

Available online at www.sciencedirect.com

Discrete Mathematics 282 (2004) 233-237

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

MDS codes over \mathbb{F}_9 related to the ternary Golay code

Note

Makoto Araya^a, Masaaki Harada^{b,*}

^aDepartment of Computer Science, Shizuoka University, Hamamatsu 432-8011, Japan ^bDepartment of Mathematical Sciences, Yamagata University, Yamagata 990-8560, Japan

Received 13 November 2002; received in revised form 31 October 2003; accepted 5 November 2003

Abstract

Goldberg constructed an MDS code over \mathbb{F}_9 whose ternary image is the ternary Golay [12, 6, 6] code. Motivated by the work, in this paper, we found all such MDS codes over \mathbb{F}_9 under some equivalence. (© 2004 Elsevier B.V. All rights reserved.

Keywords: MDS code; Ternary Golay code; Code over F9

1. Introduction

An [n,k] code C over \mathbb{F}_q is a k-dimensional vector subspace of \mathbb{F}_q^n , where \mathbb{F}_q is the finite field of order q and q is a prime power. The elements of C are called codewords. The Hamming weight wt_H(x) of a codeword x is the number of non-zero coordinates in x. The dual code C^{\perp} of C is defined as $C^{\perp} = \{x \in \mathbb{F}_q^n | x \cdot y = 0 \text{ for all } y \in C\}$, where $x \cdot y$ denotes the usual inner-product.

Let $\mathbb{F}_3 = \{0, 1, 2\}$ be the finite field of order 3 and let $\mathbb{F}_9 = \mathbb{F}_3[\alpha]/(\alpha^2 + 1)$ be the finite field of order 9. In this paper, we consider codes over \mathbb{F}_3 and \mathbb{F}_9 . Let Q be the set of nonzero squares in \mathbb{F}_9 , that is, $Q = \{1, 2, \alpha, 2\alpha\}$, and let $N = \{1 + \alpha, 1 + 2\alpha, 2 + \alpha, 2 + 2\alpha\}$. The *Lee weight* $wt_L(x)$ of a codeword $x = (x_1, x_2, \dots, x_n)$ is defined as $\#\{i \mid x_i \in Q\} + 2\#\{i \mid x_i \in N\}$. As defined in [4], we consider a map ϕ from \mathbb{F}_9^n to \mathbb{F}_3^n where $\phi(x + \alpha y) = (x, y)$ for $x, y \in \mathbb{F}_3^n$. We say that the image $\phi(C)$ of a code C over \mathbb{F}_9 is the *ternary image* of C. The minimum Hamming weight d_H (resp. Lee weight d_L) of C is the smallest Hamming weight (resp. Lee weight) among all nonzero codewords in C. It is obvious that $wt_L(x) = wt_H(\phi(x))$, in addition, if C is an [n,k] code over \mathbb{F}_9 with minimum Hamming weight d. An [n,k,n-k+1] code is called MDS (cf. [5]).

It is well-known that the ternary Golay [12,6,6] code G_{12} is the unique ternary code with these parameters, under the usual equivalence (see e.g. [5, Chapter 20, Theorem 20]). Goldberg [4] constructed a [6,3] code \mathscr{C} such that its ternary image $\phi(\mathscr{C})$ is the Golay code G_{12} (see also [1] for other ternary images of larger codes over \mathbb{F}_9). This motivates us to consider a classification of such codes, that is, codes C over \mathbb{F}_9 with $\phi(C) = G_{12}$. To do this, we consider the following definitions of equivalence of codes over \mathbb{F}_9 . Let C and C' be codes over \mathbb{F}_9 . If there is a monomial matrix P over \mathbb{F}_3 such that $C = C' \cdot P = \{x \cdot P \mid x \in C'\}$, we say that two codes C and C' are signed-permutation equivalent and a monomial matrix P such that $C = C \cdot P$ is called a signed-permutation automorphism. The set of signed-permutation automorphisms is called the signed-permutation automorphism group of C. Moreover, if there is a monomial matrix P over \mathbb{F}_9 with entries in $\{0, 1, 2, \alpha, 2\alpha\}$ such that $C = C' \cdot P$, we say that C and C' are α -equivalent and a monomial matrix P such that $C = C \cdot P$ is said to be an α -automorphism. The set of α -automorphisms is said to be the α -automorphism group of C. Obviously, if two codes C and C' are signed-permutation equivalent. Note that the Lee weight of a codeword x is invariant under the α -equivalence.

^{*} Corresponding author. Tel.: +81-236-28-4533; fax: +81-236-28-4538.

E-mail addresses: araya@cs.inf.shizuoka.ac.jp (M. Araya), mharada@sci.kj.yamagata-u.ac.jp, harada@kdw.kj.yamagata-u.ac.jp (M. Harada).

In this paper, we give two classifications of codes over \mathbb{F}_9 whose ternary images are the Golay codes under the signed-permutation equivalence and the α -equivalence. There are four such [6,3] codes over \mathbb{F}_9 under the signed-permutation equivalence and there is a unique such [6,3] code over \mathbb{F}_9 under the α -equivalence.

2. Results

Lemma 1. If C is a code over \mathbb{F}_9 whose ternary image is the ternary Golay [12,6,6] code then C is an MDS [6,3,4] code.

Proof. Let *C* be a $[6,3,d \leq 3]$ code and *x* be a codeword of Hamming weight at most 3. Then a codeword γx contains 1 in at least one of its coordinates for some $\gamma \in \mathbb{F}_9$. Hence the Lee weight of γx is at most five. \Box

The converse assertion is not true in general. Consider the code with the following generator matrix

 $\begin{pmatrix} 1 & 0 & 0 & 1 & 2\alpha + 2 & 2\alpha + 2 \\ 0 & 1 & 0 & 1 & \alpha + 2 & \alpha + 1 \\ 0 & 0 & 1 & 1 & \alpha + 1 & \alpha + 2 \end{pmatrix}.$

This code is MDS but the ternary image is not the Golay code since it contains a codeword of Lee weight ≤ 5 , for example, wt_L($r_1 + 2r_2$) = 5 where r_i is the *i*th row of the generator matrix.

Let C be a [6,3] code over \mathbb{F}_9 with $d_{\rm L} = 6$ and generator matrix of the following form

$\begin{pmatrix} 1 \end{pmatrix}$	0	0	a_1	a_2	a_3
0	1	0	a_4	<i>a</i> 5	a_6
0/	0	1	a_7	a_8	a9)

By Lemma 1, C is a [6,3,4] code. Hence $a_i \neq 0$ for each *i*. Without loss of generality, we may assume that $(wt_L(a_1), wt_L(a_2), wt_L(a_3)) = (1,2,2)$ and $(wt_L(a_4), wt_L(a_5), wt_L(a_6), wt_L(a_7), wt_L(a_8), wt_L(a_9)) =$

(A) (2,1,2,2,2,1),
(B) (1,2,2,1,2,2) or
(C) (1,2,2,2,1,2).

Lemma 2. Let C be a [6,3] code over \mathbb{F}_9 with generator matrix of type (B) or (C). Then C has minimum Lee weight $d_L \leq 5$.

Proof. Suppose that *C* has minimum Lee weight 6. Let r_1 and r_2 be the first and second rows in the generator matrix of *C*. From our equivalence, we may assume that either $r_1 = (1, 0, 0, 1, g_1, g_2)$ and $r_2 = (0, 1, 0, 1, g_3, g_4)$ or $r_1 = (1, 0, 0, 1, g_1, g_2)$ and $r_2 = (0, 1, 0, \alpha, g_3, g_4)$ where wt_L(g_i)=2 for i = 1, 2, 3, 4. Consider the first case. Since the codeword $r_1 + 2r_2 = (1, 2, 0, 0, g_1 + 2g_3, g_2 + 2g_4)$ has weight ≥ 6 , we have wt_L($g_1 + 2g_3$) ≥ 2 and wt_L($g_2 + 2g_4$) ≥ 2 . Hence wt_L($g_1 + 2g_3$)=wt_L($g_2 + 2g_4$)=2. Since $\{g_1, g_3\} = \{1 + \alpha, 2 + 2\alpha\}$ or $\{1 + 2\alpha, 2 + \alpha\}$, the codeword $r_1 + r_2$ has Lee weight at most 5. The later case is similar and $wt_L(r_1 + 2\alpha r_2) \leq 5$.

Our classification of codes whose ternary images are the Golay code under the signed-permutation equivalence was done as follows. All the computations in this paper were done using GAP [3] or MAGMA [2]. In particular, the computations by GAP were done by considering codes as vector spaces over a finite field. By Lemma 2, we can assume that $(a_1, a_2, a_3) =$ $(1, 2 + 2\alpha, 2 + 2\alpha)$, $(1, 2 + 2\alpha, 1 + 2\alpha)$, $(1, 1 + 2\alpha, 1 + 2\alpha)$, $(\alpha, 2 + 2\alpha, 2 + 2\alpha)$, $(\alpha, 2 + 2\alpha, 1 + 2\alpha)$ or $(\alpha, 1 + 2\alpha, 1 + 2\alpha)$. Then the possibilities of generator matrices are at most 6×4^6 from $a_5, a_9 \in Q$ and $a_4, a_6, a_7, a_8 \in N$. From the condition that its ternary image is the Golay code, we have found 32 distinct codes for each (a_1, a_2, a_3) . So there are 192 distinct codes which must be checked further for signed-permutation equivalence. Then by only permutations of the coordinates, the 32 codes are reduced to twelve for each (a_1, a_2, a_3) . Now we have verified that the twelve codes for each (a_1, a_2, a_3) are divided into 4, 3, 4, 3, 2 and 3 codes under the signed-permutation equivalence. Finally, we have verified that each of the 15 codes with $(a_1, a_2, a_3) \neq (1, 2 + 2\alpha, 2 + 2\alpha)$ is equivalent to one of the four codes with $(a_1, a_2, a_3) = (1, 2 + 2\alpha, 2 + 2\alpha)$. Therefore we obtain the following result. **Theorem 3.** There are four codes over \mathbb{F}_9 whose ternary images are the ternary Golay code, up to signed-permutation equivalence.

Let C_i (*i* = 1, 2, 3, 4) be the code with the generator matrix (*I*, *A_i*), where

$$A_{1} = \begin{pmatrix} 1 & 2+2\alpha & 2+2\alpha \\ 2+2\alpha & 1 & 2+2\alpha \\ 2+2\alpha & 2+2\alpha & 1 \end{pmatrix}, \quad A_{2} = \begin{pmatrix} 1 & 2+2\alpha & 2+2\alpha \\ 2+2\alpha & 1 & 2+2\alpha \\ 2+\alpha & 2+\alpha & 2\alpha \end{pmatrix},$$
$$A_{3} = \begin{pmatrix} 1 & 2+2\alpha & 2+2\alpha \\ 2+2\alpha & 2 & 1+2\alpha \\ 2+2\alpha & 1+2\alpha & 2 \end{pmatrix}, \quad A_{4} = \begin{pmatrix} 1 & 2+2\alpha & 2+2\alpha \\ 2+2\alpha & 2 & 1+2\alpha \\ 2+\alpha & 2+2\alpha & \alpha \end{pmatrix}.$$

Then these four codes C_1 , C_2 , C_3 and C_4 form the set of the four codes given in the above theorem. Note that C_1 is the same as the code given in [4].

By Theorem in [4], $C_1 \cap C_1^{\perp} = \{0\}$. We have verified that $C_2 \cap C_2^{\perp}$ is a one-dimensional code generated by (111221) and $C_i \cap C_i^{\perp} = \{0\}$ for i = 3, 4. The orders of the signed-permutation automorphism groups of C_1, C_2, C_3 and C_4 are 120,20,8 and 12, respectively. It is easily checked that C_i is signed-permutation equivalent to its dual code C_i^{\perp} for each *i*.

Permutation-equivalent codes have the identical complete weight enumerators but equivalent codes under the signedpermutation may have different complete weight enumerators. The appropriate weight enumerator for such equivalent codes is the *symmetrized weight enumerator* defined as

swec(a,b,c,d,e) =
$$\sum_{x \in C} a^{n_0(x)} b^{n_1(x)} c^{n_2(x)} d^{n_3(x)} e^{n_4(x)}$$

where $n_0(x)$ is the number of components 0 of x, $n_1(x)$ is the number of components 1 and 2, $n_2(x)$ is the number of components α and 2α , $n_3(x)$ is the number of components $1 + \alpha$ and $2 + 2\alpha$ and $n_4(x)$ is the number of components $2 + \alpha$ and $1 + 2\alpha$.

We give the symmetrized weight enumerators swe_i of C_i :

$$swe_{1} = 12de^{5} + 12d^{5}e + 20c^{3}e^{3} + 20c^{3}d^{3} + 60bc^{2}de^{2} + 60bc^{2}d^{2}e$$

+12bc^{5} + 60b^{2}cde^{2} + 60b^{2}cd^{2}e + 20b^{3}e^{3} + 20b^{3}d^{3} + 12b^{5}c
+60acd²e² + 60abd²e² + 60ab²c²e + 60ab²c²d + 30a²c²e²
+30a²c²d² + 30a²b²e² + 30a²b²d² + a⁶,

$$swe_{2} = 2e^{6} + 10d^{2}e^{4} + 10d^{4}e^{2} + 2d^{6} + 20c^{3}de^{2} + 20c^{3}d^{2}e + 2c^{6}$$

$$+ 20bc^{2}e^{3} + 40bc^{2}de^{2} + 40bc^{2}d^{2}e + 20bc^{2}d^{3} + 20b^{2}ce^{3}$$

$$+ 40b^{2}cde^{2} + 40b^{2}cd^{2}e + 20b^{2}cd^{3} + 10b^{2}c^{4} + 20b^{3}de^{2}$$

$$+ 20b^{3}d^{2}e + 10b^{4}c^{2} + 2b^{6} + 20acde^{3} + 20acd^{2}e^{2} + 20acd^{3}e$$

$$+ 20abde^{3} + 20abd^{2}e^{2} + 20abd^{3}e + 20abc^{3}e + 20abc^{3}d + 20ab^{2}c^{2}e$$

$$+ 20ab^{2}c^{2}d + 20ab^{3}ce + 20ab^{3}cd + 10a^{2}c^{2}e^{2} + 20a^{2}c^{2}de$$

$$+ 10a^{2}c^{2}d^{2} + 20a^{2}bce^{2} + 20a^{2}bcd^{2} + 10a^{2}b^{2}e^{2} + 20a^{2}b^{2}de$$

$$+ 10a^{2}b^{2}d^{2} + a^{6},$$

$$swe_{3} = 4de^{5} + 16d^{3}e^{3} + 4d^{5}e + 4c^{3}e^{3} + 16c^{3}de^{2} + 16c^{3}d^{2}e + 4c^{3}d^{3}$$

$$+16bc^{2}e^{3} + 44bc^{2}de^{2} + 44bc^{2}d^{2}e + 16bc^{2}d^{3} + 4bc^{5}$$
$$+16b^{2}ce^{3} + 44b^{2}cde^{2} + 44b^{2}cd^{2}e + 16b^{2}cd^{3} + 4b^{3}e^{3}$$

$$\begin{split} &+16b^{3}de^{2}+16b^{3}d^{2}e+4b^{3}d^{3}+16b^{3}c^{3}+4b^{5}c+4ace^{4}\\ &+16acde^{3}+20acd^{2}e^{2}+16acd^{3}e+4acd^{4}+4ac^{4}e+4ac^{4}d\\ &+4abe^{4}+16abde^{3}+20abd^{2}e^{2}+16abd^{3}e+4abd^{4}+16abc^{3}e\\ &+16abc^{3}d+20ab^{2}c^{2}e+20ab^{2}c^{2}d+16ab^{3}ce+16ab^{3}cd\\ &+4ab^{4}e+4ab^{4}d+6a^{2}c^{2}e^{2}+16a^{2}c^{2}de+6a^{2}c^{2}d^{2}\\ &+16a^{2}bce^{2}+32a^{2}bcde+16a^{2}bcd^{2}+6a^{2}b^{2}e^{2}+16a^{2}b^{2}de+6a^{2}b^{2}d^{2}+a^{6}, \end{split}$$

$$swe_{4} = 12d^{2}e^{4} + 12d^{4}e^{2} + 8c^{3}e^{3} + 12c^{3}de^{2} + 12c^{3}d^{2}e + 8c^{3}d^{3}$$

+12bc²e³ + 48bc²de² + 48bc²d²e + 12bc²d³ + 12b²ce³
+48b²cde² + 48b²cd²e + 12b²cd³ + 12b²c⁴ + 8b³e³
+12b³de² + 12b³d²e + 8b³d³ + 12b⁴c² + 6ace⁴ + 12acde³
+24acd²e² + 12acd³e + 6acd⁴ + 6ac⁴e + 6ac⁴d + 6abe⁴
+12abde³ + 24abd²e² + 12abd³e + 6abd⁴ + 12abc³e
+12abc³d + 24ab²c²e + 24ab²c²d + 12ab³ce + 12ab³cd
+6ab⁴e + 6ab⁴d + 6a²c²e² + 12a²c²de + 6a²c²d²
+12a²bce² + 48a²bcde + 12a²bcd² + 6a²b²e² + 12a²b²de
+6a²b²d² + a⁶.

Of course, it holds that $swe_{C_i}(1, y, y, y^2, y^2) = 1 + 264y^6 + 440y^9 + 24y^{12}$ for i = 1, 2, 3, 4. Now we are in a position to complete the classification of codes given in the above theorem under the α -equivalence. Define the following monomial matrices over \mathbb{F}_9 :

$$P_{2} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \alpha & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}, P_{3} = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & \alpha & 0 & 0 & 0 & \alpha \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \alpha & 0 \\ 2\alpha & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
 and
$$P_{4} = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & \alpha & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \alpha & 0 \\ 2\alpha & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Then we have

$$C_1 = C_2 \cdot P_2 = C_3 \cdot P_3 = C_4 \cdot P_4.$$

Hence we obtain the following theorem.

Theorem 4. The code \mathscr{C} given in [4, Theorem] is the unique code over \mathbb{F}_9 whose ternary image is the ternary Golay code, up to α -equivalence.

Let *H* and *G* be the set of all monomial matrices over \mathbb{F}_3 and all monomial matrices over \mathbb{F}_9 with entries in $\{0, 1, 2, \alpha, 2\alpha\}$, respectively. It is clear that *G* forms a group and *H* is a subgroup of *G*. Let *A* be the set of all [6, 3, 4] codes over \mathbb{F}_9 whose ternary images are the ternary Golay code. Then the two groups *G* and *H* act on *A* by a left multiplication. We already calculate the order of the stabilizers H_{C_1} , H_{C_2} , H_{C_3} and H_{C_4} , that is, the signed-permutation automorphism groups. By Theorem 3, we have

$$\begin{aligned} |A| &= |C_1^H| + |C_2^H| + |C_3^H| + |C_4^H| \\ &= |H: H_{C_1}| + |H: H_{C_2}| + |H: H_{C_3}| + |H: H_{C_4}| \\ &= 6! \times 2^6 / 120 + 6! \times 2^6 / 20 + 6! \times 2^6 / 8 + 6! \times 2^6 / 12 = 12288 \end{aligned}$$

where $C_i^H = \{C_i \cdot P \mid P \in H\}$. Hence we obtain the order of the α -automorphism group $G_{\mathscr{C}}$ of \mathscr{C} from Theorem 4 as follows:

 $|G_{\mathscr{C}}| = |G|/|A| = 6! \times 4^6/12288 = 240.$

Finally, we consider other ternary self-dual codes of lengths up to 12. The numbers of inequivalent ternary self-dual codes of lengths 4,8 and 12 are 1,1 and 3, respectively (cf. [6, Table 1]). The unique code of length 4 (resp. 8) is denoted by E_4 (resp. $2E_4$). The other two codes of length 12 are denoted by $3E_4$ and $4C_3(12)$. Let A be the code over \mathbb{F}_9 with generator matrix $(1, 1 + \alpha)$. The ternary image of A is E_4 . Thus the ternary images of $A \oplus A$ and $A \oplus A \oplus A$ are $2E_4$ and $3E_4$, respectively. In addition, the ternary image of the code with generator matrix

 $\begin{pmatrix} 1 & 0 & 0 & \alpha & \alpha & 0 \\ 0 & 1 & 0 & 1+2\alpha & 2+\alpha & 1 \\ 0 & 0 & 1 & 1+2\alpha & 2+\alpha & 2 \end{pmatrix}$

is $4C_3(12)$. Therefore we have the following:

Proposition 5. Every ternary self-dual code of length up to 12 can be constructed as a ternary image of some code over \mathbb{F}_{9} .

Acknowledgements

The authors would like to thank the anonymous referees for reading carefully the manuscript and suggesting several improvements.

References

- [1] G.F.M. Beenker, A note on extended quadratic residue codes over *GF*(9) and their ternary images, IEEE Trans. Inform. Theory 30 (1984) 403–405.
- [2] W. Bosma, J. Cannon, Handbook of Magma Functions, Version 2.9, Sydney, July, 2002.
- [3] The GAP Group, GAP-Groups, Algorithms, and Programming, Version 4.3; 2002, http://www.gap-system.org.
- [4] D.Y. Goldberg, Reconstructing the ternary Golay code, J. Combin. Theory Ser. A 42 (1986) 296–299.
- [5] F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam, 1977.
- [6] C.L. Mallows, V. Pless, N.J.A. Sloane, Self-dual codes over GF(3), SIAM. J. Appl. Math. 31 (1976) 649-666.