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On the number of latin hypercubes, pairs of orthogonal

latin squares and MDS codes
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Sobolev Institute of Mathematics, 4 Acad. Koptyug Avenue, Novosibirsk, Russia

Abstract

The logarithm of the number of latin d-cubes of order n is Θ(nd lnn). The loga-

rithm of the number of pairs of orthogonal latin squares of order n is Θ(n2 lnn).

Similar estimations are obtained for systems of mutually strong orthogonal latin

d-cubes.

Keywords: latin square, latin d-cube, orthogonal latin squares, MOLS, MDS

code.
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1. Introduction

A latin square of order n is an n×n array of n symbols in which each symbol

occurs exactly once in each row and in each column. A d-dimensional array with

the same property is called a latin d-cube. Two latin squares are orthogonal if,

when they are superimposed, every ordered pair of symbols appears exactly

once. If in a set of latin squares, any two latin squares are orthogonal then the

set is called Mutually Orthogonal Latin Squares (MOLS).

From the definition we can ensure that a latin d-cube is the Cayley table

of a d-ary quasigroup. Denote by Q the underlying set of the quasigroup. A

system consisting of t s-ary functions f1, . . . , ft (t ≥ s) is orthogonal, if for each
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subsystem fi1 , . . . , fis consisting of s functions it holds

{(fi1(x), . . . , fis(x)) | x ∈ Qs} = Qs.

If the system keeps to be orthogonal after substituting any constants for each

subset of variables then it is called strongly orthogonal (see [4]). It is important to

note that all functions in a strongly orthogonal system are multiary quasigroups.

If the number of variables equals 2 (s = 2) then such system is equivalent to a

set of MOLS. If s > 2, it is a set of Mutually Strong Orthogonal Latin s-Cubes

(MSOLC).

The best known estimate of the number of latin squares is ((1+o(1))n/e2)n
2

(see [10]). The lower bound obtained in [3] and the upper bound followed from

Bregman’s inequality for permanent. An upper bound ((1+ o(1))n/ed)n
d

of the

number of latin d-cubes is proved in [9].

In this paper we find lower bounds for numbers of MOLS, latin d-cubes and

MSOLC. This numbers for small orders are calculated in [11], [7].

2. MDS codes

A subset C of Qd is called an MDS code (of order |Q| with code distance

t+ 1 and with length d) if |C ∩ Γ| = 1 for each t-dimensional face Γ.

Proposition 1. [4] A set C ⊂ Qt+m is an MDS-code with code distance ̺C =

m+1 if and only if there exists strongly orthogonal system consisting of m t-ary

quasigroups f1, . . . , fm such that

C = {(x1, . . . , xt, f1(x), . . . , fm(x)) | x ∈ Qt}.

Let Q be a finite field. An MDS code C is called linear (affine) if it is

a linear (or affine) subspace of Qd. In this case the functions f1, . . . , fm are

linear and rank of the code is equal to dim(C) = t. Let F be a subfield of a

finite field Q and |Q| = |F |k. Then we can consider Q as k-dimensional vector

space over F . We will call C ⊂ Qd a linear code over F if it is linear (i. e.

fi = α1ix1 + . . .+αdixd) and all coefficients αji (j = 1, . . . , d, i = 1, . . . ,m) are
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in F . For a, v ∈ Q denote by L(a, v) = {a+αv | α ∈ F} an 1-dimensional affine

subspace in Q.

The following criterion for MDS codes is well-known.

Proposition 2. A subset M ⊂ Qd is an MDS code if and only if |M | =

|Q|d−̺+1, where ̺ is a code distance of M .

By using a well-known construction of a linear MDS code ([5]) with matrix

over prime subfield GF (p) we can conclude that the following proposition is

true.

Proposition 3. (a) For each prime number p, integers d, k and ̺ ∈ {2, d} there

exists a linear over GF (p) MDS code C ⊂ (GF (pk))d with code distance ̺.

(b) For each prime number p and integers d ≤ p+ 1, k there exists a linear

over GF (p) MDS code C ⊂ (GF (pk))d with code distance ̺, 3 ≤ ̺ ≤ p.

If 2 < ̺ < d and p 6= 2 then the length of a linear MDS code of order pk

with code distance ̺ does not exceed pk + 1 or pk + 2 for p = 2 (see [1], [2]).

3. MDS subcodes and lower bounds

A subset T of MDS code M ⊂ Qd is called a subcode or a component of

the code if T is an MDS code in A1 × . . . × Ad with the same code distance

as M and T = M ∩ (A1 × . . . × Ad) where Ai ⊂ Q, i ∈ {1, . . . , d}. Obviously

|A1| = . . . = |Ad| and |A1| is the order of the subcode T .

Let us now consider possible orders of subcodes. The following proposition

is well-known for case of pairs of orthogonal latin squares (a case of MDS code

with distance ̺ = 3).

Proposition 4. If an MDS code M ⊂ Qd with code distance ̺ contains a proper

subcode of order m then ̺ ≤ m ≤ |Q|/̺.

Proof. By definition every strongly orthogonal system consisting of t = ̺− 1

functions includes a system f1, . . . , ft of t MOLS. A system of MOLS of order
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m consists of not more than m− 1 latin squares. Therefore t ≤ m− 1. Without

loss of generality we can assume that the subcode includes a system of t MOLS

of order m over the alphabet B. Denote by b the symbols of B and by a the

other symbols. By the definition of orthogonal system, for any pair a, b and

any i, j ∈ {1, . . . , t}, there exists (u1, u2) ∈ (Q \ B)2 such that fi(u1) = a and

fj(u2) = b. Thus |(Q \B)2| = (|Q| −m)2 ≥ tm(|Q| −m). N

From the definition of an MDS code and Proposition 5 we obtain:

Proposition 5. Let C ⊂ Qd be a linear code over F , (a1, . . . , ad) ∈ C, v ∈

Q \ {0}. Then C ∩ (L(a1, v)× . . .× L(ad, v)) is a subcode of C of order |F |.

Proposition 6. Assume C is a code with a subcode C1 of order m and a code

C2 has the same parameters as C1. Then it is possible to exchange C1 by C2 in

C and to obtain the code C′ with the same parameters as C.

It is said the codes C and C′ obtained from each other by switching [12].

If a code has nonintersecting subcodes then it is possible to apply switching

independently to each of the subcodes.

For example consider a pair of orthogonal latin squares of order 9 below. A

subcode (orthogonal subsquares) is marked by boldface.

0 1 2 3 4 5 6 7 8

1 2 0 4 5 3 7 8 6

2 0 1 5 3 4 8 6 7

3 4 5 6 7 8 0 1 2

4 5 3 7 8 6 1 2 0

5 3 4 8 6 7 2 0 1

6 7 8 0 1 2 3 4 5

7 8 6 1 2 0 4 5 3

8 6 7 2 0 1 5 3 4

0 1 2 3 4 5 6 7 8

2 0 1 5 3 4 8 6 7

1 2 0 4 5 3 7 8 6

6 7 8 0 1 2 3 4 5

8 6 7 2 0 1 5 3 4

7 8 6 1 2 0 4 5 3

3 4 5 6 7 8 0 1 2

5 3 4 8 6 7 2 0 1

4 5 3 7 8 6 1 2 0

Below we can see a result of switching.
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0 1 2 3 4 5 6 7 8

1 2 0 4 5 3 7 8 6

2 0 1 5 3 4 8 6 7

3 4 5 6 7 8 0 1 2

4 5 3 7 8 6 1 2 0

5 3 4 8 6 7 2 0 1

6 7 8 0 1 2 3 4 5

7 8 6 1 2 0 4 5 3

8 6 7 2 0 1 5 3 4

0 1 2 3 8 5 6 7 4

2 0 1 5 3 4 8 6 7

1 2 0 4 5 3 7 8 6

6 7 8 0 1 2 3 4 5

4 6 7 2 0 1 5 3 8

7 8 6 1 2 0 4 5 3

3 4 5 6 7 8 0 1 2

5 3 4 8 6 7 2 0 1

8 5 3 7 4 6 1 2 0

Let N(n, d, ̺) be the number of MDS codes of order n with code distance ̺

and length d.

Theorem 1. For each prime number p and

(a) d ≤ p+ 1 if 3 ≤ ̺ ≤ p or

(b) arbitrary d ≥ 2 if ̺ = 2

it holds

lnN(pk, d, ̺) ≥ (k +m)p(k−2)m ln p(1 + o(1))

as k → ∞, m = d− ̺+ 1.

Proof. Consider a linear MDS code C over a prime field with rank m and

length d (see Proposition 3). The number of its subcodes determined in Propo-

sition 5 is equal to pk(1+m)/pm where pm is the cardinality of subcodes. Each

vertex of the code lies in pk − 1 subcodes. Consequently, each subcode in-

tersects with not more than pm+k other subcodes. Thus we can choose t =

(1− ε(k))(pk(1+m)/p2m+k) times one of subcodes so that a new subcode is not

intersected with subcodes choosing early. For each subcode we have more than

w = ε(k)(pk(1+m)/pm) alternatives, where ε(k) = o(1) and ln ε(k) = o(k). By

Proposition 6 the code obtained by switchings of this mutually disjoint subcodes

has the same parameters as the origin code C. Then N(pk, d, ̺) is greater than

wt/t!. Applying Stirling’s formula, we get the lower bound on N(pk, d, ̺). N
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Proposition 7. [8] For every integers n,m, d, m ≤ n/2, there exists a latin

d-cube of order n with a latin d-subcube of order m.

Corollary 1. The logarithm of the number of latin d-cubes of order n is Θ(nd lnn)

as n → ∞.

The lower bound comes from Theorem and Proposition 7, the upper bound

is trivial.

Proposition 8. [6] For every integers n, ℓ 6∈ {1, 2, 6}, ℓ ≤ n/3, there exists a

pair of orthogonal latin squares of order n with orthogonal latin subsquares of

order ℓ.

Corollary 2. The logarithm of the number of pairs of orthogonal latin squares

of order n is Θ(n2 lnn) as n → ∞.

The lower bound follows from Theorem and Proposition 8, the upper bound

is trivial.
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