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Abstract

The number of (a) non-equivalent 2 and 3 dimensional MDS codes,
(b) non-equivalent 3 dimensional complete MDS codes, (c) 3 dimen-
sional MDS codes that can be described by classical arcs in PG(2, q),
(d) arcs in regular hyperovals, and (e) 2 × n and 3 × n superregular
matrices over GF(q) are established for q ≤ 19 and for a number of
cases when 23 ≤ q ≤ 32. The equivalence classes over both PGL(k, q)
and PΓL(k, q) are considered during the computations. Though, most
of the results are reached by the help of a computer, also some general
theoretical relations are formulated. A computational result of the
paper is that there is no complete n-arc in PG(2, 31) for 23 ≤ n ≤ 30
and, consequently, the Main Conjecture for MDS Codes is true for
arcs in up to 12 dimensional finite projective spaces of order 31, i.e.,
for MDS codes of up to 13 dimensions over GF(31).
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Introduction

The aim of the present work is to determine the number of equivalence classes
regarding three different equivalence relations and to build databases of k
dimensional MDS codes over the finite fields GF(q) which contain one rep-
resentant from each equivalence class. In the first phase of the project, we
draw the limits for the range of these examinations at k ≤ 3 and q ≤ 32.
As the databases become very huge when q advances towards 32, the aimed
classification is impossible to carry out without using a computer. By per-
forming exhaustive computer search, the problem is solved completely for 2
dimensional MDS codes until q ≤ 32 and for 3 dimensional MDS codes until
q ≤ 19, it is solved partially for 3-dimensional MDS codes when 23 ≤ q ≤ 32.

The question about the number and the structure of complete MDS codes is
also examined and entirely solved for 3 dimensional MDS codes when q = 23,
partially solved when 25 ≤ q ≤ 31.

Let Qn denote the set of all n-tuples (x1, x2, . . . , xn), where Q = {0, 1, . . . , q−
1}. The elements of the set Qn are often called words, and the Hamming
distance d(x, y) between two words x, y ∈ Qn is defined as the number of
coordinates in which they differ. Qn is a metric space with respect to the
distance d(x, y).

A code of length n over Q is defined as an arbitrary non-empty subset of
Qn. The elements of Q, which are called symbols, might be any q things,
in principle. The set of the given symbols Q is often called alphabet, the
integer q is called the size of the alphabet.

The minimum distance of a code C ⊆ Qn is defined as

min{d(x, y) | x, y ∈ C, x 6= y}.

Linear codes are codes over finite fields Q = GF(q) (where q is a prime or
prime power) with the properties that

– a codeword multiplied by a scalar is also a codeword,

– the sum (and consequently any linear combination) of two codewords is
also a codeword.

A linear code over a finite field GF(q) of length n, dimension k and minimum
distance d is called MDS (maximum distance separable) if d = n− k + 1.

MacWilliams and Sloane in [15] describe the theme of MDS codes as “one
of the most fascinating chapters in all of coding theory”. One of the many
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interesting features of MDS codes is that any MDS code over GF(q) with
parameters [n, k, d = n − k + 1] corresponds to an n-arc in the projective
space PG(k − 1, q). Therefore, all results of the paper can be interpreted
as contributions to the area of projective geometries over finite fields. The
points of the arcs that belong to a given MDS code are the column vectors
of a generator matrix of the latter.

An n-arc in PG(k− 1, q) is a set of n(≥ k) points with at most k− 1 in any
hyperplane. An n-arc in PG(2, q) is called oval if n has the greatest possible
value, i.e. if N > n implies that no N -arc exists in the same projective space.
As it is known, an oval in PG(2, q), q odd, is a (q + 1)-arc, while an oval in
PG(2, q), q even, is a (q + 2)-arc, which is often called also hyperoval.

In general, two codes are regarded to be equivalent if either of them can be
obtained by permuting the coordinates of the other, and permuting the symbols
in each coordinates.

As regards linear codes, a usual definition of equivalence is as follows: Two
linear codes are equivalent if either of them can be obtained from the other by
permuting the coordinates and multiplying the coordinates of the codewords
by non-zero elements of GF(q), using the same multiplier for the same coor-
dinate.

Since our algorithm uses the generator matrices of the codes, let us interpret
the equivalence of linear codes using generator matrices. Two linear codes
are equivalent if their generator matrices can be obtained from each other in
a finite number of steps by performing the following operations:

a) a permutation of the rows,

b) a permutation of the columns,

c) multiplication of a row by a nonzero element of GF(q),

d) multiplication of a column by a nonzero element of GF(q),

e) adding a multiple of a row to another row.

As regards linear MDS codes, two other kinds of equivalence are introduced
by omitting the last operation from the above listing or by adding one more
operation: Weak equivalence is defined by taking a)-d) for generator matrices
of canonical form. Strong equivalence is defined by taking a)-f) where the
additional operation is as follows:

f) performing a field automorphism to each entry of the generator matrix.
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The equivalence and strong eqivalence of linear MDS codes can also be seen as
equivalence of the associated n-arcs in PG(k−1, q). In case of the usual equiv-
alence it means that one of the n-arcs can be mapped onto the other by using
a collineation in PGL(k, q). In case of strong equivalence, the collineation
can be taken from PΓL(k, q).

If C is a linear code over GF(q) then its dual code C⊥ is the set of vectors
which are orthogonal to all codewords of C:

C⊥ = {d | c · d = 0 for all c ∈ C}.

If G = (Ik | A) is a generator matrix for a linear code C where A is a k×(n−k)
matrix then G⊥ =

(−AT | In−k

)
is a generator matrix for C⊥.

As it is known, the dual of an MDS code is also MDS and the duals of
equivalent MDS codes are also equivalent.

1 The number of non-equivalent 2 and 3

dimensional MDS codes

The computation of the number of non-equivalent 2 and 3 dimensional MDS
codes is performed by exhaustive computer search, using the exclusive at-
tribute of MDS codes that all k × k submatrices of their generator matrices
have nonzero determinant, or equivalently, all minors of A in a generator
matrix of canonical form are nonzero. A matrix A having this property is
called superregular [21].

The applied method is based on the ordering of finite field elements, which
induces a lexicographic ordering of MDS generator matrices. For a prime
p, a possibility of ordering in GF(p) is the natural ordering of non-negative
integers less than p. In GF(7), e.g., we have the ordering

0 < 1 < 2 < 3 < 4 < 5 < 6.

For a prime power q = pk, k > 1, the k-tuples of non-negative integers less
than p can be ordered according to the natural ordering. In GF(9), e.g.,

0 < 1 < 2 < α < α + 1 < α + 2 < 2α < 2α + 1 < 2α + 2

where α is a primitive root for GF(9).

The ordering can be done, however, according to the powers of a primitive
root, too. As 3 is a primitive root for GF(7), it can be ordered as

0 < 1 < 3 < 32(= 2) < 33(= 6) < 34(= 4) < 35(= 5).
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Similarly, GF(9) can be ordered as

0 < 1 < α < α2(= 2α + 1) < α3(= 2α + 2) < α4(= 2) < α5 < α6 < α7.

The computer search for the classification with both method of ordering
works for arbitrary finite fields GF(q) where q is a prime power. Actually,
we carried out the whole process of classification twice, using the two differ-
ent alternatives for finite field ordering. The two rounds of these processes
constitute also the checking of each other.

When the classification is being performed for k = 2, also a database of 2
dimensional MDS codes is created, which is used as input to the classification
of 3 dimensional MDS codes. (Similarly, a database of k dimensional MDS
codes can be used as input to the classification of k + 1 dimensional MDS
codes.) The results of the search are summarized in Tables 1–4.

A theoretical approach to the question was published in [9] where some rather
complicated formulas and algorithms for the determination of non-equivalent
n-arcs can be found. As we are interested in finding not only the count num-
bers, but also the listing of the codes, our methods are mainly of computa-
tional nature.

Let m(k, q) denote the maximum number of n for an n-arc to exist in
PG(k, q). It is known, e.g. from [11] that

a) m(1, q) = q + 1,

b) m(2, q) = q + 1 for q odd,

c) m(2, q) = q + 2 for q even.

These equalities determine the row size of Tables 1–4. To save space, Table
3 is not shown entirely. The missing rows that would belong to n > 16 can
be constructed from the given items (cf. Theorem 2), except the last four
non-zero items in each column, which are all 1’s.

Let ν(n, k, q) denote the number of non-equivalent linear MDS codes of length
n and dimension k up to PGL(k, q) (simple equivalence). It is the same as
A(k−1, q, n) in the notation applied in [9] which is computed and listed there
in the following cases: k = 2, 4 ≤ n ≤ 6, q ≤ 31 and k = 3, n = 6, q ≤ 31,
in the latter case only for primes.

As the duals of equivalent MDS codes are also equivalent, we have the fol-
lowing equality:

Theorem 1 ν(n, k, q) = ν(n, n − k, q) for n ≥ 4, 2 ≤ k ≤ n − 2, and any
prime or prime power q.
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There is another kind of symmetry in the values of ν(n, k, q), stated in the
following assertion.

Theorem 2 If q is a prime or prime power and 4 ≤ n ≤ q − 3, then

ν(n, 2, q) = ν(q + 1− n, 2, q).

In other words: In PG(1, q), the non-equivalent n-arcs and the non-equivalent
(q + 1− n)-arcs are in the same number.

Proof. Clearly, ν(n, 2, q) is also the number of non-equivalent n-point sets in
the projective line PG(1, q), and similarly, ν(q + 1 − n, 2, q) is the number
of non-equivalent (q + 1 − n)-point sets. Two n-sets K1,K2 ∈ PG(1, q) are
equivalent if and only if the complement sets PG(1, q) \K1, PG(1, q) \K2 are
equivalent. From this observation, the assertion of Theorem 2 immediately
follows. ¤

2 The number of non-equivalent 3 dimensional

complete MDS codes

An interesting class of n-arcs is the class of complete n-arcs. The following
definition is from [11]. An n-arc in PG(k − 1, q) is complete if it is not
contained in an (n + 1)-arc.

In harmony with the correspondence between the concepts of MDS codes and
n-arcs, we call an MDS code with parameters [n, k, d = n−k+1] complete if it
is not a projection of an MDS code with parameters [n+1, k, d+1 = n−k+2].

The number of non-equivalent 3 dimensional complete MDS codes are com-
puted (and arranged into Table 5) either from the set of non-equivalent 3 di-
mensional MDS codes or – for some parameters – directly from the database
of 2 dimensional MDS codes.

For q ≤ 19, the number of non-equivalent 3 dimensional complete MDS codes
had been known before, see e.g. [11], so the corresponding columns are not
included in Table 5, except for q = 8 and 16 when several count numbers can
be reduced if also field automorphisms are taken into account. Thus, e.g.,
the number of complete 6-arcs in PG(2, 8) reduces from 3 to 1 (cf. Theorem
8), the number of complete 9-arcs in PG(2, 16) reduces from 6 to 2.

For 11 ≤ q ≤ 32, the spectrum of the sizes of complete arcs in PG(2, q) is
searched by Chao, Kaneta [2, 3, 4], Faina, Marcugini, Milani and Pambianco
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[6, 7, 8, 16, 17, 18, 19]. The summary of the known results that are available
about this question are tabulated by Davydov et al. in Table 2 of [5], for
larger values of q as well (25 ≤ q ≤ 167); this information is taken into
account at some items in the last three columns of Table 5 (q = 29, 31 and
32) of the present paper. Our contribution to this question is the following
result obtained by exhaustive computer search.

Theorem 3 There is no complete n-arc in PG(2, q) for the following pairs
of n and q:

a) 22- or 23-arc in PG(2, 29),

b) 11-arc in PG(2, 31),

c) 23-, 24-, 25-, 26-, 27-, 28-, 29- or 30-arc in PG(2, 31),

d) 10- or 11-arc in PG(2, 32),

e) 25- or 26-arc in PG(2, 32).

Korchmáros [14] pointed out that assertion (c) of Theorem 3 does not follow
from the method of algebraic envelopes of arcs, applied in [11, Chapter 10]
and [24].

By the results of Thas [23], Kaneta and Maruta [13] we have the following
connection between the length m′(2, q) of the second largest arcs in PG(2, q)
and the length of the largest arcs in PG(k, q) (cf. Theorem 3.1. of [12] and
Theorem 5.3 of [22]):

Lemma 1

a) If k < 3 + q −m′(2, q) then m(k, q) = q + 1 and every (q + 1)-arc in
PG(k, q) is a normal rational curve.

b) If every (q + 1)-arc in PG(k, q) is a normal rational curve then m(k +
1, q) = q + 1.

As the non-existence of complete q-arcs in PG(2, q) is also known, in general,
(see [11]), Theorem 3 implies that m′(2, 31) = 22. Now, the application of
Lemma 1 for q = 31 leads to the following contribution regarding the Main
Conjecture for MDS codes.

Theorem 4 The longest arc in PG(r, q = 31) has length q+1 = 32 if r ≤ 12
(and any arc of this length is classical if r < 12).
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The similar assertion was known only for r ≤ 4, when q > 27 – according to
[10], while for q = 29, r ≤ 8 (r < 8) follows from the results of Chao and
Kaneta in [4].

Our computer search confirms the uniqueness of the second largest complete
arc in PG(2, 25), PG(2, 27) and PG(2, 29) that was stated in [4].

3 On the number of arcs in ovals and hyper-

ovals

Consider the 3-dimensional generator matrix of the form




1 1 1 1 . . . 1 1
1 α α2 . . . αq−3 αq−2

1 1 α2 α4 . . . α2q−6 α2q−4


 .

This formula can be extended to specify similar generator matrices in higher
dimensions. A generator matrix of this form generates an MDS code (called
the extended Reed-Solomon code) and its columns form the points of a nor-
mal rational curve Ck−1. For q odd, any oval in PG(2, q) is a normal rational
curve (Theorem of Segre), and consequently, all ovals are projectively equiv-
alent. For q even, a normal rational curve in PG(2, q) can be extended to a
(q + 2)-arc by adding one more point, the nucleus, to it (i.e. by adding an-
other unit vector to the generator matrix of the corresponding MDS code).
A (q + 2)-arc like this is called a regular hyperoval in PG(2, q), q even. In
both cases, α is a primitive root in GF(q).

Let ν(n, k, q) denote the number of non-equivalent linear MDS codes of length
n and dimension k, i.e. the number of non-equivalent n-arcs in PG(k− 1, q),
ν ′(n, k, q) denote the number of non-equivalent n-arcs in a normal rational
curve of PG(k−1, q), and ν ′′(n, 3, q) denote the number of non-equivalent n-
arcs in a regular hyperoval of PG(2, q), q even. (The n-arcs that are contained
in a normal rational curve are called classical.)

Theorem 5
ν ′(n, r, q) = ν(n, 2, q) (1)

for any q prime or prime power, 3 ≤ r ≤ q − 1 and k + 2 ≤ n ≤ q + 1. In
other words: The non-equivalent n-arcs in PG(1, q) and the non-equivalent
classical n-arcs in PG(r − 1, q) are in the same number.

ν ′′(5, 3, q) = ν(5, 2, q) (2)
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for any q = 2t, t ≥ 2. In other words: The non-equivalent 5-arcs in PG(1, q)
and the non-equivalent 5-arcs contained in a regular hyperoval in PG(2, q)
are in the same number.

ν ′′(n, 3, q) = ν(n, 2, q) + ν(n− 1, 2, q) (3)

for any q = 2t, t ≥ 3, and 6 ≤ n ≤ q + 1. In other words: For any n ≥ 6,
the non-equivalent n-arcs in a regular hyperoval in PG(2, q) is equal to the
number of all non-equivalent (n− 1)-arcs and n-arcs in PG(1, q).

The proof of (1) and (2) follows from the geometric fact, that the subgroup of
PGL(k, q) that leaves the normal rational curve Ck−1 invariant is the same as
PGL(2, q), and any n-set of the normal rational curve is an n-arc in PG(k−
1, q). To prove (3) we have to distinguish two cases: the nucleus can belong
to the n-set or not.

4 The number of matrices with nonzero

minors

It is known that a linear code with generator matrix (I | A) is MDS if and
only if every minor of A is non-zero in GF(q). This fact suggests studying
the matrices with this property, i.e. k × (n − k) matrices A with entries in
GF(q), all minors of which being non-zero. Two matrices A and B of this
type, i.e. superregular matrices (see their definition below) are considered to
be equivalent if either one can be obtained from the other by multiplying the
rows and columns by non-zero elements of GF(q) and after (or before) the
multiplication, permuting the rows and columns.

A rectangular matrix A is called superregular if every submatrix of A is non-
singular.

The equivalence of matrices of this type defines the kind of equivalence rela-
tion for MDS codes that we called weak equivalence in the introductory part
of the paper.

The number of non-equivalent 2 and 3 dimensional MDS codes in the sense
of weak equivalence, i.e. the number of non-equivalent superregular matrices
can be performed by nearly the same method that was outlined in Section 1
for simple equivalence. There are, however, two essential differences:

1. The exhaustive computer search is 3–5 times faster than before.
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2. The number of weakly non-equivalent MDS codes are much higher as it
can be seen by comparing the pairing tables (e.g. Table 7 with Table 2 or
Table 8 with Table 3).

This means that for these computations, the bottleneck capacity is not only
CPU time, but also disk space, when q and n are increasing. Tables 6–9 are
analogous to the previous Tables 1–4 for weak equivalence.

Let ν(n, k, q) denote the number of weakly non-equivalent linear MDS codes
of length n and dimension k. Then, analogously to Theorem 1, we have the
following equality:

Theorem 6 ν(n, k, q) = ν(n, n − k, q) for n ≥ 4, 2 ≤ k ≤ n − 2, and any
prime or prime power q.

A columnwise symmetry appears again in Tables 6 and 8, but its centre of
gravity moved below to the next place in each column, in comparison to
Tables 1 and 3.

By the similar reason as for Table 3 before, also Table 8 is finished in the
middle. The missing rows can be constructed from the given items by ap-
plying the following Theorem 7. In this case, however, the last two non-zero
items are 1’s in each column.

Theorem 7 For any prime or prime power q and for 4 ≤ n ≤ q − 1,

ν(n, 2, q) = ν(q + 3− n, 2, q).

Proof. Let (S1, S2) and (S ′1, S
′
2) be two disjoint partitions of the set GF(q) \

{0} into subsets of cardinalities n− 2 and (q − 1)− (n− 2), respectively:

S1 = {a1, a2, . . . , an−2}, S2 = {b1, b2, . . . , b(q−1)−(n−2)},

S ′1 = {a′1, a′2, . . . , a′n−2}, S ′2 = {b′1, b′2, . . . , b′(q−1)−(n−2)},
S1 ∩ S2 = S ′1 ∩ S ′2 = ∅,

S1 ∪ S2 = S ′1 ∪ S ′2 = GF(q) \ {0}.

Now, the proof can be completed by the reasoning that if the superregular
matrices

A =

(
1 1 . . . 1
a1 a2 . . . an−2

)
and A′ =

(
1 1 . . . 1
a′1 a′2 . . . a′n−2

)
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are equivalent, then also

B =

(
1 1 . . . 1
b1 b2 . . . b(q−1)−(n−2)

)
and B′ =

(
1 1 . . . 1
b′1 b′2 . . . b′(q−1)−(n−2)

)

are equivalent. ¤

We note that the following chain of relations holds, in general, for ν, ν and ν
where q = ph (h ≥ 1) and ν denotes the number of strongly non-equivalent
linear MDS codes of length n and dimension k.

1

h
· ν(n, k, q) ≤ ν(n, k, q) ≤ ν(n, k, q) ≤ ν(n, k, q).

Finally, it is also worth mentioning that the statements which are analogous
to Theorems 1, 2 and 5 are valid also for strong equivalence, i.e. when ν, ν ′

and ν ′′ are replaced by the corresponding underlined variables.

5 Examples

The classification of MDS codes, among other results, helps proving the
uniqueness of certain types of MDS codes and complete MDS codes. The
following four examples, contained in Theorems 8 and 9 are for illustration
of this fact.

Theorem 8 The complete MDS code with parameters q = 8, k = 3, n = 6 is
unique. (In other words: The complete 6-arc in PG(2, 8) is unique.)

Proof. There are 3 non-equivalent complete MDS codes with the given pa-
rameters. Their generator matrices are




1 1 1 1
1 1 α α3

1 1 α3 α


 ,




1 1 1 1
1 1 α2 α6

1 1 α6 α2


 ,




1 1 1 1
1 1 α4 α5

1 1 α5 α4


 .
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These 3 codes are strongly equivalent, because appropriate automorphisms
of GF(8) brings their generator matrices (and consequently, the codes itself)
into each other. ¤

The unique 6-arc in PG(2, 8) (deduced from the first form of the generator
matrix) consists of the points

(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1), (1, α, α3), (1, α3, α).

It is known that the four longest arcs in PG(1,32) is unique. By performing
the classification for strong equivalence, we can extend this result to the five
longest arcs.

Theorem 9 The MDS codes with parameters q = 32, k = 2, n = 4 or n = 29
are unique. (In other words: The 4-arc and the 29-arc in PG(1, 32) are
unique.) Consequently, the dual code of the latter, the MDS code with pa-
rameters q = 32, k = 27, n = 29 is also unique. (In other words: The 29-arc
in PG(26, 32) is unique.)

The proof is similar to that of Theorem 8. For each part of this theorem, the
5 non-equivalent codes (as regards simple equivalence) become all equivalent
(as regards strong equivalence). Generator matrices of codes of length 4 like
this are (

1 1 1
1 1 αk

)
, k = 1, 2, 4, 8, 16.

As a last example, we give a short remark to the hyperovals in PG(2, 32). It
is proved [20] that there are precisely 6 isomorphism classes of the hyperovals
in this plane, which are listed as

– the regular hyperoval,
– the irregular translation hyperoval,
– the Segre hyperoval,
– the Payne hyperoval,
– the Cherowitzo hyperoval,
– the O’Keefe–Penttila hyperoval.

It can be shown that performing field automorphisms to each of these hy-
perovals, with the exception of the last one, keeps them in the initial equiv-
alence class, for simple equivalence of linear codes. As regards the last case,
the 5 field automorphisms map this hyperoval into 5 non-equivalent hyper-
ovals according to the simple equivalence of linear codes. Naturally, these
non-equivalent variants of the O’Keefe–Penttila hyperoval are all strongly
equivalent.
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6 Tables

The results of the accomplished classification of 2 and 3 dimensional MDS
codes are summarized in the Tables given in this section. Where the count
numbers determined for simple (i.e. PGL) equivalence differ from the ones
given for strong (i.e. PΓL) equivalence, the latter ones are included in paren-
theses in Tables 1–5. According to Theorem 5, the items of Tables 1 and 3
present also the number of non-equivalent (strongly non-equivalent) classical
n-arcs in PG(r − 1, q) where r + 2 ≤ n ≤ q + 1.

In Table 5, ‘.’ is standing for an unknown (positive or zero) value, ‘.P.’ for an
unknown positive value, ‘.M.’ and ‘.MM.’ for not exactly determined large
values (greater than a million), where ‘.MM.’ is the maximum for a given q.

Consider now the items of Tables 2 and 4 that belong to even q ≥ 8 and
n = q + 1 showing that the number of non-equivalent (q + 1)-arcs is 2, 3,
35 when q = 8, 16, 32. According to Theorem 5, two of these (q + 1)-arcs
are contained in the regular hyperoval. Thus, exactly one 17-arc is contained
in the non-regular hyperoval of PG(2,16) and just thirty-three 33-arcs are
contained in the five non-regular hyperovals in PG(2,32).

From Tables 3 and 8 the omitted lines for n > 16 (17) can be reconstructed
according to the notes taken in the appropriate sections, mainly by using
Theorems 2 and 7. As regards Tables 4 and 9, the missing items are not yet
determined because they would require far too much CPU time.

As regards the number of non-equivalent superregular matrices (Tables 6–9),
we make only one comment to the case when q = 16. From the 30 non-
equivalent superregular 3×15 matrices only 2 can be derived from the doubly
extended Reed-Solomon code (so they belong to the regular hyperoval), while
the other 28 matrices belong to the alternative MDS code having the same
parameters (i.e. to the non-regular hyperoval).

We should like to mention, finally, that the number of non-equivalent super-
regular matrices is surprisingly huge for n = q+1 and n = q+2 when q = 32.
(See in Table 9.) This fact suggests that the computational approach for the
classification of MDS codes is extremely difficult for q = 32 and seems to be
unrealizable for any greater q in the even case.
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n\q 3 4 5 7 8 9 11 13 16 17 19
4 1 1 1 2 1 2 2 3 3(2) 3 4
5 - 1 1 1 1 2 2 3 4(3) 4 5
6 - - 1 1 1 2 4 5 8(4) 10 13
7 - - - 1 1 1 2 5 10(5) 10 18
8 - - - 1 1 1 2 5 11(6) 17 31
9 - - - - 1 1 1 3 11(6) 17 33
10 - - - - - 1 1 3 10(5) 17 44
11 - - - - - - 1 1 8(4) 10 33
12 - - - - - - 1 1 4(3) 10 31
13 - - - - - - - 1 3(2) 4 18
14 - - - - - - - 1 1 3 13
15 - - - - - - - - 1 1 5
16 - - - - - - - - 1 1 4
17 - - - - - - - - 1 1 1
18 - - - - - - - - - 1 1
19 - - - - - - - - - - 1
20 - - - - - - - - - - 1

Table 1. The number of non-equivalent (strongly non-equivalent) linear
2-dimensional MDS codes (the number of n-sets in PG(1, q))

for 3 ≤ q ≤ 19

n\q 4 5 7 8 9 11 13 16 17 19
5 1 1 1 1 2 2 3 4(3) 4 5
6 1 1 3 5(3) 7(6) 15 26 61(22) 74 117
7 - - 1 2 4(3) 21 80 454(125) 733 1768
8 - - 1 2 2 21 181 2633(685) 5441 20361
9 - - - 2 1 5 110 6014(1534) 17633 115492
10 - - - 1 1 2 27 4899(1262) 21064 280104
11 - - - - - 1 2 1171(300) 6814 235320
12 - - - - - 1 2 587(159) 629 55708
13 - - - - - - 1 260(70) 15 2733
14 - - - - - - 1 100(30) 4 83
15 - - - - - - - 30(9) 1 5
16 - - - - - - - 9(5) 1 4
17 - - - - - - - 3 1 1
18 - - - - - - - 2 1 1
19 - - - - - - - - - 1
20 - - - - - - - - - 1

Table 2. The number of non-equivalent (strongly non-equivalent) linear
3-dimensional MDS codes (the number of n-arcs in PG(2, q))

for 4 ≤ q ≤ 19
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n\q 23 25 27 29 31 32
4 4 5(4) 5(3) 5 6 5(1)
5 6 8(7) 8(4) 10 11 11(3)
6 22 28(19) 34(14) 42 51 53(13)
7 36 54(34) 73(29) 97 132 148(32)
8 83 131(79) 196(72) 289 415 481(97)
9 125 225(132) 382(134) 629 992 1240(248)
10 196 398(223) 745(257) 1339 2318 2964(596)
11 227 531(293) 1142(390) 2314 4442 6049(1217)
12 268 692(379) 1665(565) 3732 7856 11099(2227)
13 227 714(391) 1976(670) 5026 11854 17759(3555)
14 196 692(379) 2170(738) 6194 16218 25370(5074)
15 125 531(293) 1976(670) 6502 19234 32054(6414)
16 83 398(223) 1665(565) 6194 20636 36045(7217)
. . . . . . .

Table 3. The number of non-equivalent (strongly non-equivalent) linear
2-dimensional MDS codes (the number of n-sets in PG(1, q)) for

23 ≤ q ≤ 32

n\q 23 25 27 29 31 32
5 6 8(7) 8(4) 10 11 11(3)
6 257 365(205) 504(174) 682 905 1037(213)
7 7613 14114(7163) 24725(8261) 41301 66272 82881(16593)
8 172416 419385 933733 1933469 3768298 5158638

(210299) (311313) (1031750)
9 2235523 7490938 . . . .

(3747561)
. . . . . . .

q − 8 64773 1493(789) 515(183) 646 992 .
q − 7 692 222(135) 218(82) 293 415 .
q − 6 41 58(38) 76(32) 98 132 .
q − 5 22 29(20) 35(15) 43 51 .
q − 4 6 9(8) 8(4) 10 11 .
q − 3 4 5(4) 5(3) 5 6 .
q − 2 1 1 1 1 1 .
q − 1 1 1 1 1 1 .

q 1 1 1 1 1 1798(374)
q + 1 1 1 1 1 1 119(35)
q + 2 - - - - - 10(6)

Table 4. The number of non-equivalent (strongly non-equivalent) linear
3-dimensional MDS codes (the number of n-arcs in PG(2, q)) for

23 ≤ q ≤ 32
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n\q 8 16 23 25 27 29 31 32
6 3(1) - - - - - - -
7 - - - - - - - -
8 - - - - - - - -
9 - 6(2) - - - - - -
10 1 1944(501) 1 - - - - -
11 - 113(30) - - - - - -
12 - 32(9) 112449 1156(606) 21(7) - . .
13 - 1 4341514 .M. .P. .P. . .
14 - - 1828196 .MM. .M. .P. .P. .P.
15 - - 58361 .M. .MM .P. .P. .P.
16 - - 564 246446(124577) .M. .P. .P. .P.
17 - - 5 843(434) .P. .P. .P. .P.
18 - 2 - 65(41) .P. .P. .P. .P.
19 - - - - 13(5) .P. .P. .P.
20 - - - - - .P. .P. .P.
21 - - - 1 - 2 .P. .P.
22 - - - - 1 - 11 .P.
23 - - - - - - - .P.
24 - - 1 - - 1 - 95(19)
25 - - - - - - - -
26 - - - 1 - - - -
27 - - - - - - - -
28 - - - - 1 - - -
29 - - - - - - - -
30 - - - - - 1 - -
31 - - - - - - - -
32 - - - - - - 1 -
33 - - - - - - - -
34 - - - - - - - 10(6)

Table 5. The number of non-equivalent (strongly non-equivalent) complete
linear 3-dimensional MDS codes (the number of complete n-arcs in

PG(3, q)) for q = 8, 16 and 23 ≤ q ≤ 32
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n\q 3 4 5 7 8 9 11 13 16 17 19
4 1 1 2 3 3 4 5 6 7 8 9
5 - 1 1 3 4 5 8 12 19 21 27
6 - - 1 3 4 8 16 29 56 72 104
7 - - - 1 3 5 16 38 111 147 252
8 - - - 1 1 4 16 50 185 280 561
9 - - - - 1 1 8 38 232 375 912
10 - - - - - 1 5 29 232 440 1282
11 - - - - - - 1 12 185 375 1387
12 - - - - - - 1 6 111 280 1282
13 - - - - - - - 1 56 147 912
14 - - - - - - - 1 19 72 561
15 - - - - - - - - 7 21 252
16 - - - - - - - - 1 8 104
17 - - - - - - - - 1 1 27
18 - - - - - - - - - 1 9
19 - - - - - - - - - - 1
20 - - - - - - - - - - 1

Table 6. The number of non-equivalent superregular 2× (n− 2) matrices
for 3 ≤ q ≤ 19

n\q 4 5 7 8 9 11 13 16 17 19
5 1 1 3 4 5 8 12 19 21 27
6 1 1 9 21 36 107 257 737 983 1683
7 - - 2 12 49 446 2290 14530 24137 59586
8 - - 1 8 15 585 8024 137277 293606 1118523
9 - - - 3 2 125 7144 487980 1457246 9644076
10 - - - 2 1 13 1258 536580 2458911 33376322
11 - - - - - 2 62 178909 1097510 38665103
12 - - - - - 1 19 116574 108343 11976301
13 - - - - - - 3 68788 2109 746106
14 - - - - - - 1 31322 288 13958
15 - - - - - - - 10448 81 1047
16 - - - - - - - 2437 21 414
17 - - - - - - - 349 3 119
18 - - - - - - - 30 1 27
19 - - - - - - - - - 4
20 - - - - - - - - - 1

Table 7. The number of non-equivalent superregular 3× (n− 3) matrices
for 4 ≤ q ≤ 19
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n\q 23 25 27 29 31 32
4 11 12 13 14 15 15
5 40 48 56 65 75 80
6 195 256 328 413 511 560
7 621 913 1298 1794 2421 2793
8 1782 2920 4576 6916 10133 12103
9 3936 7293 12760 21287 34112 42640
10 7440 15581 30415 56021 98254 127920
11 11410 27407 60335 123695 238957 325845
12 14938 41272 102817 235378 502303 716859
13 16159 52234 148976 384111 911456 1367184
14 14938 56822 186616 544802 1444147 2278640
15 11410 52234 200474 669468 1997499 3329165
16 7440 41272 186616 718146 2427036 4280355
17 3936 27407 148976 669468 2587018 4850640
. . . . . . .

Table 8. The number of non-equivalent superregular 2× (n− 2) matrices
for 23 ≤ q ≤ 32

n\q 23 25 27 29 31 32
5 40 48 56 65 75 80
6 4141 6087 8652 11957 16133 18605
7 261738 487691 857044 1434842 2306134 2884900
8 9594801 23391022 52150380 108075860 210747351 288524138
9 187548579 628815516 . . . .
. . . . . . .

q − 6 21160 . . . . .
q − 5 9111 . . . . .
q − 4 3414 . 8888 13494 . .
q − 3 1020 1508 2144 2964 4010 .
q − 2 229 303 392 497 619 .
q − 1 40 48 56 65 75 .

q 4 5 5 5 6 .
q + 1 1 1 1 1 1 589679
q + 2 - - - - - 19084

Table 9. The number of non-equivalent superregular 3× (n− 3) matrices
for 23 ≤ q ≤ 32
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