 2 2� + 2

0 1 0 1 � + 2 � + 1

0 0 1 1 � + 1 � + 2


 :

This code is MDS but the ternary image is not the Golay code since it contains a codeword of Lee weight 6 5, for
example, wtL(r1 + 2r2) = 5 where ri is the ith row of the generator matrix.

Let C be a [6; 3] code over F9 with dL = 6 and generator matrix of the following form



1 0 0 a1 a2 a3

0 1 0 a4 a5 a6

0 0 1 a7 a8 a9


 :

By Lemma 1, C is a [6; 3; 4] code. Hence ai 	= 0 for each i. Without loss of generality, we may assume that (wtL(a1);
wtL(a2);wtL(a3)) = (1; 2; 2) and (wtL(a4);wtL(a5);wtL(a6);wtL(a7);wtL(a8);wtL(a9))=

(A) (2; 1; 2; 2; 2; 1),
(B) (1; 2; 2; 1; 2; 2) or
(C) (1; 2; 2; 2; 1; 2).

Lemma 2. Let C be a [6; 3] code over F9 with generator matrix of type (B) or (C). Then C has minimum Lee weight
dL6 5.

Proof. Suppose that C has minimum Lee weight 6. Let r1 and r2 be the :rst and second rows in the generator matrix of C.
From our equivalence, we may assume that either r1=(1; 0; 0; 1; g1; g2) and r2=(0; 1; 0; 1; g3; g4) or r1=(1; 0; 0; 1; g1; g2) and
r2=(0; 1; 0; �; g3; g4) where wtL(gi)=2 for i=1; 2; 3; 4. Consider the :rst case. Since the codeword r1+2r2=(1; 2; 0; 0; g1+
2g3; g2+2g4) has weight ¿ 6, we have wtL(g1+2g3)¿ 2 and wtL(g2+2g4)¿ 2. Hence wtL(g1+2g3)=wtL(g2+2g4)=2.
Since {g1; g3} = {1 + �; 2 + 2�} or {1 + 2�; 2 + �}, the codeword r1 + r2 has Lee weight at most 5. The later case is
similar and wtL(r1 + 2�r2)6 5.

Our classi:cation of codes whose ternary images are the Golay code under the signed-permutation equivalence was done
as follows. All the computations in this paper were done using GAP [3] or MAGMA [2]. In particular, the computations by
GAP were done by considering codes as vector spaces over a :nite :eld. By Lemma 2, we can assume that (a1; a2; a3)=
(1; 2+ 2�; 2+ 2�), (1; 2+ 2�; 1+ 2�), (1; 1+ 2�; 1+ 2�), (�; 2+ 2�; 2+ 2�), (�; 2+ 2�; 1+ 2�) or (�; 1+ 2�; 1+ 2�). Then
the possibilities of generator matrices are at most 6× 46 from a5; a9 ∈Q and a4; a6; a7; a8 ∈N . From the condition that its
ternary image is the Golay code, we have found 32 distinct codes for each (a1; a2; a3). So there are 192 distinct codes
which must be checked further for signed-permutation equivalence. Then by only permutations of the coordinates, the 32
codes are reduced to twelve for each (a1; a2; a3). Now we have veri:ed that the twelve codes for each (a1; a2; a3) are
divided into 4; 3; 4; 3; 2 and 3 codes under the signed-permutation equivalence. Finally, we have veri:ed that each of the
15 codes with (a1; a2; a3) 	= (1; 2+ 2�; 2+ 2�) is equivalent to one of the four codes with (a1; a2; a3) = (1; 2+ 2�; 2+ 2�).
Therefore we obtain the following result.
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Theorem 3. There are four codes over F9 whose ternary images are the ternary Golay code, up to signed-permutation
equivalence.

Let Ci (i = 1; 2; 3; 4) be the code with the generator matrix (I; Ai), where

A1 =




1 2 + 2� 2 + 2�

2 + 2� 1 2 + 2�

2 + 2� 2 + 2� 1


 ; A2 =




1 2 + 2� 2 + 2�

2 + 2� 1 2 + 2�

2 + � 2 + � 2�


 ;

A3 =




1 2 + 2� 2 + 2�

2 + 2� 2 1 + 2�

2 + 2� 1 + 2� 2


 ; A4 =




1 2 + 2� 2 + 2�

2 + 2� 2 1 + 2�

2 + � 2 + 2� �


 :

Then these four codes C1, C2, C3 and C4 form the set of the four codes given in the above theorem. Note that C1 is the
same as the code given in [4].

By Theorem in [4], C1 ∩ C⊥
1 = {0}. We have veri:ed that C2 ∩ C⊥

2 is a one-dimensional code generated by (111221)
and Ci ∩ C⊥

i = {0} for i = 3; 4. The orders of the signed-permutation automorphism groups of C1, C2, C3 and C4 are
120; 20; 8 and 12, respectively. It is easily checked that Ci is signed-permutation equivalent to its dual code C⊥

i for
each i.

Permutation-equivalent codes have the identical complete weight enumerators but equivalent codes under the signed-
permutation may have diJerent complete weight enumerators. The appropriate weight enumerator for such equivalent codes
is the symmetrized weight enumerator de:ned as

sweC(a; b; c; d; e) =
∑
x∈C

an0(x)bn1(x)cn2(x)dn3(x)en4(x);

where n0(x) is the number of components 0 of x, n1(x) is the number of components 1 and 2, n2(x) is the number of
components � and 2�, n3(x) is the number of components 1+ � and 2+2� and n4(x) is the number of components 2+ �
and 1 + 2�.

We give the symmetrized weight enumerators swei of Ci:

swe1 = 12de5 + 12d5e + 20c3e3 + 20c3d3 + 60bc2de2 + 60bc2d2e

+12bc5 + 60b2cde2 + 60b2cd2e + 20b3e3 + 20b3d3 + 12b5c

+60acd2e2 + 60abd2e2 + 60ab2c2e + 60ab2c2d+ 30a2c2e2

+30a2c2d2 + 30a2b2e2 + 30a2b2d2 + a6;

swe2 = 2e6 + 10d2e4 + 10d4e2 + 2d6 + 20c3de2 + 20c3d2e + 2c6

+20bc2e3 + 40bc2de2 + 40bc2d2e + 20bc2d3 + 20b2ce3

+40b2cde2 + 40b2cd2e + 20b2cd3 + 10b2c4 + 20b3de2

+20b3d2e + 10b4c2 + 2b6 + 20acde3 + 20acd2e2 + 20acd3e

+20abde3 + 20abd2e2 + 20abd3e + 20abc3e + 20abc3d+ 20ab2c2e

+20ab2c2d+ 20ab3ce + 20ab3cd+ 10a2c2e2 + 20a2c2de

+10a2c2d2 + 20a2bce2 + 20a2bcd2 + 10a2b2e2 + 20a2b2de

+10a2b2d2 + a6;

swe3 = 4de5 + 16d3e3 + 4d5e + 4c3e3 + 16c3de2 + 16c3d2e + 4c3d3

+16bc2e3 + 44bc2de2 + 44bc2d2e + 16bc2d3 + 4bc5

+16b2ce3 + 44b2cde2 + 44b2cd2e + 16b2cd3 + 4b3e3
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+16b3de2 + 16b3d2e + 4b3d3 + 16b3c3 + 4b5c + 4ace4

+16acde3 + 20acd2e2 + 16acd3e + 4acd4 + 4ac4e + 4ac4d

+4abe4 + 16abde3 + 20abd2e2 + 16abd3e + 4abd4 + 16abc3e

+16abc3d+ 20ab2c2e + 20ab2c2d+ 16ab3ce + 16ab3cd

+4ab4e + 4ab4d+ 6a2c2e2 + 16a2c2de + 6a2c2d2

+16a2bce2 + 32a2bcde + 16a2bcd2 + 6a2b2e2 + 16a2b2de + 6a2b2d2 + a6;

swe4 = 12d2e4 + 12d4e2 + 8c3e3 + 12c3de2 + 12c3d2e + 8c3d3

+12bc2e3 + 48bc2de2 + 48bc2d2e + 12bc2d3 + 12b2ce3

+48b2cde2 + 48b2cd2e + 12b2cd3 + 12b2c4 + 8b3e3

+12b3de2 + 12b3d2e + 8b3d3 + 12b4c2 + 6ace4 + 12acde3

+24acd2e2 + 12acd3e + 6acd4 + 6ac4e + 6ac4d+ 6abe4

+12abde3 + 24abd2e2 + 12abd3e + 6abd4 + 12abc3e

+12abc3d+ 24ab2c2e + 24ab2c2d+ 12ab3ce + 12ab3cd

+6ab4e + 6ab4d+ 6a2c2e2 + 12a2c2de + 6a2c2d2

+12a2bce2 + 48a2bcde + 12a2bcd2 + 6a2b2e2 + 12a2b2de

+6a2b2d2 + a6:

Of course, it holds that sweCi (1; y; y; y
2; y2) = 1 + 264y6 + 440y9 + 24y12 for i = 1; 2; 3; 4.

Now we are in a position to complete the classi:cation of codes given in the above theorem under the �-equivalence.
De:ne the following monomial matrices over F9:

P2 =




1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 � 0

0 1 0 0 0 0

0 0 2 0 0 0

0 0 0 0 0 1




; P3 =




0 0 0 1 0 0

0 � 0 0 0 0

0 0 0 0 0 �

0 0 1 0 0 0

0 0 0 0 � 0

2� 0 0 0 0 0




and

P4 =




0 0 0 1 0 0

0 � 0 0 0 0

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 0 � 0

2� 0 0 0 0 0




:

Then we have

C1 = C2 · P2 = C3 · P3 = C4 · P4:

Hence we obtain the following theorem.
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Theorem 4. The code C given in [4, Theorem] is the unique code over F9 whose ternary image is the ternary Golay
code, up to �-equivalence.

Let H and G be the set of all monomial matrices over F3 and all monomial matrices over F9 with entries in
{0; 1; 2; �; 2�}, respectively. It is clear that G forms a group and H is a subgroup of G. Let A be the set of all [6; 3; 4]
codes over F9 whose ternary images are the ternary Golay code. Then the two groups G and H act on A by a left
multiplication. We already calculate the order of the stabilizers HC1 , HC2 , HC3 and HC4 , that is, the signed-permutation
automorphism groups. By Theorem 3, we have

|A| = |CH
1 | + |CH

2 | + |CH
3 | + |CH

4 |
= |H : HC1 | + |H : HC2 | + |H : HC3 | + |H : HC4 |
= 6! × 26=120 + 6! × 26=20 + 6! × 26=8 + 6! × 26=12 = 12288;

where CH
i = {Ci · P |P ∈H}. Hence we obtain the order of the �-automorphism group GC of C from Theorem 4 as

follows:

|GC| = |G|=|A| = 6! × 46=12288 = 240:

Finally, we consider other ternary self-dual codes of lengths up to 12. The numbers of inequivalent ternary self-dual
codes of lengths 4,8 and 12 are 1,1 and 3, respectively (cf. [6, Table 1]). The unique code of length 4 (resp. 8) is denoted
by E4 (resp. 2E4). The other two codes of length 12 are denoted by 3E4 and 4C3(12). Let A be the code over F9 with
generator matrix (1; 1 + �). The ternary image of A is E4. Thus the ternary images of A⊕ A and A⊕ A⊕ A are 2E4 and
3E4, respectively. In addition, the ternary image of the code with generator matrix



1 0 0 � � 0

0 1 0 1 + 2� 2 + � 1

0 0 1 1 + 2� 2 + � 2




is 4C3(12). Therefore we have the following:

Proposition 5. Every ternary self-dual code of length up to 12 can be constructed as a ternary image of some code
over F9.

Acknowledgements

The authors would like to thank the anonymous referees for reading carefully the manuscript and suggesting several
improvements.

References

[1] G.F.M. Beenker, A note on extended quadratic residue codes over GF(9) and their ternary images, IEEE Trans. Inform. Theory 30
(1984) 403–405.

[2] W. Bosma, J. Cannon, Handbook of Magma Functions, Version 2.9, Sydney, July, 2002.
[3] The GAP Group, GAP–Groups, Algorithms, and Programming, Version 4:3; 2002, http://www.gap-system.org.
[4] D.Y. Goldberg, Reconstructing the ternary Golay code, J. Combin. Theory Ser. A 42 (1986) 296–299.
[5] F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam, 1977.
[6] C.L. Mallows, V. Pless, N.J.A. Sloane, Self-dual codes over GF(3), SIAM. J. Appl. Math. 31 (1976) 649–666.


