MDS codes over \mathbb{F}_{9} related to the ternary Golay code

Makoto Araya ${ }^{\text {a }}$, Masaaki Harada ${ }^{\mathrm{b}, *}$
${ }^{\text {a }}$ Department of Computer Science, Shizuoka University, Hamamatsu 432-8011, Japan
${ }^{\mathrm{b}}$ Department of Mathematical Sciences, Yamagata University, Yamagata 990-8560, Japan

Received 13 November 2002; received in revised form 31 October 2003; accepted 5 November 2003

Abstract

Goldberg constructed an MDS code over \mathbb{F}_{9} whose ternary image is the ternary Golay $[12,6,6]$ code. Motivated by the work, in this paper, we found all such MDS codes over \mathbb{F}_{9} under some equivalence. (c) 2004 Elsevier B.V. All rights reserved.

Keywords: MDS code; Ternary Golay code; Code over \mathbb{F}_{9}

1. Introduction

An $[n, k]$ code C over \mathbb{F}_{q} is a k-dimensional vector subspace of \mathbb{F}_{q}^{n}, where \mathbb{F}_{q} is the finite field of order q and q is a prime power. The elements of C are called codewords. The Hamming weight $\mathrm{wt}_{\mathrm{H}}(x)$ of a codeword x is the number of non-zero coordinates in x. The dual code C^{\perp} of C is defined as $C^{\perp}=\left\{x \in \mathbb{F}_{q}^{n} \mid x \cdot y=0\right.$ for all $\left.y \in C\right\}$, where $x \cdot y$ denotes the usual inner-product.

Let $\mathbb{F}_{3}=\{0,1,2\}$ be the finite field of order 3 and let $\mathbb{F}_{9}=\mathbb{F}_{3}[\alpha] /\left(\alpha^{2}+1\right)$ be the finite field of order 9 . In this paper, we consider codes over \mathbb{F}_{3} and \mathbb{F}_{9}. Let Q be the set of nonzero squares in \mathbb{F}_{9}, that is, $Q=\{1,2, \alpha, 2 \alpha\}$, and let $N=\{1+\alpha, 1+$ $2 \alpha, 2+\alpha, 2+2 \alpha\}$. The Lee weight $\mathrm{wt}_{\mathrm{L}}(x)$ of a codeword $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is defined as $\#\left\{i \mid x_{i} \in Q\right\}+2 \#\left\{i \mid x_{i} \in N\right\}$. As defined in [4], we consider a map ϕ from \mathbb{F}_{9}^{n} to $\mathbb{F}_{3}^{2 n}$ where $\phi(x+\alpha y)=(x, y)$ for $x, y \in \mathbb{F}_{3}^{n}$. We say that the image $\phi(C)$ of a code C over \mathbb{F}_{9} is the ternary image of C. The minimum Hamming weight d_{H} (resp. Lee weight d_{L}) of C is the smallest Hamming weight (resp. Lee weight) among all nonzero codewords in C. It is obvious that $\mathrm{wt}_{\mathrm{L}}(x)=\mathrm{wt}_{\mathrm{H}}(\phi(x))$, in addition, if C is an $[n, k]$ code over \mathbb{F}_{9} with minimum Lee weight d_{L} then $\phi(C)$ is a ternary $\left[2 n, 2 k, d_{\mathrm{L}}\right]$ code where an $[n, k, d]$ code is an $[n, k]$ code with minimum Hamming weight d. An [$n, k, n-k+1$] code is called MDS (cf. [5]).

It is well-known that the ternary Golay $[12,6,6]$ code G_{12} is the unique ternary code with these parameters, under the usual equivalence (see e.g. [5, Chapter 20, Theorem 20]). Goldberg [4] constructed a [6,3] code \mathscr{C} such that its ternary image $\phi(\mathscr{C})$ is the Golay code G_{12} (see also [1] for other ternary images of larger codes over \mathbb{F}_{9}). This motivates us to consider a classification of such codes, that is, codes C over \mathbb{F}_{9} with $\phi(C)=G_{12}$. To do this, we consider the following definitions of equivalence of codes over \mathbb{F}_{9}. Let C and C^{\prime} be codes over \mathbb{F}_{9}. If there is a monomial matrix P over \mathbb{F}_{3} such that $C=C^{\prime} \cdot P=\left\{x \cdot P \mid x \in C^{\prime}\right\}$, we say that two codes C and C^{\prime} are signed-permutation equivalent and monomial matrix P such that $C=C \cdot P$ is called a signed-permutation automorphism. The set of signed-permutation automorphisms is called the signed-permutation automorphism group of C. Moreover, if there is a monomial matrix P over \mathbb{F}_{9} with entries in $\{0,1,2, \alpha, 2 \alpha\}$ such that $C=C^{\prime} \cdot P$, we say that C and C^{\prime} are α-equivalent and a monomial matrix P such that $C=C \cdot P$ is said to be an α-automorphism. The set of α-automorphisms is said to be the α-automorphism group of C. Obviously, if two codes C and C^{\prime} are signed-permutation equivalent then they are α-equivalent. Note that the Lee weight of a codeword x is invariant under the α-equivalence.

[^0]In this paper, we give two classifications of codes over \mathbb{F}_{9} whose ternary images are the Golay codes under the signed-permutation equivalence and the α-equivalence. There are four such $[6,3]$ codes over \mathbb{F}_{9} under the signed-permutation equivalence and there is a unique such $[6,3]$ code over \mathbb{F}_{9} under the α-equivalence.

2. Results

Lemma 1. If C is a code over \mathbb{F}_{9} whose ternary image is the ternary Golay $[12,6,6]$ code then C is an $M D S[6,3,4]$ code.

Proof. Let C be a $[6,3, d \leqslant 3]$ code and x be a codeword of Hamming weight at most 3 . Then a codeword γx contains 1 in at least one of its coordinates for some $\gamma \in \mathbb{F}_{9}$. Hence the Lee weight of γx is at most five.

The converse assertion is not true in general. Consider the code with the following generator matrix

$$
\left(\begin{array}{cccccc}
1 & 0 & 0 & 1 & 2 \alpha+2 & 2 \alpha+2 \\
0 & 1 & 0 & 1 & \alpha+2 & \alpha+1 \\
0 & 0 & 1 & 1 & \alpha+1 & \alpha+2
\end{array}\right)
$$

This code is MDS but the ternary image is not the Golay code since it contains a codeword of Lee weight $\leqslant 5$, for example, $\mathrm{wt}_{\mathrm{L}}\left(r_{1}+2 r_{2}\right)=5$ where r_{i} is the i th row of the generator matrix.

Let C be a $[6,3]$ code over \mathbb{F}_{9} with $d_{\mathrm{L}}=6$ and generator matrix of the following form

$$
\left(\begin{array}{cccccc}
1 & 0 & 0 & a_{1} & a_{2} & a_{3} \\
0 & 1 & 0 & a_{4} & a_{5} & a_{6} \\
0 & 0 & 1 & a_{7} & a_{8} & a_{9}
\end{array}\right)
$$

By Lemma $1, C$ is a $[6,3,4]$ code. Hence $a_{i} \neq 0$ for each i. Without loss of generality, we may assume that $\left(\mathrm{wt}_{\mathrm{L}}\left(a_{1}\right)\right.$, $\left.\mathrm{wt}_{\mathrm{L}}\left(a_{2}\right), \mathrm{wt}_{\mathrm{L}}\left(a_{3}\right)\right)=(1,2,2)$ and $\left(\mathrm{wt}_{\mathrm{L}}\left(a_{4}\right), \mathrm{wt}_{\mathrm{L}}\left(a_{5}\right), \mathrm{wt}_{\mathrm{L}}\left(a_{6}\right), \mathrm{wt}_{\mathrm{L}}\left(a_{7}\right), \mathrm{wt}_{\mathrm{L}}\left(a_{8}\right), \mathrm{wt}_{\mathrm{L}}\left(a_{9}\right)\right)=$
(A) $(2,1,2,2,2,1)$,
(B) $(1,2,2,1,2,2)$ or
(C) $(1,2,2,2,1,2)$.

Lemma 2. Let C be a $[6,3]$ code over \mathbb{F}_{9} with generator matrix of type (B) or (C). Then C has minimum Lee weight $d_{\mathrm{L}} \leqslant 5$.

Proof. Suppose that C has minimum Lee weight 6 . Let r_{1} and r_{2} be the first and second rows in the generator matrix of C. From our equivalence, we may assume that either $r_{1}=\left(1,0,0,1, g_{1}, g_{2}\right)$ and $r_{2}=\left(0,1,0,1, g_{3}, g_{4}\right)$ or $r_{1}=\left(1,0,0,1, g_{1}, g_{2}\right)$ and $r_{2}=\left(0,1,0, \alpha, g_{3}, g_{4}\right)$ where $\mathrm{wt}_{\mathrm{L}}\left(g_{i}\right)=2$ for $i=1,2,3,4$. Consider the first case. Since the codeword $r_{1}+2 r_{2}=\left(1,2,0,0, g_{1}+\right.$ $\left.2 g_{3}, g_{2}+2 g_{4}\right)$ has weight $\geqslant 6$, we have $\mathrm{wt}_{\mathrm{L}}\left(g_{1}+2 g_{3}\right) \geqslant 2$ and $\mathrm{wt}_{\mathrm{L}}\left(g_{2}+2 g_{4}\right) \geqslant 2$. Hence $\mathrm{wt}_{\mathrm{L}}\left(g_{1}+2 g_{3}\right)=\mathrm{wt}_{\mathrm{L}}\left(g_{2}+2 g_{4}\right)=2$. Since $\left\{g_{1}, g_{3}\right\}=\{1+\alpha, 2+2 \alpha\}$ or $\{1+2 \alpha, 2+\alpha\}$, the codeword $r_{1}+r_{2}$ has Lee weight at most 5 . The later case is similar and $w t_{\mathrm{L}}\left(r_{1}+2 \alpha r_{2}\right) \leqslant 5$.

Our classification of codes whose ternary images are the Golay code under the signed-permutation equivalence was done as follows. All the computations in this paper were done using GAP [3] or MAGMA [2]. In particular, the computations by GAP were done by considering codes as vector spaces over a finite field. By Lemma 2, we can assume that $\left(a_{1}, a_{2}, a_{3}\right)=$ $(1,2+2 \alpha, 2+2 \alpha),(1,2+2 \alpha, 1+2 \alpha),(1,1+2 \alpha, 1+2 \alpha),(\alpha, 2+2 \alpha, 2+2 \alpha),(\alpha, 2+2 \alpha, 1+2 \alpha)$ or $(\alpha, 1+2 \alpha, 1+2 \alpha)$. Then the possibilities of generator matrices are at most 6×4^{6} from $a_{5}, a_{9} \in Q$ and $a_{4}, a_{6}, a_{7}, a_{8} \in N$. From the condition that its ternary image is the Golay code, we have found 32 distinct codes for each $\left(a_{1}, a_{2}, a_{3}\right)$. So there are 192 distinct codes which must be checked further for signed-permutation equivalence. Then by only permutations of the coordinates, the 32 codes are reduced to twelve for each $\left(a_{1}, a_{2}, a_{3}\right)$. Now we have verified that the twelve codes for each $\left(a_{1}, a_{2}, a_{3}\right)$ are divided into $4,3,4,3,2$ and 3 codes under the signed-permutation equivalence. Finally, we have verified that each of the 15 codes with $\left(a_{1}, a_{2}, a_{3}\right) \neq(1,2+2 \alpha, 2+2 \alpha)$ is equivalent to one of the four codes with $\left(a_{1}, a_{2}, a_{3}\right)=(1,2+2 \alpha, 2+2 \alpha)$. Therefore we obtain the following result.

Theorem 3. There are four codes over \mathbb{F}_{9} whose ternary images are the ternary Golay code, up to signed-permutation equivalence.

Let $C_{i}(i=1,2,3,4)$ be the code with the generator matrix $\left(I, A_{i}\right)$, where

$$
\begin{array}{ll}
A_{1}=\left(\begin{array}{ccc}
1 & 2+2 \alpha & 2+2 \alpha \\
2+2 \alpha & 1 & 2+2 \alpha \\
2+2 \alpha & 2+2 \alpha & 1
\end{array}\right), & A_{2}=\left(\begin{array}{ccc}
1 & 2+2 \alpha & 2+2 \alpha \\
2+2 \alpha & 1 & 2+2 \alpha \\
2+\alpha & 2+\alpha & 2 \alpha
\end{array}\right), \\
A_{3}=\left(\begin{array}{ccc}
1 & 2+2 \alpha & 2+2 \alpha \\
2+2 \alpha & 2 & 1+2 \alpha \\
2+2 \alpha & 1+2 \alpha & 2
\end{array}\right), & A_{4}=\left(\begin{array}{ccc}
1 & 2+2 \alpha & 2+2 \alpha \\
2+2 \alpha & 2 & 1+2 \alpha \\
2+\alpha & 2+2 \alpha & \alpha
\end{array}\right) .
\end{array}
$$

Then these four codes C_{1}, C_{2}, C_{3} and C_{4} form the set of the four codes given in the above theorem. Note that C_{1} is the same as the code given in [4].

By Theorem in [4], $C_{1} \cap C_{1}^{\perp}=\{0\}$. We have verified that $C_{2} \cap C_{2}^{\perp}$ is a one-dimensional code generated by (111221) and $C_{i} \cap C_{i}^{\perp}=\{0\}$ for $i=3,4$. The orders of the signed-permutation automorphism groups of C_{1}, C_{2}, C_{3} and C_{4} are $120,20,8$ and 12 , respectively. It is easily checked that C_{i} is signed-permutation equivalent to its dual code C_{i}^{\perp} for each i.

Permutation-equivalent codes have the identical complete weight enumerators but equivalent codes under the signedpermutation may have different complete weight enumerators. The appropriate weight enumerator for such equivalent codes is the symmetrized weight enumerator defined as

$$
\operatorname{swe}_{C}(a, b, c, d, e)=\sum_{x \in C} a^{n_{0}(x)} b^{n_{1}(x)} c^{n_{2}(x)} d^{n_{3}(x)} e^{n_{4}(x)}
$$

where $n_{0}(x)$ is the number of components 0 of $x, n_{1}(x)$ is the number of components 1 and $2, n_{2}(x)$ is the number of components α and $2 \alpha, n_{3}(x)$ is the number of components $1+\alpha$ and $2+2 \alpha$ and $n_{4}(x)$ is the number of components $2+\alpha$ and $1+2 \alpha$.

We give the symmetrized weight enumerators $s w e_{i}$ of C_{i} :

$$
\begin{aligned}
\text { swe }_{1}= & 12 d e^{5}+12 d^{5} e+20 c^{3} e^{3}+20 c^{3} d^{3}+60 b c^{2} d e^{2}+60 b c^{2} d^{2} e \\
& +12 b c^{5}+60 b^{2} c d e^{2}+60 b^{2} c d^{2} e+20 b^{3} e^{3}+20 b^{3} d^{3}+12 b^{5} c \\
& +60 a c d^{2} e^{2}+60 a b d^{2} e^{2}+60 a b^{2} c^{2} e+60 a b^{2} c^{2} d+30 a^{2} c^{2} e^{2} \\
& +30 a^{2} c^{2} d^{2}+30 a^{2} b^{2} e^{2}+30 a^{2} b^{2} d^{2}+a^{6}, \\
\text { swe }_{2}= & 2 e^{6}+10 d^{2} e^{4}+10 d^{4} e^{2}+2 d^{6}+20 c^{3} d e^{2}+20 c^{3} d^{2} e+2 c^{6} \\
& +20 b c^{2} e^{3}+40 b c^{2} d e^{2}+40 b c^{2} d^{2} e+20 b c^{2} d^{3}+20 b^{2} c e^{3} \\
& +40 b^{2} c d e^{2}+40 b^{2} c d^{2} e+20 b^{2} c d^{3}+10 b^{2} c^{4}+20 b^{3} d e^{2} \\
& +20 b^{3} d^{2} e+10 b^{4} c^{2}+2 b^{6}+20 a c d e^{3}+20 a c d^{2} e^{2}+20 a c d^{3} e \\
& +20 a b d e^{3}+20 a b d^{2} e^{2}+20 a b d^{3} e+20 a b c^{3} e+20 a b c^{3} d+20 a b^{2} c^{2} e \\
& +20 a b^{2} c^{2} d+20 a b^{3} c e+20 a b^{3} c d+10 a^{2} c^{2} e^{2}+20 a^{2} c^{2} d e \\
& +10 a^{2} c^{2} d^{2}+20 a^{2} b c e^{2}+20 a^{2} b c d^{2}+10 a^{2} b^{2} e^{2}+20 a^{2} b^{2} d e \\
& +10 a^{2} b^{2} d^{2}+a^{6}, \\
\text { swe }_{3}= & 4 d e^{5}+16 d^{3} e^{3}+4 d^{5} e+4 c^{3} e^{3}+16 c^{3} d e^{2}+16 c^{3} d^{2} e+4 c^{3} d^{3} \\
& +16 b c^{2} e^{3}+44 b c^{2} d e^{2}+44 b c^{2} d^{2} e+16 b c^{2} d^{3}+4 b c^{5} \\
& +16 b^{2} c e^{3}+44 b^{2} c d e^{2}+44 b^{2} c d^{2} e+16 b^{2} c d^{3}+4 b^{3} e^{3}
\end{aligned}
$$

$$
\begin{aligned}
& +16 b^{3} d e^{2}+16 b^{3} d^{2} e+4 b^{3} d^{3}+16 b^{3} c^{3}+4 b^{5} c+4 a c e^{4} \\
& +16 a c d e^{3}+20 a c d^{2} e^{2}+16 a c d^{3} e+4 a c d^{4}+4 a c^{4} e+4 a c^{4} d \\
& +4 a b e^{4}+16 a b d e^{3}+20 a b d^{2} e^{2}+16 a b d^{3} e+4 a b d^{4}+16 a b c^{3} e \\
& +16 a b c^{3} d+20 a b^{2} c^{2} e+20 a b^{2} c^{2} d+16 a b^{3} c e+16 a b^{3} c d \\
& +4 a b^{4} e+4 a b^{4} d+6 a^{2} c^{2} e^{2}+16 a^{2} c^{2} d e+6 a^{2} c^{2} d^{2} \\
& +16 a^{2} b c e^{2}+32 a^{2} b c d e+16 a^{2} b c d^{2}+6 a^{2} b^{2} e^{2}+16 a^{2} b^{2} d e+6 a^{2} b^{2} d^{2}+a^{6}, \\
s w e_{4}= & 12 d^{2} e^{4}+12 d^{4} e^{2}+8 c^{3} e^{3}+12 c^{3} d e^{2}+12 c^{3} d^{2} e+8 c^{3} d^{3} \\
& +12 b c^{2} e^{3}+48 b c^{2} d e^{2}+48 b c^{2} d^{2} e+12 b c^{2} d^{3}+12 b^{2} c e^{3} \\
& +48 b^{2} c d e^{2}+48 b^{2} c d^{2} e+12 b^{2} c d^{3}+12 b^{2} c^{4}+8 b^{3} e^{3} \\
& +12 b^{3} d e^{2}+12 b^{3} d^{2} e+8 b^{3} d^{3}+12 b^{4} c^{2}+6 a c e^{4}+12 a c d e^{3} \\
& +24 a c d^{2} e^{2}+12 a c d^{3} e+6 a c d^{4}+6 a c^{4} e+6 a c^{4} d+6 a b e^{4} \\
& +12 a b d e^{3}+24 a b d^{2} e^{2}+12 a b d^{3} e+6 a b d^{4}+12 a b c^{3} e \\
& +12 a b c^{3} d+24 a b^{2} c^{2} e+24 a b^{2} c^{2} d+12 a b^{3} c e+12 a b^{3} c d \\
& +6 a b^{4} e+6 a b^{4} d+6 a^{2} c^{2} e^{2}+12 a^{2} c^{2} d e+6 a^{2} c^{2} d^{2} \\
& +12 a^{2} b c e^{2}+48 a^{2} b c d e+12 a^{2} b c d^{2}+6 a^{2} b^{2} e^{2}+12 a^{2} b^{2} d e \\
& +6 a^{2} b^{2} d^{2}+a^{6} .
\end{aligned}
$$

Of course, it holds that $\operatorname{swe}_{C_{i}}\left(1, y, y, y^{2}, y^{2}\right)=1+264 y^{6}+440 y^{9}+24 y^{12}$ for $i=1,2,3,4$.
Now we are in a position to complete the classification of codes given in the above theorem under the α-equivalence. Define the following monomial matrices over \mathbb{F}_{9} :

$$
\begin{aligned}
& P_{2}=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \alpha & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right), \quad P_{3}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & \alpha & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \alpha \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \alpha & 0 \\
2 \alpha & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& P_{4}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & \alpha & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \alpha & 0 \\
2 \alpha & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Then we have

$$
C_{1}=C_{2} \cdot P_{2}=C_{3} \cdot P_{3}=C_{4} \cdot P_{4} .
$$

Hence we obtain the following theorem.

Theorem 4. The code \mathscr{C} given in $\left[4\right.$, Theorem] is the unique code over \mathbb{F}_{9} whose ternary image is the ternary Golay code, up to α-equivalence.

Let H and G be the set of all monomial matrices over \mathbb{F}_{3} and all monomial matrices over \mathbb{F}_{9} with entries in $\{0,1,2, \alpha, 2 \alpha\}$, respectively. It is clear that G forms a group and H is a subgroup of G. Let A be the set of all $[6,3,4]$ codes over \mathbb{F}_{9} whose ternary images are the ternary Golay code. Then the two groups G and H act on A by a left multiplication. We already calculate the order of the stabilizers $H_{C_{1}}, H_{C_{2}}, H_{C_{3}}$ and $H_{C_{4}}$, that is, the signed-permutation automorphism groups. By Theorem 3, we have

$$
\begin{aligned}
|A| & =\left|C_{1}^{H}\right|+\left|C_{2}^{H}\right|+\left|C_{3}^{H}\right|+\left|C_{4}^{H}\right| \\
& =\left|H: H_{C_{1}}\right|+\left|H: H_{C_{2}}\right|+\left|H: H_{C_{3}}\right|+\left|H: H_{C_{4}}\right| \\
& =6!\times 2^{6} / 120+6!\times 2^{6} / 20+6!\times 2^{6} / 8+6!\times 2^{6} / 12=12288,
\end{aligned}
$$

where $C_{i}^{H}=\left\{C_{i} \cdot P \mid P \in H\right\}$. Hence we obtain the order of the α-automorphism group $G_{\mathscr{C}}$ of \mathscr{C} from Theorem 4 as follows:

$$
\left|G_{\mathscr{C}}\right|=|G| /|A|=6!\times 4^{6} / 12288=240 .
$$

Finally, we consider other ternary self-dual codes of lengths up to 12 . The numbers of inequivalent ternary self-dual codes of lengths 4,8 and 12 are 1,1 and 3 , respectively (cf. [6, Table 1]). The unique code of length 4 (resp. 8) is denoted by E_{4} (resp. $2 E_{4}$). The other two codes of length 12 are denoted by $3 E_{4}$ and $4 C_{3}(12)$. Let A be the code over \mathbb{F}_{9} with generator matrix $(1,1+\alpha)$. The ternary image of A is E_{4}. Thus the ternary images of $A \oplus A$ and $A \oplus A \oplus A$ are $2 E_{4}$ and $3 E_{4}$, respectively. In addition, the ternary image of the code with generator matrix

$$
\left(\begin{array}{cccccc}
1 & 0 & 0 & \alpha & \alpha & 0 \\
0 & 1 & 0 & 1+2 \alpha & 2+\alpha & 1 \\
0 & 0 & 1 & 1+2 \alpha & 2+\alpha & 2
\end{array}\right)
$$

is $4 C_{3}(12)$. Therefore we have the following:

Proposition 5. Every ternary self-dual code of length up to 12 can be constructed as a ternary image of some code over \mathbb{F}_{9}.

Acknowledgements

The authors would like to thank the anonymous referees for reading carefully the manuscript and suggesting several improvements.

References

[1] G.F.M. Beenker, A note on extended quadratic residue codes over $G F(9)$ and their ternary images, IEEE Trans. Inform. Theory 30 (1984) 403-405
[2] W. Bosma, J. Cannon, Handbook of Magma Functions, Version 2.9, Sydney, July, 2002.
[3] The GAP Group, GAP-Groups, Algorithms, and Programming, Version 4.3; 2002, http://www.gap-system.org.
[4] D.Y. Goldberg, Reconstructing the ternary Golay code, J. Combin. Theory Ser. A 42 (1986) 296-299.
[5] F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam, 1977.
[6] C.L. Mallows, V. Pless, N.J.A. Sloane, Self-dual codes over $G F(3)$, SIAM. J. Appl. Math. 31 (1976) 649-666.

[^0]: * Corresponding author. Tel.: +81-236-28-4533; fax: +81-236-28-4538.

 E-mail addresses: araya@cs.inf.shizuoka.ac.jp (M. Araya), mharada@sci.kj.yamagata-u.ac.jp, harada@kdw.kj.yamagata-u.ac.jp (M. Harada).

