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Abstract
Service-oriented architecture (SOA) provides a scalable and flex-
ible framework for service composition. Service composition al-
gorithms play an important role in selecting services from differ-
ent providers to reach desirable QoS levels according to the per-
formance requirements of composite services, and improve cus-
tomer satisfaction. This paper proposes a novel QoS-based dy-
namic service composition technique for web services with Ant
Colony Optimization (ACO) in an optimization approach. The
novelty of this work lies with our multi-objective optimal-path
selection modeling for QoS-based dynamic web service com-
position and a new version of ACO algorithm that is proposed
to solve this multi-objective optimization problem. The experi-
ments show that the new version of ACO algorithm is very effi-
cient in solving such a problem.

1 Introduction
One of the recent trends of software architecture is the service-
oriented architecture (SOA). The goal of SOA development is to
build platform independent software components, called services,
to improve system quality and development productivity. Service
rendering can be done through an SOA based method called ser-
vice composition, usually done in a distributed environment on
the internet [1].
Web service composition to meet quality of service (QoS)

requirements is one of the important applications of SOA. QoS
for web services refers to various non-functional characteristics
such as response time, throughput, availability, reliability, secu-
rity, and cost [2] [3] [4]. A composite web service is an um-
brella structure that aggregates multiple atomic and other com-
posite web services, which interact according to a given process
model [5]. Each atomic web service as an indivisible software
component can implement a task of the business process under-
lying a composite web service, and the values of QoS attributes
may vary with external environments or be evolutionarily updated
by service providers. Given a request for a QoS-aware compos-
ite service, atomic services need to be selected for composition
in a reasonably short time [6] [7] especially for interactive and
real-time applications. Such a speedy composition is required for
the urgency of tasks and the risk of losing customers who may be
frustrated due to long wait. Thus, it is always desirable for service
providers to improve their market share and customer satisfaction
by providing services with good QoS.

The original ACO algorithm was invented by Marco Dorigo
in 1992 [8]. ACO algorithms have been widely employed on NP
combinatorial optimization problems [9] [10] [11] [12]. ACO
is inspired by the foraging behavior of real ants. Upon search-
ing for food, ants initially explore the area surrounding their nest
in a random manner. Once an ant finds a food source, it evalu-
ates the quality of food source and carries some food back to the
nest. During the return trip from a food source, ants deposit a
pheromone trail on the ground, guiding other ants to follow the
trail to the food source. The amount of pheromone deposited
depends on the quantity and quality of the food. As the emer-
gent property [13] of random path exploration by many ants,
short paths are iteratively reinforced, and finally a stable path
with strong pheromone trail is formed so that nearly all the ants
follow it to food source. ACO mainly consists of two features:
global positive feedback and local heuristic. By combining the
two features, global optimal paths/solutions can be found based
on the proper setting of parameters, such as initial quantity, up-
dated quantity of pheromone and pheromone updating frequency.
ACO algorithm is characterized by the interaction of a large num-
ber of agents that follow the same simple rules, which is the merit
of swarm intelligence and results in simplicity and efficiency in
real-life applications with very good performance.
In multi-objective optimization problems, the aim is to find

good compromises among multiple objectives. In other words,
we need to search for a solution for which each objective has been
optimized to the extent that if we try to optimize it any further,
other objective(s) will suffer as a result. Such a phenomenon is
referred to as Pareto Optimality [14]. The goal is to find such a
solution, and quantify how much better this solution is compared
to other such solutions (there will generally be many) given a
measurement standard (utility function).
In our QoS-based dynamic service composition problem, we

try to find the service combination that can optimize the global
utility function for QoS. If such a combination is found to form a
path, we call the aggregated QoS of this path as optimal. Solving
this problem is not trivial, for enumerating all the combinations
by brute force works only for small-scale instances and the prob-
lem becomes increasingly demanding as the length of the path
and size of each service candidate set grow. When optimal QoS
can not be reached, we may consider finding near-optimal QoS
to be achieved by taking full advantage of the search capability
of certain meta-heuristics. Section 4.4 will detail the mapping
between path exploration by ants and dynamic web service se-
lection for composition based on a new version of ACO.
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2 Related Work
Various approaches have been proposed to solve web service
composition problems. Researchers in this area have focused
on different sub-topics and proposed their own assertions and re-
sults.
In order to attack the high computational complexity prob-

lem of web service selection, some heuristics and biologically in-
spired optimization algorithms were proposed due to the simplic-
ity of the algorithms and fast speed of convergence to optimal or
near-optimal solutions. Berbner et al. [15] presented a heuristic
H1 RELAX IP that uses a backtracking algorithm on the results
computed by a relaxed integer program. In [16] [17], Canfora
and Dong et al. used genetic algorithms to solve the QoS-based
web service selection problem by encoding web service combina-
tions as a population and exerting evolutionary strategies learned
from biological field on the population. In [17], the authors only
considered the two attributes price and execution time both of
which should be maximized, and not realized that solutions from
the approach could worsen other objectives such as availability,
reliability which should be minimized. Thus their approach over-
simplified web service composition problem and could not pro-
vide satisfying solutions.
Xia et al. [18] who proposed to leverage ACO to optimize

the attributes of QoS based on user preference. To our knowl-
edge, that was the first attempt to compose web services employ-
ing ACO; however, their approach was not practical for dynamic
web service composition due to the fact that their approach waits
for the returned results from running of ACO algorithm for each
specific request. Additionally, the work of Xia et al. did not ad-
dress issues for multi-objective optimization problems but chose
paths based on single attributes separately. Besides, poor set-
tings of pheromones may result in poor performance of ACO.
The paths may even be not convergent. Fang et al. [19] ever di-
rectly used Multi-objective Ant Colony Optimization (MOACO)
for web services selection. However, they did not systematically
propose any method to process web services whose workflows
have complex topology, which greatly disable their method to be
a general approach. The fitness function in their work was mot
strictly defined, which did not take into account the fact that dif-
ferent objectives can be uncomparable. Besides, as one of the
two main features of ACO algorithms, the local heuristic strat-
egy was not considered at all, which may make their approach
to converge quickly to non-optimal solutions. In this paper, an
approach including decomposition of complex workflows, local
heuristics, and pheromone updating is systematically proposed.

3 Background Information
This section provides some background information on QoS-
based web service selection and composition.

3.1 System Parameters and Notations
In this paper, we adopt a similar system notation as those in [20]
(See Table 1).
Abstract Service ASi: An abstract service is a node in the ab-

Table 1: System Parameters and Notations [20]

ASi Abstract service i
Ci Service candidate set i
cs(i,j) Concrete service j from service candidate set Ci for task i
q(i,j) QoS vector for concrete service cs(i,j), q(i,j) = [q1

(i,j), . . . , q
n
(i,j)]

stract process model describing the required functionality of the
corresponding task.
Concrete Service cs(i,j): A concrete service cs(i,j) is a real
service that implements the functionality specified by ASi as-
sociated with a QoS vector q(i,j) = [q1

(i,j), . . . , q
n
(i,j)], with n

application-level QoS parameters [21].
Service Candidate SetCi: A service candidate set is a collection
of concrete services with a common functionality but different
nonfunctional properties (such as QoS) [20].
In this paper, a concrete service can be an atomic web service

or a composite web service which is composed by atomic web
services and other composite web services. The concrete service
can be treated as an atomic service like a black box by using QoS
aggregation techniques [2] [4] [22] [23] in case that the concrete
service is a composite web service.

3.2 QoS-based Web Service Composition
Web service composition aims at selecting and interconnecting
web services provided by different web service providers accord-
ing to a business process [24]. In the field of service composition,
workflow model is a widely used business process model which
includes abstract tasks (Abstract Services in our work) as nodes
and defines potential data dependency by directed acyclic graph.
Figure 1 is a workflow with service candidate set for each abstract
service.

Figure 1: Workflow with Service Candidate Set for Each Abstract
Service

Based on a workflow, appropriate web services are selected
to form the execution plan for a web service composition. In
QoS-based service composition, how to select services from the
corresponding service candidate sets at concrete service layer di-
rectly determines the level of QoS that the composed service will
be at. ASi represents abstract service i, and cs(i,j) represents the
jth concrete web service in the corresponding service candidate
set Ci for ASi.
Based on Figure 1, we construct the corresponding service
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candidate graph by replacing abstract service in the functional
graph with a service candidate set and constructing a full set
of connection links between concrete services of any two con-
nected service candidate sets. Figure 2 shows the service candi-
date graph for the abstract process model in Figure 1. The starting
node and ending node labeled as “Start” and “End” in Figure 1
and Figure 2 can be treated as sets with one single element. A ser-
vice candidate graph illustrates all the combinations of services
selected from service candidate sets, and each combination of
services actually forms paths that traverse a service of each ser-
vice candidate set involved in the combination. In such a service
candidate graph, our service selection problem turns into a path
selection problem. Section 4.1 proposes a decomposition strat-
egy for the functional graph so that the problem can be further
simplified as a directed path selection problem, which is easier to
be handled.

Figure 2: Service Candidate Graph

3.3 QoS Attributes and Aggregation of Compos-
ite Services

QoS for web services refers to various non-functional attributes
of an application such as response time, throughput, availability,
reliability, security, capability and cost [2] [3][4]. However, there
is no standard to include all or any subset of the non-functional
attributes in developing web services. This section synthesizes
the related work [2] [4] [22] [23] to give a brief introduction of
four typical QoS attributes used for evaluating concrete services
and composite services. Based on these QoS attributes, the cor-
responding QoS aggregation functions for a given composite ser-
vice will be illustrated, which will be used to discuss the proposed
dynamic service composition scheme hereafter.
The QoS level of a composite service is determined by the

values of QoS attributes of its concrete services and the com-
position structure patterns (e.g., sequential, AND split (Fork),
XOR split (Conditional), Loop, AND join (Merge), and XOR
join (Trigger) [20]). This section introduces QoS aggregation
of composite services with a sequential flow structure. In the
following section, a decomposition strategy will be provided to
transform a general flow structure into several sequential flow
structures. The QoS vector for a composite service S is defined
as Q(S) = [qattr 1(S), . . . , qattr n(S)] where qattr i(S) repre-
sents the value of ith QoS attribute of the composite service and
can be aggregated from the values of the QoS attributes of its

concrete services. Except some special domain-oriented QoS at-
tributes, most commonly met QoS aggregation functions can be
represented by the summation relation or multiplication relation.
For example, availability and reliability can be aggregated as a
product, and cost and response time can be aggregated as a sum.
Assume that the composite service S is composed by a sequence
of concrete services {s1, . . . , sn} using a sequential flow struc-
ture. Table 2 shows the QoS aggregation functions for the four
aforementioned QoS attributes.

Table 2: QoS Aggregation Functions for Composite Services

QoS Attributes Aggregation Function
Response Time qrt(S) =

∑n
i=1 qrt(si)

Cost qc(S) =
∑n

i=1 qc(si)
Availability qa(S) =

∏n
i=1 qa(si)

Reliability qr(S) =
∏n

i=1 qr(si)

4 Dynamic Web Service Selection with
MO ACO

Based on the complexity of the structure of composite services,
there are two typical types of composite services: composite ser-
vices with a sequential flow structure, and composite services
with a general flow structure [20]. Six types of composition
structure patterns can exist in a single composite service: sequen-
tial, AND split (Fork), XOR split (Conditional), Loop, AND join
(Merge), and XOR join (Trigger) [20]. Figure 3 shows a typical
composite service with all six patterns.

4.1 Composite Service Decomposition
As a basic control strategy, divide and conquer is widely used to
solve complex problems. This strategy is adopted in our study by
decomposing composite services with a general flow structure
into parallel execution paths, each of which is essentially a
sequential flow structure. The maximum number of parallel
execution paths is determined by the number of AND split
structure patterns in the composite service.

Definition 1 Abstract Execution Path (AEP): An abstract
execution path is defined as a sequential path from the starting
point to ending point in the functional graph, which includes
only one branch in conditional operations (starting at an XOR
split) and one branch in parallel operations (starting at an AND
split), and does not include any abstract services that have been
included in any other abstract path.

For example, there are at most four possible abstract execu-
tion paths in Figure 3, but for each single request for a composite
service, only three of them can be executed:

AEP1: {AS1, AS3, AS4, AS7, AS8};
AEP2: {AS5, AS6};
AEP3: {AS2, AS9, AS10, AS11} with a probability of P1

AEP4: {AS12, AS13} with a probability of P2;
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Figure 3: Functional Graph of a Composite Service Example

Or
AEP1: {AS1, AS5, AS6, AS7, AS8};
AEP2: {AS3, AS4};
AEP3: {AS2, AS9, AS10, AS11} with a probability of P1

AEP4: {AS12, AS13} with a probability of P2;

According to the definition of abstract execution path, a func-
tional graph of a composite service with a general flow structure
can be decomposed into two or more abstract execution paths that
have no overlapped abstract services and are actually sequential
flow structures. This decomposition approach by dividing
functional graph into abstract execution paths is different from
the approach in [20] in which all the sequential paths start from
the starting node and end at the ending node. This decomposition
approach is based on two considerations. Firstly, each abstract
service can only be included in one abstract execution path in
our approach. Formally, the number of abstract execution paths
is linearly increased with the number of AND and XOR splits in
the functional graph. While the number of sequential paths from
the approach in [20] can be exponentially increased. Secondly,
the number of abstract services in an abstract execution path
(Sequential Path in [20]) directly determines the computation
complexity of finding a proper combination of concrete services
with best QoS for the abstract execution path. Therefore, the
computation time for all sequential paths decomposed by the
approach in [20] can be substantially big, and it may pose as
a big obstacle for finding an approach that supports real-time
(dynamic) web service composition. Our approach can get much
smaller number of abstract execution paths if the topology of the
functional graph is very complex, and can have only several long
abstract paths, which can substantially shorten the computation
time.

Definition 2 Concrete Execution Path (CEP): A concrete
execution path is a path in which each node is a concrete (real)
service that corresponds to an abstract service on an abstract
execution path. An abstract execution path can have more than
one concrete execution path.

For example, {cs(2,3), cs(12,7), cs(13,4)} is a concrete exe-
cution path for AEP4.
The basic idea of our approach is to select services from each

service candidate set to form a concrete execution path by per-
forming MO ACO on each abstract execution path.

4.2 MOP Modeling and Global Performance
Measure

Multi-objective optimization problems (MOPs) are special
optimization problems that involve several competing measures
of solution quality. Multi-objective optimization is the process
of simultaneously optimizing two or more objectives subject
to certain constraints. Objectives may conflict with each other.
Service composition is a typical multi-objective optimization
problem: maximizing availability and minimizing cost; maxi-
mizing reliability and minimizing total response time, and so
on. This paper formulates an ant system for service composition
problems with multi-objective characteristics.

Definition 3 (General MOP): A general MOP is to find a
vector −→x = [x1, x2, x3, . . . , xn] which optimizes the vector
function

f(−→x ) = [f1(
−→x ), f2(

−→x ), . . . , fm(−→x )]

where xi (i = 1, . . . , n) are called decision variables (param-
eters) and fi(

−→x ), i = 1, . . . , m, are the objective functions for
the correspondingm objectives[14].

Definition 4 (Ideal Vector): Let
−→
xi = [xi

1, x
i
2, . . . , x

i
n]

be a vector of variables which optimizes (either maximizes or
minimizes) the ith objective function fi(x). In other words, the
vector

−→
xi ∈ Ω is such that

fi(
−→
xi) = optx∈Ωfi(x)

Then the vector −→
f0 = [f0

1 , f0
2 , . . . , f0

m]

(where f0
i denotes the optimum of the ith function) is ideal for

an MOP, and the point in R
n which determined this vector is the

ideal (utopical) solution, and is consequently called the ideal
vector [14].

As an ideal vector, it contains the optimum for each separately
considered objective achieved at the same point inR

n. Just as the
word “ideal (utopical)” indicates, this vector may not really be
achieved, but it poses as an ideal goal for all kinds of algorithms
to try to reach. In other words, the closer to the ideal vector, the
better the solution is. In this paper, we capture this point and use
the distance between the practically achieved vector composed of
objective value resulting from a solution and the ideal vector as an
important indicator of the performance of the solution to update
pheromone. We will give a detailed example as for how to find
such ideal vector in our approach in the following paragraphs.
Once we have a vector derived from a solution, there needs to

be a global criterion method that measures how close the achieved
vector can get to the ideal vector

−→
f0. In this paper, we take the

relevantLp metrics [14] which is widely used as a global criterion
method (utility function) to measure closeness of a solution to the
ideal vector

−→
f0. In this paper, Lp metrics are actually the utility
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functions to measure the QoS levels of concrete execution paths.
However, it is different with most other utility functions in that
the lower values of Lp metrics are preferred for a certain path.

Lp(f(−→x )) =

[
k∑

i=1

∣∣∣∣f0
i − fi(

−→x )

f0
i

∣∣∣∣
p

+

m∑
i=k+1

∣∣∣∣f0
i − fi(

−→x )

fi(
−→x )

∣∣∣∣
p
] 1

p

,

1 ≤ p ≤ ∞ (1)

where the values of objective function fi(
−→x ) (1 ≤ i ≤ k)

should be minimized and the values of objective function fi(
−→x )

(k + 1 ≤ i ≤ m) should be maximized. In this paper, we let p
equal 2. Considering the fact that it is difficult to pre-determine
users’ ideal values for all QoS attributes to form an ideal vector
without knowing which level of QoS can be provided by the con-
crete service providers, our approach records the extreme values
of the attributes of all the services in the service candidate sets.
That is, upon finding a feasible path for the first time, the ideal
values for all QoS attributes will be calculated and act as the base-
line to measure the distance between the values of the practically
achieved solution and that of the ideal solution for each objective.
For example, an abstract execution path is {AS1, AS2, AS3},
and each class contains three elements with their QoS attributes
[response time, cost, availability, reliability] as shown in Ta-
ble 3.

Table 3: The QoS Attributes of Services

C1 for AS1 C2 for AS2 C3 for AS3

cs(1,1) : [2, 3, 0.8, 0.6] cs(2,1) : [5, 4, 0.6, 0.7] cs(3,1) : [5, 2, 0.5, 0.6]
cs(1,2) : [4, 4, 0.5, 0.9] cs(2,2) : [9, 2, 0.9, 0.9] cs(3,2) : [2, 4, 0.8, 0.6]
cs(1,3) : [3, 3, 0.7, 0.6] cs(2,3) : [1, 9, 0.5, 0.8] cs(3,3) : [4, 3, 0.6, 0.7]

We need to minimize the response time and cost of the execu-
tion path, thus the ideal total response time and cost of the path
are:

f
0
rt = min {2, 4, 3}+ min {5, 9, 1}+ min {5, 2, 4} = 5

f
0
c = min {3, 4, 3}+ min {4, 2, 9}+ min {2, 4, 3} = 7

We also need to maximize the availability and reliability of the
execution path. Therefore, we pick the maximum value of each
QoS attribute from the corresponding service candidate set as be-
low:

f
0
a =max {0.8, 0.5, 0.7} ×max {0.6, 0.9, 0.5}

×max {0.5, 0.8, 0.6} = 0.576

f
0
r =max {0.6, 0.9, 0.6} ×max {0.7, 0.9, 0.8}

×max {0.6, 0.6, 0.7} = 0.567

Due to the characteristics of multi-objective problems,
the ideal vector

−→
f0 may not be practically achieved. As-

sume that cs(1,2), cs(2,3) and cs(3,1) are selected to form
the concrete execution path. Then the solution vector −→x is
([4, 4, 0.5, 0.9], [1, 9, 0.5, 0.8], [5, 2, 0.5, 0.6]). Thus, we get

frt(
−→x ) = 4 + 1 + 5 = 10,

fc(
−→x ) = 4 + 9 + 2 = 15,

fa(−→x ) = 0.5× 0.5× 0.5 = 0.125,

fr(
−→x ) = 0.9× 0.8× 0.6 = 0.432,

f(−→x ) = [10, 15, 0.125, 0.432],

and

Lp(f(−→x )) =

[
k∑

i=1

∣∣∣∣f0
i − fi(

−→x )

f0
i

∣∣∣∣
2

+

m∑
i=k+1

∣∣∣∣f0
i − fi(

−→x )

fi(
−→x )

∣∣∣∣
2
] 1

2

= 1.7241

4.3 Normalization of Values of QoS Attributes
QoS attributes are measured in different units, and thus non-
commensurable. In order to allow for a uniform measurement
of QoS level of a single concrete service independent of units, all
attributes need to be normalized to the same scale. It is a general
approach to normalize values of all QoS attributes in a range from
0 to 1. All the QoS attributes of concrete services can be gener-
ally divided into two categories: attributes whose values should
be minimized, such as response time and cost; attributes whose
values should be maximized, such as availability and reliability.
Based on this, we defined normalization rules separately for the
two categories of attributes. For the convenience of describing,
we name the first category as minimization attributes, and the
second category as maximization attribute. In the following two
rules, cs.ai represents the ith attribute value of a concrete service
cs of a service candidate set C. ai

max(C) and ai
min(C) represent

the maximum value and minimum value of ith attribute sepa-
rately among all the concrete services in the service candidate set
C.

1. Rule for Minimization Attributes

cs.a
i =

{
ai

max(C)−cs.ai

ai
max(C)−ai

min
(C)

ai
max(C) �= ai

min(C)

1 ai
max(C) = ai

min(C)

2. Rule for Maximization Attributes

cs.a
i =

{
cs.ai

−ai
min(C)

ai
max(C)−ai

min
(C)

ai
max(C) �= ai

min(C)

1 ai
max(C) = ai

min(C)

Take the third concrete service of C2 in Table 3 for example,
the values for all the four QoS attributes after normalization will
be:

[
9− 1

9− 1
= 1,

9− 9

9− 2
= 0,

0.5− 0.5

0.9− 0.5
= 0,

0.8− 0.7

0.9− 0.7
= 0.5]

Now that we have evaluated how good a QoS attribute value
is among all the concrete services in a service candidate set by
normalization, we can get an approximation of how good a con-
crete service is by adding all the values of all the attributes after
normalization based on the weights assigned to each attribute. In
this example, the whole measurement of the QoS of this service,
called utility, is 1 + 0 + 0 + 0.5 = 1.5 if we assign 1 as weight
to each attribute. In the next section, we will use this measure-
ment as local heuristic strategy to guide artificial ants to choose
concrete service for service composition.
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4.4 Formulation of Ant System for Dynamic Ser-
vice Composition Problem

Now we introduce the ant system using dynamic web services
composition as a benchmark.
Given a service candidate graph shown as Figure 2, web ser-

vice composition can be stated as the problem of finding a con-
crete web service from each service candidate set so that the com-
posite service based on this selection can have minimal value of
Lp metrics. In other words, we are trying to find the near-optimal
selection with the help of MO ACO, treating the dynamic selec-
tion problem on the web service candidate graph as an ant system.
An instance of the dynamic web service composition problem is
given by a graph 〈C,E〉, where C is the set of service candi-
date sets and E is the set of edges connecting concrete services
between different service candidate sets.
Each intelligent ant chooses the web service from the next

service candidate set with a probability that is a function of the
utility of the next chosen web service, and the amount (inten-
sity) of pheromone present on the connecting edges. In tra-
ditional ACO, the pheromone is represented by a single value.
In our approach, the amount of artificial pheromone is repre-
sented by a k-tuple in which the jth element represents the
amount of the jth pheromone that corresponds to the jth ob-
jective of the problem, where 1 ≤ j ≤ k. For exam-
ple, the k-tuple on edge (cs(i,1), cs(j,u−1)) has the form as
[τ1

(i,1)(j,u−1), . . . , τ
k
(i,1)(j,u−1)], where τm

(i,1)(j,u−1) (1 ≤ m ≤ k)

is the amount ofmth pheromone and u is the size of service can-
didate set Cj(see Figure 4).

Figure 4: Pheromone on Edges

When the ant completes the traversal of a concrete execution
path, it deposits a certain amount of pheromone on each edge vis-
ited on the path. Let τ(i,n),(j,m)(t) be the amount of pheromone
on the edge between web service cs(i,n) and web service cs(j,m)

at time t. Once the ant has visited all the nodes on this concrete
execution path at time t + n, it will update all the pheromones on
all the edges of this concrete execution path. The pheromone is
updated according to the formula

τ(i,n),(j,m)(t + n) = τ(i,n),(j,m)(t) + Δτ(i,n),(j,m),

where Δτ(i,n),(j,m) is the quantity of pheromone laid on the edge
between web service cs(i,n) and web service cs(j,m) which is

intuitively given as below:

Δτ(i,n),(j,m)

=

{ [
Δτ1

(i,n),(j,m), . . . ,Δτk
(i,n),(j,m)

]
edge visited

0 otherwise

where Δτw
(i,n),(j,m) =

Gw/Lp(f(−→x ))

|f0
w−fw(−→x )|

(w ∈ {1, 2, . . . , k}), and
G1, . . . , Gk are constants set according to the weight of each at-
tributes. Particularly, we define the pheromone updating rule as
Gw/Lp(f(−→x ))

|f0
w−fw(−→x )|

instead of Gw

|f0
w−fw(−→x )|

(w ∈ {1, 2, . . . , k}). The
reason for this is based on the consideration that we prefer those
solutions that can approach ideal value of each objective in the
ideal vector as close as possible, and meanwhile, minimize the
global utility function. Or else, the solutions that can perfectly
optimize some objectives but may badly fail to optimize the other
objectives can be reinforced.
Evaporation of pheromones is another important strategy of

ant colony optimization for favoring the forgetting of errors or of
poor choices made in the past. In this paper, we use evaporation
of pheromone as a strategy for prevention of unlimited increase
of pheromone intensity. After m iterations, pheromone trails are
evaporated by applying the following formula to all the edges in
the service candidate graph:

τ(i,n),(j,m)(t + m) = (1 − ρ)τ(i,n),(j,m)(t)

The coefficient ρ must be set to a value between 0 and 1 in order
to avoid unlimited accumulation of pheromone trails. In our ex-
periments, we set the intensity of pheromone trails to 1 or 10 at
time 0. Our experiments illustrate that the quantity of pheromone
added to a path should be relatively smaller than the initial inten-
sity of pheromone trails in order to avoid premature convergence.
We define the transition probability from web service cs(i,n)

to web service cs(j,m) for the uth ant as

Pru
(i,n),(j,m) =

[τ(i,n),(j,m)]
α · [η(j,m)]

β∑
1≤w≤|Cj |

[τ(i,n),(j,w)]α · [η(j,w)]β
,

where τ(i,n),(j,m) =
∑k

h=1 τh
(i,n)(j,m), and η(j,m) =∑k

h=1 ηh
(j,m) in which ηh

(j,m) refers to the value of hth QoS
attribute of concrete service cs(j,m) after normalization and
τh
(i,n)(j,m) refers to the amount of h

th pheromone corresponding
to hth QoS attribute and has been normalized in the same way
that the values of QoS attributes of all the services are processed.
α and β are parameters that control the relative importance of
pheromone intensity τ and local heuristic/visibility η.
Recall that the amount of the pheromones on edges

of an execution path is a k-tuple that has the form of
[τ1

(i,n)(j,m), . . . , τ
k
(i,n)(j,m)]. The reason that we process the

pheromone intensity τ on the edge of web service cs(i,n) to web
service cs(j,m) in the same way of the normalization of QoS at-
tributes is based on the consideration that only the path on which
all the objectives of QoS are well reached should be further re-
inforced and have high probability to be converged as optimal
path (solution), avoiding choosing the path on which only part
of QoS objectives are strongly reinforced, for the purpose of our
approach is to find Pareto Optimality.
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5 Experimental Study
In order to verify the feasibility and performance of applying ant
colony optimization to dynamic service composition, we imple-
mented WebAnt in Visual Basic shown in Figure 5 and verified it
against the simulated composite service whose functional graph
is shown in Figure 6.

Figure 5: Interface of WebAnt

Figure 6: Composite Service Example

5.1 MO ACO Simulation Model and Service De-
composition

WebAnt is a graphical user interface (GUI) tool that can generate
service requests to simulate user requests and provides interface
for resetting parameters that directly or indirectly affect the
quality of dynamic selection. The parameters considered here
include:

α: the relative importance of the pheromone trail on a path,
α ≥ 0;
β: the relative importance of the local heuristic (visibility),
β ≥ 0;
ρ: pheromone evaporation rate, 0 ≤ ρ < 1;
p: the initial quantity of pheromone, p > 0;
s: the number of the elements in each service candidate set.

Each service candidate set contains s ser-
vices that are simulated as 4-tuples in the form of
[response time, cost, availability, reliability] in which
response time and cost are sampled between 1 and 10 and the
units are second and US dollars respectively, and availability

and reliability are sampled between 0.8 and 1. According
to the specific characteristics of the four QoS attributes of
services, we define four objectives for each execution path:
minimize total response time, minimize total cost, maximize
total availability and maximize reliability. Correspondingly,
four objective functions are defined below for a solution
−→x = {cs(1,k1), cs(2,k2), . . . , cs(n,kn)} according to the QoS
aggregation functions in Table 2:

frt(
−→x ) =cs(1,k1).reponse time + cs(2,k2).reponse time

+ · · ·+ cs(n,kn).reponse time

fc(
−→x ) =cs(1,k1).cost + cs(2,k2).cost + · · ·+ cs(n,kn).cost

fa(−→x ) =cs(1,k1).availability × cs(2,k2).availability × . . .

× cs(n,kn).availability

fr(
−→x ) =cs(1,k1).reliability × cs(2,k2).reliability × . . .

× cs(n,kn).reliability

The Lp metrics used as the global criterion to measure the
performance of our approach is given below:

Lp(f(−→x ))=

[∣∣∣∣ f0
rt
−frt(

−→x )

f0
rt

∣∣∣∣2+
∣∣∣∣ f0

c−fc(−→x )

f0
c

∣∣∣∣2+
∣∣∣∣ f0

a−fa(−→x )

fa(−→x )

∣∣∣∣2+
∣∣∣∣ f0

r−fr(−→x )

fr(−→x )

∣∣∣∣2
] 1

2
.

Based on the definition of the metrics, the smaller the returned
value, the better the solution is.
Figure 6 shows the functional graph of the composite service

that we verify against. By using the decomposition rules in
Section 4.1, we get all possible abstract execution paths as below:

AEP1 : {AS1, AS2, AS4, AS6, AS8, AS8, AS8, AS8,
AS8,AS13, AS21}
AEP2 : {AS1, AS2, AS4, AS7, AS9, AS11, AS12, AS13,
AS21}
AEP3 : {AS10}
AEP4 : {AS3, AS5, AS14, AS17, AS18, AS20}
AEP5 : {AS3, AS5, AS14, AS17, AS19, AS20}
AEP6 : {AS15, AS16, AS16, AS16}

5.2 Performance Comparison and Analysis
In the experiments reported in this section, different parame-
ter values were considered: α ∈ {2, 3, 4, 5}, β ∈ {4, 8, 9},
ρ ∈ {0.7}, p ∈ {0.5, 10}, and s ∈ {5, 10}. The weights for
QoS attributes are set as 1, giving each QoS attribute equal pri-
ority. First, a special scenario is tested in which the value of α is
set as 0 and thus the whole selection process is actually driven by
a stochastic greedy algorithm. This scenario leads to no conver-
gence of the optimal selection process in up to twenty thousand
iterations in our experiments. All the experiments in this paper
are run on a computer whose CPU Clock Speed is 2.40G, RAM
size is 4.0GB and OS is Windows Vista.
In the whole simulation process, altogether six concrete exe-

cution paths, illustrated in Section 5.1, are generated. Under the
settings in Figure 7, the experiments in each scenario success-
fully generated six converged paths from which two typical paths
were picked up. All data is averaged over five trials. Figure 7
contains two groups of figures. Figure 7(a) and 7(c) form the first
group in which all the service candidate sets have five services
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and the other figures form the other group in which all the ser-
vice candidate sets have ten services. It is also observed that the
varied values of α and β resulted in different convergence speed
and quality.
In order to measure how close the converged paths in our ap-

proach are to the optimal (ideal) paths, we compute the minimum
and maximum of Lp metrics for each abstract execution path,
which is shown in Table 4 by calculating values of Lp metrics for
all the two paths using brutal force strategy.

Table 4: Extreme Values of Lp Metrics for Abstract Execution
Paths

Path No. Abstract Execution Path Size Min Max
Path1 1 − 2 − 4 − 6 − 8 − 8 − 8 − 8 − 8 − 13 − 21 5 3.4461 8.5072
Path2 1 − 2 − 4 − 7 − 9 − 11 − 12 − 13 − 21 5 2.2729 5.9282

Path1 1 − 2 − 4 − 6 − 8 − 8 − 8 − 8 − 8 − 13 − 21 10 3.0935 11.7412
Path2 1 − 2 − 4 − 7 − 9 − 11 − 12 − 13 − 21 10 2.6279 15.5702

We use the rate of the distance between the real value of Lp

metrics and the minimum ofLp metrics over the span between the
minimum and the maximum of Lp metrics to measure the close-
ness of the converged path to the optimal path, which is defined
below:

Closeness(f(−→x )) =
Lp(f(−→x )) − min(Lp)

max(Lp) − min(Lp)
× 100%,

where f(−→x ) is the vector function of a solution vector −→x , which
is essentially a sequence of services that form a concrete execu-
tion path, Lp(f(−→x )) is the value of Lp metrics for the converged
concrete execution path,min(Lp) andmax(Lp) are the minimum
and maximum of Lp metrics of all possible concrete execution
paths, respectively.
Considering the huge search space and the speed of conver-

gence, all two concrete execution paths are “close” to the real op-
timal (ideal) paths that exist in the search space. Figure 7 also re-
veals that as the size of the service candidate set increases from 5
to 10, more fluctuation happens in the learning process and more
iterations are needed to generate convergences; however, the per-
formance is still satisfactory when the size of the search space is
considered. For example, there are 109 possible concrete execu-
tion paths for the abstract execution path AEP2, while the near
optimal path whose value of Lp metrics is 2.8215 is found after
only 345 iterations when α = 2, β = 9, and p = 10. That is
1.50% close to the real optimal solution. The overhead for each
iteration is 0.000224 second on average by calculating the total
computing time of 10000 iterations.
We also used Genetic Algorithm (GA) to solve the same ser-

vice composition problem to measure the relative performance
advantages of our approach over other typical algorithms. GA
is a widely used algorithm to look for global optimal solutions.
In our experiments, we extended Genetic Algorithm with saved
best solution [25] that Rudolph proved to be able to converge
to optimal global solution to make it feasible for solving our
defined multi-objective optimization problem, and named it as
multi-objective GA (MO GA). We tried many parameter settings
and choose one setting by which MO GA can achieve smallest
closeness to the real minimum value of Lp metrics for both ab-
stract execution paths. We set mutation rate and population size

of MO GA as 0.05 and 40, and used Stochastic Tournament Se-
lection as our selection strategy. Considering that there are 40 so-
lutions in each generation, we choose the minimum value of Lp

metrics of the solutions from each generation to form the curve
in Figure 7. It shows that our approach can achieve better perfor-
mance (lower Lp metrics) than MO GA. Similarly, we also mea-
sured the absolute closeness between the converged values of Lp

metrics achieved by MO GA and those in Table 4. The last two
columns of Table 5 illustrate the closeness comparison between
MO ACO and MO GA, revealing that MO ACO can reach more
closely the real optimal solution than MO GA and that the solu-
tions returned by MO ACO themselves have very good quality
in light of it is small closeness to real optimal. The overhead
for each iteration is 0.000687 second on average by calculating
the total computing time of 10000 generations, which is nearly 3
times of that of MO ACO.
Besides the empirical performance comparison between

MO ACO and MO GA on the quality of converged solutions, we
compare MO ACO and MO GA in another way. For MO ACO
used in our approach, one iteration means the processing of one
simulated service request and generating one composition solu-
tion. However, for MO GA it means the process of generating
40 solutions and nearly all of them have effect on the generation
of the solutions in the next iteration. For example, in the experi-
ments where α = 3, β = 8, p = 10 and s = 10, it took 890 it-
erations for MO ACO to converge to a stable concrete execution
path of AEP1, which means the MO ACO finds a near optimum
by accumulating historical experience of processing 890 service
requests, or in another word, after generating 890 solutions. It
took only 135 iterations for MO GA to converge to a stable con-
crete execution path. Remember that MO GA generates 40 solu-
tions in each generation. Therefore, the total number of solutions
generated in MO GA before convergence is 135 ∗ 40 = 5400.
So, it seems that MO GA converges much faster (using less iter-
ations) than MO ACO. However, the fact is that MO GA found
the near optimum solution by using nearly 6 times solutions than
that of MO ACO.
We have declared that MO ACO aims to find (near) pareto

optimality, since we model dynamic web service composition as
a multi-objective optimization problem. Recall that we use Lp

metrics to evaluate the performance of solutions and a good so-
lution should be close to the ideal value in each objective. We
constructed an abstract path that has 30 tasks with a sequential
flow structure. Figure 8 shows the changing trend of Lp metrics
and all the four values of QoS attributes of the abstract path: re-
sponse time and cost decrease, while availability and reliability
increase.

5.3 Scalability Analysis
Increasing the number of tasks on the workflow with a sequen-
tial flow structure can result in increased convergence time of
MO ACO. In order to test the scalability of MO ACO, we de-
signed experiments to observe the convergence time based on
different lengths (number of abstract services) of abstract path
and different sizes of service candidate set for each task. In our
experiments, we designed 10 abstract paths with sequential flow
structures whose lengths are 10, 20, 30, 40, 50, 60, 70, 80, 90 and
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Table 5: Closeness Comparison betweenMO ACO andMO GA

Path No. Path Length Size Optimal Lp Worst Lp Lp : MO ACO Lp : MO GA MO ACO MO GA

Path1 11 5 3.4461 8.5072 3.9364 4.5858 9.69% 22.52%
Path2 9 5 2.2729 5.9282 2.5273 3.2011 6.95% 25.39%

Path1 11 10 3.0935 11.7412 3.2099 4.3810 1.34% 14.89%
Path2 9 10 2.6279 15.5702 2.8250 3.7234 1.52% 8.46%
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 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  200  400  600  800  1000  1200  1400

Lp
(f)

Iterations

MO_ACO: Path1:1-2-4-6-8-8-8-8-8-13-21
MO_ACO: Path2:1-2-4-7-9-11-12-13-21
MO_GA: Path1:1-2-4-6-8-8-8-8-8-13-21

MO_GA: Path2:1-2-4-7-9-11-12-13-21

(d) α = 2, β = 9, p = 10, s = 10

Figure 7: Performance Comparison for Varied Parameters α and β
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Table 6: Scalability Analysis on Computation Time of Varying the Sizes of Service Candidate Sets Upon Convergence [Seconds]

Path Length. size=5/iterations size=10/iterations size=15/iterations size=20/iterations size=30/iterations size=40/iterations
10 0.0003/5 0.0022/7 0.0022/17 0.0190/70 0.0173/71 0.0135/42
20 0.0037/34 0.0070/18 0.0160/64 0.1528/348 0.1563/326 0.2949/456
30 0.0111/69 0.0088/19 0.0692/184 0.7519/949 0.8623/1191 1.4103/1464
40 0.0157/74 0.1795/456 0.1482/295 1.4107/1548 2.2085/2291 3.1132/2409
50 0.0589/219 0.1980/332 0.2575/399 2.4314/2207 2.4215/3182 2.2090/3626
60 0.2008/628 0.3257/432 0.3541/469 2.3133/1938 5.9969/4186 8.8029/4593
70 0.2969/779 0.3441/528 0.4682/528 2.5533/2139 8.9051/5183 13.4576/5781
80 0.3732/836 0.2664/367 0.8719/820 3.7260/2299 11.5157/6404 18.1904/6855
90 0.5350/1109 0.3501/406 0.8907/782 4.2665/2410 16.5073/7410 24.1605/8091
100 0.6986/1301 0.7945/665 1.1537/907 4.6699/2669 21.5497/8577 29.9955/9028
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100, respectively, by reusing the services created for the example
composite service in Figure 6. The sizes of service candidate sets
for each abstract path are respectively 5, 10, 15, 20, 30, 40. The
computation time and iterations upon convergence for the 60 ex-
periments is listed in Table 6 where iteration refers to the iteration
upon convergence, which shows high efficiency of MO ACO for
QoS-based dynamic web service composition.

6 Conclusion
Due to the fact that composite services generally have a complex
functional graph and are thus hard to handle, we propose a strat-
egy to decompose a composite services with a general flow struc-
ture into parallel execution paths. We then model dynamic ser-
vice composition for each execution path as a multi-objective op-
timization problem, and present a new version of ACO algorithm,
MO ACO, to handle this problem. The experiments illustrate that
our MO ACO approach can find near-optimal solutions on the fly
for multi-objective problems out of a huge search space in a very
efficient way. The experiments also reveal that MO ACO is scal-
able to support composition of very complex web services.
In the research field of ACO, some improvement has been

proposed to further improve the performance of ACO algorithms.
As future work, we will explore the possibility to integrate the
improvement strategy into our MO ACO in order for achieving
even better QoS of composite service from dynamic web service
composition by ant colony optimization.
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