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Abstract
Cuckoo optimization algorithm (COA) is inspired from the special and exotic lifestyle of a bird family called the cuckoo

and her amazing and unique behavior in egg laying and breeding. Just like any other population-based swarm intelligence

metaheuristic algorithms, the basic COA starts with a set of randomly generated solutions called ‘‘habitats.’’ Actually, the

habitats can be the current locations of either the mature cuckoos or their eggs. In an iterative manner, cuckoos lay their

eggs around their habitats inside the other birds’ nests by mimicking their eggs’ color, pattern, and size, and this is a kind of

parasitic brooding behavior. Some hosts may discriminate the strange eggs and throw them out while the others not. The

survival competition between cuckoos and their hosts, and migration of cuckoos in swarm are two main underlying

motivations to introduce the COA. In this paper, an adaptive cuckoo optimization algorithm named A-COA is proposed in

which three novelties in egg-laying and migration phases are applied. These modifications have made the basic algorithm

more efficient with faster convergence to solve continuous and discrete optimization problems. A comprehensive com-

parison study of A-COA versus not only the basic COA but also some other conventional metaheuristics like GA, PSO,

ABC, and TLBO has been made on a variety of unimodal and multimodal numerical benchmark functions with different

characteristics, and the results show an overall 25.85% of improvement in terms of performance with a faster convergence

speed compared to the basic COA, where the statistical Wilcoxon rank-sum test certifies our conclusions. In addition, a

discretized version of A-COA and its application to the multiprocessor task scheduling problem as a complex combina-

torial optimization problem are investigated where the proposed A-COA is very competitive with not only the strongest

conventional heuristics, for example, MCP, ETF, and DLS, but also the basic COA and the newly proposed ACO-based

approach.

Keywords Cuckoo optimization algorithm (COA) � Metaheuristics � Multiprocessor task scheduling problem (MTSP) �
Numerical benchmark functions � Combinatorial optimization

1 Introduction

Most of scientific, engineering and industrial problems can

be formulated as a corresponding continuous or discrete

objective function with some global optima and a large

number of local minima/maxima around. Actually, such

kinds of problems are NP-hard from the time complexity

perspective, so that there are no exact algorithms to solve

them in polynomial time budget. On this basis, using exact

methods is impractical specially where the dimensionality

of the problem at hand is high, and hence, metaheuristic

algorithms, which have a significant potential as general

problem solvers, to solve such kinds of problems have been

receiving increasing attention in recent years. Such meth-

ods, which most of them are inspired from natural phe-

nomena, are capable of finding at least suboptimal

solutions in a significantly reduced time budget. Consid-

ering different factors, such methods can be discriminated

into the different categories. Of them, two important ones

introduced in the literature are evolutionary algorithms

(EA) and swarm intelligence (SI) ones.
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The most recognized evolutionary algorithm is genetic

algorithm (GA) introduced by Holland [1]. It is a stochastic

searching method based on the theory of Darwinian natural

evolution of the living beings. Natural evolution is defined

as the adaptation of all the species in dynamic nature based

on the environmental feedback. During the species evolu-

tion by survival of the fittest, each generation transfers

better chromosomes to the next generation by exchanging

chromosomal material during breeding. By means of this

mechanism so-called crossover and another one named

mutation, defining as randomly changing some attributes in

the chromosomes of offspring, each species converges

toward a fittest generation for living in the current envi-

ronment. Of the other evolutionary algorithms are differ-

ential evolution (DE) introduced by Storn and Price [2],

which is similar to GA but with a specialized crossover and

selection method, evolution strategy (ES) introduced by

Rechenberg [3], evolution programming (EP) introduced

by Fogel et al. [4], artificial immune algorithm (AIA)

introduced by Farmer et al. [5] which works on the basis of

immune system of the human being, and bacteria foraging

optimization (BFO) introduced by Passino [6], which

works on the behavior of bacteria, to name a few.

On the other hand, some well-known swarm intelli-

gence-based algorithms are particle swarm optimization

(PSO) introduced by Kennedy and Eberhart [7], which

works on the foraging behavior of the flocks of birds, ant

colony optimization (ACO) introduced by Dorigo et al. [8],

which works on the foraging behavior of the real ant for

food, shuffled frog leaping (SFL) introduced by Eusuff and

Lansey [9], which works on the principle of communica-

tion among the frogs, artificial bee colony (ABC) algo-

rithms introduced by Karaboga [10], which works on the

foraging behavior of honey bees toward the food sources,

gray wolf optimizer (GWO) introduced by Mirjalili et al.

[11], which mimics the leadership hierarchy and hunting

mechanism of gray wolves in nature, wale optimization

algorithm (WOA) introduced by Mirjalili et al. [12],

mimicking the hunting mechanism of humpback whales in

nature, to mention a few.

Also, apart from the aforementioned evolutionary and

swarm intelligence-based algorithms, some other algo-

rithms have been introduced on the basis of different nat-

ural phenomena. Some of them can be enumerated as

harmony search (HS) algorithm introduced by Geem et al.

[13], which works on the principle of music improvisation

of a music player, the gravitational search algorithm (GSA)

introduced by Rashedi et al. [14], which works on the

principle of gravitational force acting between the bodies,

biogeography-based optimization (BBO) introduced by

Simon [15], which works on the principle of immigration

and emigration of the species from one place to the other,

the grenade explosion method (GEM) introduced by Ahrari

and Atai [16], which works based on the principle of

explosion of a grenade, the league championship algorithm

(LCA) introduced by Kashan [17], the charged system

search (CSS) introduced by Kaveh and Talatahari [18], and

teaching–learning-based optimization (TLBO) algorithm

introduced by Rao et al. [19], which works based on the

interacting behavior of a teacher and some learners in a

classroom.

Cuckoo optimization algorithm (COA) is a novel swarm

intelligence-based optimization algorithm first introduced

by Rajabioun [20], inspired from the exotic lifestyle of a

bird family named the cuckoo. Unique egg-laying and

breeding characteristics of cuckoos called parasite brood-

ing are the basis of constituting this metaheuristic algo-

rithm. Each solution vector in the COA is represented by a

‘‘habitat’’ which is the current location of either a mature

cuckoo in the society or an individual egg. Mature cuckoos

lay their eggs in some other birds’ nests by mimicking their

eggs’ color, pattern, and size. If the host birds are unable to

discriminate and kill the cuckoos’ eggs, they will gain a big

chance to grow and become mature cuckoos. By means of

this parasite brooding behavior besides the immigration of

societies (groups) of cuckoos, they converge to the best

environments for breeding and reproduction. Actually,

these most profitable environments are supposed to be the

global optima of the given objective function of the opti-

mization problem at hand. The COA has gained an

increasing popularity in the past few years and been

applied on the variety of applications [21]; Elyasigomari

et al. [22]; Faradonbeh and Monjezi [23]; Bazgosha et al.

[24].

In this paper, we propose an adaptive version of cuckoo

optimization algorithm named A-COA in which three

novelties in egg-laying and migration phases are applied as

follows: (1) The egg-laying radius (ELR) is nonlinearly

reduced over the iterations for faster convergence, madding

a better balance between exploration and exploitation

specially for the last iterations. (2) After egg-laying phase,

those eggs laid in the same locations (with an e tolerance)

are recognized and killed except one of them. While in the

basic COA the epsilon coefficient is constant over the

execution, in the A-COA this coefficient is decreased lin-

early with the iterations. This idea lets compacter popula-

tions in the last iterations help with the exploitation and

local search for getting exact final solutions. (3) In contrast

to the basic COA in which the motion coefficient is con-

stant during the algorithm execution, in the A-COA, we

apply an adaptive motion coefficient for each cuckoo based

on the cuckoo’s distance to the globally best cuckoo; i.e.,

the farer cuckoo will get higher coefficient to move for-

ward. This idea, on the one hand, helps the farer cuckoos

get trapped in the local minima having a big jump toward

the global best and exiting off the stagnation while helping
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the convergence speed; on the other hand, it slows down

the nearer cuckoos for a better investigation around the

global best cuckoo in order to improve the accuracy, as

well as to avoid premature convergence.

These modifications make the proposed A-COA more

efficient with faster convergence in comparison with the

basic COA. To prove that, a comprehensive comparison

study of A-COA versus not only the basic COA but also

some other conventional popular approaches in the litera-

ture like GA, PSO, ABC and TLBO has been conducted

using a variety of numerical unimodal and multimodal

optimization benchmark functions with different charac-

teristics, and diverse conclusions have been made. In

addition, a discretized version of A-COA and its applica-

tion to the multiprocessor task scheduling problem (MTSP)

as a complex combinatorial optimization problem are

investigated where the proposed A-COA is very competi-

tive with not only the strongest conventional heuristics,

e.g., MCP, ETF, and DLS, but also the basic COA and the

newly proposed ACO-based approach.

The rest of the paper is organized as follows. The basic

COA is described in the following section. Section 3

introduces the proposed A-COA approach and the

philosophies behind the modifications and improvements

made. Section 4 explains the implementation details and

configurations. Section 5 is devoted to the achieved

experimental results and the comparison study. The dis-

cretized version of A-COA and its application to the

multiprocessor task scheduling problem (MTSP) as a

complex combinatorial optimization problem are investi-

gated in Sect. 6, and finally, the paper is concluded in

Sect. 7.

2 Cuckoo optimization algorithm (COA)

Figure 1 shows the flowchart of the basic cuckoo opti-

mization algorithm (COA). At first, COA produces a ran-

domly generated initial population of Npop solutions, where

Npop is the size of the population. In COA, each solution of

the given problem is represented by a ‘‘habitat vector,’’ for

example Hi = [xi,1, xi,2, …, xi,Nvar]
T, which indicates the

location of either a mature cuckoo or an individual egg,

where each xi,j is an optimization parameter (decision

variable) for the solution Hi, Nvar is the total number of

optimization parameters (the dimension of each solution

vector), and T denotes the vector transposition. In this way,

the algorithm starts with a candidate habitat matrix with the

size of Npop9 Nvar. Then, the desirability of each randomly

generated habitat is calculated using a corresponding fit-

ness function. The fitness function can be shown by f so

that fi = f (Hi) = f (xi,1, xi,2, …, xi,Nvar) is the desirability

(fitness value) of the i-th habitat. If the minimization is to

be in consideration, the lower fitness value is achieved and

the better solution is obtained.

After initialization, the population of the habitats (so-

lutions) is subjected to some repeated cycles, iter = 1, 2,…,

itermax, of the search process. In each iteration, firstly some

randomly generated number of eggs (Neggi, i = 1, 2, …,

Npop) is considered for each cuckoo. In the nature, each

cuckoo may lay eggs ranging from five to 20, which are

suitable as the upper and lower bounds of egg quota for

each cuckoo in most of the problems. Another thing to be

considered is that generally cuckoos lay eggs within a

limited distance from their habitats called egg-laying radius

(ELR). In an optimization problem with upper and lower

bounds as xmax and xmin for the decision variables,

respectively, each cuckoo has an ELR which is propor-

tional to the total number of eggs laid by all the cuckoos,

the number of current cuckoo’s eggs, and also the differ-

ence between xmax and xmin. On this basis, the ELR for

each cuckoo to lay its eggs is defined as

ELRi ¼ a� Neggi

Total number of eggs
� xmax � xminð Þ ð1Þ

Fig. 1 Flowchart of the basic COA [20]
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where Neggi is the number of eggs laid by the i-th cuckoo

and a is the egg-laying coefficient, a constant real value

supposed to handle the maximum value of ELR.

In this way, each cuckoo starts laying eggs in some other

host birds’ nests within her ELR in a random fashion.

Figure 2 shows such kind of random egg laying in ELR. In

the next step, firstly, those eggs laid in the same locations

with an e tolerance are detected and killed and secondly,

p% of all the eggs (usually 10%) with less profit values are

thrown away. Obviously, these eggs had no chance to grow

and contribute to the society. Rest of the eggs grow and are

considered as mature cuckoos; i.e., their habitats are

included in the habitat’s set to be selected for the next

iterations. In addition, another interesting point about lay-

ing eggs by cuckoos is that only one egg in a nest has the

chance to grow. On this basis, we check all the eggs’

locations, and those eggs in the same locations (with an

epsilon tolerance) will be killed except one of them.

After maturation of young cuckoos, they may stay in

their own society or immigrate to the new and supposedly

better habitats for egg laying and reproduction. Hence, we

first group the cuckoos to some disjoint clusters and select

the society with the best profit value as the goal point for

other cuckoos to immigrate. A k–means clustering method

is used where a k ranging from 1 to 3 seems to be sufficient

in the simulations [20]. Then, we should calculate the mean

profit value for all the groups. The maximum mean profit

determines the goal group, and consequently that group’s

best habitat (Hbest) is the new destination habitat for all the

cuckoos to migrate using (2).

Hnew
i:j ¼ Hold

i:j þ F � rand 0:1ð Þ � Hbest�j � Hold
i�j

� �

ji ¼ 1; 2; . . .;Npop and j ¼ 1; 2; . . .;Nvar

ð2Þ

where F is the migration coefficient and rand (0, 1) gen-

erates random number in the range of [0, 1]. As shown in

Fig. 3, it is worth mentioning that the cuckoos do not fly all

the way to the destination habitat when they move toward

the goal point, but they only fly a part of the way (k) and

also with some deviation (u). A k randomly selected in the

range of (0, 1] and u generated randomly in the range of

(- p/6, ? p/6) are introduced suitable for good conver-

gence in the basic COA [20]; therefore, the migration

coefficient (F) should be tuned up accordingly.

3 The adaptive cuckoo optimization
algorithm (A-COA)

In this section, the modifications to improve the COA are

described, and an adaptive version is proposed named

A-COA which is capable of solving both continuous and

combinatorial optimization problems efficiently with faster

convergence. Up to our knowledge, most of the parameters

in the basic COA, for example ELR coefficient (a), epsilon

coefficient (e), and migration coefficient (F), are stochastic

and have potential to be enhanced. On this basis, in our

adaptive version, three novelties in egg-laying and migra-

tion phases are applied as follows.

3.1 Decreasing the egg-laying radius coefficient
nonlinearly

The egg-laying radius coefficient (a) in (1) is a parameter

to control the length of ELR which is the maximum dis-

tance among which a cuckoo can lay its eggs. Higher a lets

cuckoos lay eggs in farer distance which is suitable for the

exploration of search space (as global search) while lower

a bounds this distance suitable for the exploitation and

Fig. 2 Random egg laying in ELR, central red star is the initial

habitat of the cuckoo with five eggs; pink stars are the eggs in new

nests [20]

Fig. 3 Immigration of cuckoos in groups toward the globally best

habitat [20]
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local search. To make a balance between exploration and

exploitation, a logical idea, as shown in Fig. 4, is that this

parameter should be high in the first iterations to help with

the exploration (global search) and be decreased in the last

iterations to help with the exploitation (local search). We

argue that this reduction should not be in a linear form; i.e.,

a is better to be near its maximum value in the first itera-

tions while near its minimum possible value in the last

ones. On this basis, at, i.e., the egg-laying radius coefficient

for the iteration t, is computed in each iteration using (3):

at ¼ amax �
amax � amin

itermax � iter þ 1
ð3Þ

where amin and amax are the minimum and maximum val-

ues considered for egg-laying radius coefficient, respec-

tively. Simply, the amin can be assumed as zero, and just

amax need be investigated experimentally.

3.2 Managing epsilon coefficient

As mentioned before, after egg-laying phase, those eggs

laid in the same locations (with an e tolerance) should be

recognized and killed except one of them. Obviously, these

eggs had no chance to grow and contribute to the society.

While in the basic COA the epsilon coefficient is constant

all over the execution, in the A-COA this coefficient is

decreased linearly with the iterations using (4):

et ¼ emax � iter � emax � emin

itermax

ð4Þ

where emin and emax are the minimum and maximum values

considered for the epsilon coefficient, respectively, and et is

this coefficient for the iteration t. Simply, the emin and emax

can be assumed as zero and the constant value offered in

the basic COA, respectively. This idea as shown in Fig. 5

lets compacter populations in the last iterations help with

the exploitation and local search for getting exact final

solutions.

3.3 Adaptive migration coefficient

The definition of migration coefficient (F) and its corre-

spondence with the motion ratio (k) and deviation (u) is

very obscure in the basic COA. Actually, it is not clear how

the author can calculate F to be used in (2) based on the

given k and u. Also, whether the F is constant in all the

iterations or should change for every cuckoo or even for

every dimension of the given problem, is a question to be

answered. In A-COA, we suggest to apply an adaptive

motion coefficient for each cuckoo based on the cuckoo’s

distance to the global best using (5); i.e., the farer cuckoo

ELR

ELR

ELR

E
L
R

ELR

ELR

Fig. 4 Nonlinearly decreasing egg-laying radius coefficient in

A-COA and its effect on searching the problem space

ε

ε

ε

ε

ELR

ε

ε

ε

Fig. 5 Managing the epsilon coefficient in A-COA: Red lines are

used to demonstrate the eviction of eggs in the same locations with an

e tolerance

ELR

ELR

ELR

ELR

ELR

Fig. 6 Effect of adaptive migration coefficient in A-COA where the

farer cuckoos make bigger jumps toward the global best cuckoo (the

red star is the global best cuckoo)
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will get higher coefficient to move forward and vice versa

(Fig. 6):

Fi ¼ Fmin þ
fi � fmin

fmax � fmin

� Fmax � Fminð Þ ð5Þ

where fmin and fmax are the minimum and maximum fitness

values in the current iteration, respectively, and fi is the

fitness value for the cuckoo under consideration. On the

one hand, this idea helps the farer cuckoos get trapped in

the local minima having a big jump toward the global best

and exiting off the stagnation while helping the conver-

gence speed; on the other hand, it slows down the nearer

cuckoos for a better investigation around the global best in

order to improve the accuracy, as well as avoid premature

convergence.

4 Implementation details
and configurations

The proposed A-COA was implemented on a Pentium IV

(8-core 3.9 GHz i7–3770 K processor) desktop computer

with Microsoft Windows 7 (X64) platform using Microsoft

Visual Basic 6.0 programming language. The A-COA’s

flowchart and an implementation in pseudocode are

demonstrated in Figs. 7 and 8, respectively. A set of 20

numerical unimodal and multimodal benchmark functions

with various search space structures were considered to

fully evaluate the proposed approach. All of these bench-

mark functions are minimization ones described in the

following subsection. Besides, a complete list of stochastic

optimization algorithms, i.e., not only the evolutionary

algorithms such as GA but also the swarm intelligence-

based methods such as PSO, ABC, and TLBO, are con-

sidered for a rational judgment about the performance of

the proposed A-COA. A full list of configurations used to

tune these algorithms is shown in Table 1. Since the overall

performance of each algorithm is fully dependent on its

configuration, we pay a full attention to this issue and

propose the most adequate configuration for each individ-

ual algorithm based on the large number of experiments,

and this is considered to be another contribution of this

paper (we guarantee that all the configurations are opti-

mized so that the achieved results for each numerical

benchmark function are better, or at least equal to the ones

obtained by original or state-of-the-art configurations by

other authors). On the other hand, some parameters are

identical for all of the utilized algorithms; for example, the

population size is set to 40 for all of them (except for COA

and A-COA that are set to 20), the number of iterations is

set to 1000, and each algorithm will be terminated after

1333 9 D times of fitness function evaluation (FFE),

where D is the number of dimensions for the given

benchmark function under the experiment. Since in all the

experiments in this paper, D is set to 30, the termination

criterion is 40,000 FFE for all the algorithms (we again

guarantee that 40,000 FFE is enough for all the algorithms

to release their full potential on the both unimodal and

multimodal benchmark functions with the dimensionality

of 30).

4.1 Comparison benchmark functions

Tables 2 and 3 list two different sets of ten multidimen-

sional unimodal and multimodal numerical benchmark

functions, respectively, which are very popular and appli-

cable in the literature. By definition, the unimodal func-

tions are those that have only one peak and valley as global

Yes 

Generating the initial population 

Evaluate each cuckoo (habitat) 

Calculate the number of eggs for each cuckoo 

Calculate ELR for each cuckoo 

For each cuckoo, lay the eggs randomly in ELR 

Kill the eggs in the same locations  

Is the exit 
criteria 

satisfied? 

No 

Start

End

Evaluate the survived eggs (habitat) 

Sort all the habitats (cuckoos & eggs) and pick 
only the first better habitats 

Cluster the habitats using k-means  

Find the best cluster and habitat for migration to 

Migrate all the cuckoos toward the global best one 

Fig. 7 Flowchart of the proposed A-COA
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optimal point, while the multimodal ones have a number of

global and local minima/maxima distributed over the

search space and are indeed very harder to be solved.

Besides, multidimensionality of these functions enables us

to conduct the experiments using different number of

decision variables ranging from low dimensions (easy-to-

be-solved) to very high ones (hard-to-be-solved).

4.2 Competitor optimization algorithms
for comparisons

This subsection is devoted to introduce those conventional

metaheuristic optimization algorithms with which the

comparison study versus A-COA will be made. For a

rational judgment, either an evolutionary computation

algorithm, i.e., genetic algorithm (GA), or three swarm

intelligence-based algorithms named particle swarm opti-

mization (PSO), artificial bee colony (ABC), and teaching–

learning-based optimization (TLBO) are considered and

described as follows:

• Genetic algorithm (GA) GA was first introduced by

Holland [1]. It is a stochastic searching method based

on the theory of Darwinian natural evolution of the

living beings. This algorithm is started with a set of

randomly generated solutions called initial population.

Each member in the population is called a chromosome

which is actually a solution of the given problem and

itself consists of a string of genes. The number of genes

in each chromosome and their acceptable value’s

ranges are depended on the problem specification; for

example, in combinatorial function optimization, the

00: int Npop ← the_number_of_cuckoos_in_the_population;
01: int Nvar ← the_number_of_optimization_parameters;
02: int Neggmin, Neggmax ← the_minimum_and_maximum_numbers_of_eggs_for_each cuckoo;
03: int Nmax ← Npop + Neggmax * Npop; {“The maximum number of habitats (cuckoos and eggs) may exist at the same time”}
04: float habitats [1..Nmax, 1..Nvar] ← 0; {“To retain the location of cuckoos as well as eggs”}
05: float xmin, xmax ← the_minimum_and_maximum_bounds_for_optimization_parameters; 
06: int Negg [1..Npop]; {“The number of eggs for each cuckoo”}
07: float ELR [1..Npop]; {“The egg-laying radius for each cuckoo”}
08: float αmin, αmax ← the_minimum_and_maximum_for_egg_laying_coefficients;
09: float α;    {“The egg-laying coefficient for each iteration”}
08: float εmin, εmax ← the_minimum_and_maximum_for_epsilon_coefficients;
09: float ε;    {“The epsilon coefficient for each iteration”}
10: float Fmin, Fmax ← the_minimum_and_maximum_for migration_coefficients;
11: flaot F; {“The migration coefficient for each iteration”}
12: float fmin, fmax;    {“The minimum and maximum fitness values in each iteration to be used in (5), respectively”}
13: int iter, itermax ← the_maximum_number_of_iterations; 
14: int GB_Index; {“The index of global best habitat”}
15: for i = 1 to Npop
16:     habitat [i, 1..Nvar] = xmin + rand (0, 1) * (xmax - xmin);
17: next i
18: for iter = 1 to itermax
19:     update fmin, fmax;
20:     update Negg [1..Npop]; {“Update the number of eggs for each cuckoo randomly in the range of [Neggmin, Neggmax]”}
21:     update α; {“Update the egg-laying coefficient for this iteration using (3)”}
22:     update ELR [1..Npop]; {“Update the egg-laying radius (ELR) for each cuckoo using (1)”}
23:     Nmax ← Npop;
24:     for i = 1 to Npop {“Egg-laying for each cuckoo”}
25: for j = 1 to Negg [i]
26: Nmax ← Nmax + 1;    {“Assign a new habitat for the newly generated egg”}
27:             habitat [Nmax, 1..Nvar] = habitat [i, 1..Nvar] + rand (-1, 1) * ELR [i];   {“Egg-laying in ELR”}
28:     next j, i
29:     update ε; {“Update the epsilon coefficient for this iteration using (4)”}
29:     for i = 1 to Npop - 1   {“Kill the eggs in the same locations”}
30: for j = i to Npop
31:             find all the habitats within the epsilon distance of habitat [i] and kill them;   
32:     next j, i
33:     sort habitat [1..Nmax, 1..Nvar] based on their fitness values, and pick the first Npop habitats;
34:     GB_Index ← 1;    {“The global best cuckoo will be the first one after sorting”}
35:     update F; {“Update the migration coefficient for this iteration using (5)”}
35: for i = 1 to Npop
36:         for j = 1 to Nvar
38:             habitat [i, j] = habitat [i, j] + F * rand (0, 1) * (habitat [GB_Index, j] - habitat [i, j]); {“The migration phase using (2)”}
39: next j, i
40: next iter
41: print fGB_Index, habitat [GB_Index, 1..Nvar];

Fig. 8 Proposed A-COA in pseudocode
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number of genes for each chromosome corresponds to

the number of optimization variables, and the gene

values are bounded by an upper and lower bounds of

these variables. A set of chromosomes (population) in

each iteration is called a generation. The generation is

evaluated by a fitness function in order to find the

desirability of each individual. Afterward, some off-

spring (the new generation) is created by applying some

operators on the current generation. These operators are

crossover which selects two chromosomes as parents,

combines them and generates two new offspring, and

mutation which changes randomly value of some genes

in a selected chromosome and creates a new offspring.

Then, the best children and maybe their parents are

selected by evolutionary selection operator according to

their fitness values using methods like ranking, roulette

wheel, tournament, and so on. These three phases of

production, i.e., manipulation, evaluation and selection,

are repeated until some conditions are satisfied, and

finally, the best chromosome in the last generation is

returned as the best global solution.

• Particle swarm optimization (PSO) PSO was first

introduced by Kennedy and Eberhard [7], originated

from the mystery of migration and the foraging

behavior of the flocks of birds (called particles) for

food [7]. In this technique, all the particles search for

the food in multidimensional search space based on

their two important characteristics, i.e., the current

position referred to as the suggested solution xi:j tð Þ
� �

and velocity or changing rate of the particle position

ðvi:j tð ÞÞ using (6) and (7).

Table 1 Configurations of the algorithms used in comparison study

Algorithm Parameter Symbol Value

GA Mutation coefficient lm 0.9—each time the mutation is only done on one

dimension

Crossover coefficient lc 0.9

Selection mechanism Rank-based

Crossover strategy 1 point

PSO Personal coefficient c1 2.0

Global coefficient c2 2.0

Inertia factor w 0.25

Rand (- 1,1) is used instead of rand (0,1) for u1 and u2 in

(7)

ABC Global search coefficient w1 1.0

Local search coefficient w2 1.3

COA ELR coefficient a 1.0

Migration coefficient F p/6 9 rand (0, 1)

The no. of clusters c 1

The minimum no. of eggs for each cuckoo Neggmin 2

The maximum no. of eggs for each cuckoo Neggmax 5

Epsilon tolerance to kill the eggs in the same locations e 1.00E-08

The population size Half of the others (i.e., 20)

A-COA ELR coefficient amax 1.0

amin 0.01

Migration coefficient Fmax 1.5

Fmin 0.3

The no. of clusters c 1

The minimum no. of eggs for each cuckoo Neggmin 2

The maximum no. of eggs for each cuckoo Neggmax 5

Epsilon tolerance to kill the eggs in the same locations emax 1.00E-08

emin 0.0

The population size Same as COA (i.e., 20)

TLBO This algorithm has no parameter to be tuned.
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xi:j tð Þ ¼ xi:j t � 1ð Þ þ vi:j tð Þ
ji ¼ 1; 2; . . .;Npop and j ¼ 1; 2; . . .;Nvar

ð6Þ

vi:j tð Þ ¼ w� vi:j t � 1ð Þ þ u1 x
p
i:j � xi:j t � 1ð Þ

� �

þ u2 x
g
j � xi:j t � 1ð Þ

� �
ð7Þ

where w is an inertia factor to tune the velocity in each

iteration, x
p
i is the personal best position visited yet by

the particle xi, xg is the global best particle in the

population, and u1 ¼ c1 � rand 0:1ð Þ and u2 ¼ c2 �
rand 0:1ð Þ are randomly generated personal and global

coefficients, respectively, for knowledge exploitation in

the algorithm (where c1 and c2 are set to 2 in most the

cases). Obviously, if any particle finds a better path to

the food’s location, it becomes the global best and

attracts other particles to follow its path (global search).

On the other hand, each particle exploits its own per-

sonal best location as a local search around itself. All

particles move slowly toward the obtained solution

updating their personal best and the global best solu-

tion. At the end, all particles reach the same position

which are supposed to be the best global solution of the

given problem.

• Artificial bee colony (ABC) ABC algorithm was first

introduced by Karaboga [10], working based on the

foraging behavior of a colony of honeybees [10]. In the

ABC algorithm, the colony of artificial bees is divided

into three groups of different bees just like their real-

world counterparts, i.e., employed bees, onlookers, and

scouts. A bee waiting on the dance area for making

decision to choose a food source is called an onlooker,

and a bee going to the food source previously visited by

itself is named an employed bee. On the other hand, a

bee carrying out random search to find probably

undiscovered food source yet is called a scout. In the

ABC algorithm, the first half of the colony consists of

employed artificial bees, and the second half constitutes

the onlookers. For every food source, there is only one

employed bee; i.e., each individual employed bee is

associated with a certain food source. The employed

bee whose food source is exhausted becomes a scout

starting new randomly flights around the hive. At the

initialization stage, a set of food source positions are

randomly selected by the employed bees, and their

nectar amounts are determined using the given fitness

function. Then, the iterative searching algorithm begins,

each cycle of which consists of three steps: (1) Each

employed bee, for example i-th, selects another food

source, for example k-th, randomly and goes toward it

from its associated food source using (8).

vi:j tð Þ ¼ xi:j tð Þ þ w1 rand �1:1ð Þðxi:j tð Þ � ðxk:j tð ÞÞ
ji ¼ 1; 2; . . .;Npop

ð8Þ

where j [ {1, 2, …, Nvar} is a randomly selected index

as an individual dimension and w1 is the migration

coefficient used to tune and control global search in

ABC. Then, the nectar amount of this location (vi:j tð Þ) is

measured; if the fitness value of this location is better

than the previous food source location (xi:j tð Þ), it is

replaced with newly discovered location; else, it will be

remained unchanged. (2) Each onlooker bee selects a

food source, for example i-th, using a roulette wheel

selection based on the nectar amount of the foods. It

Table 2 Multidimensional unimodal numerical benchmark functions

Nos. Function Formula Range X* F(x*)

1 Sphere minF xð Þ ¼
PD

i¼1 x
2
i

[- 100, 100] [0, 0, …, 0]T 0

2 Rosenbrock minF xð Þ ¼
PD�1

i¼1 100ðx2
i � xiþ1Þ2 þ ð1 � xiÞ2Þ

h i
[- 32, 32] [1, 1, …, 1]T 0

3 Schwefel N1.2
minF xð Þ ¼

PD
i¼1

Pi
j¼1 x

2
j

� �2 [- 100, 100] [0, 0, …, 0]T 0

4 Schwefel N2.21 minF xð Þ ¼ maxðjxijÞ [- 100, 100] [0, 0, …, 0]T 0

5 Schwefel N2.22 minF xð Þ ¼
PD

i¼1 jxij þ
QD

i¼1 jxij [- 10, 10] [0, 0, …, 0]T 0

6 Step minF xð Þ ¼
PD

i¼1 ðjxi þ 0:5jÞ2 [- 100, 100] [- 0.5, - 0.5, …, - .5]T 0

7 Quartic minFðxÞ ¼
PD

i¼1 ði� x4
i Þ þ rand 0:1ð Þ [- 1.28, 1.28] [0, 0, …, 0]T *

8 Elliptic minF xð Þ ¼
PD

i¼1 x2
i � 106

� � i�1
D�1

� �
[- 5.12, 5.12] [0, 0, …, 0]T 0

9 BentCigar minF xð Þ ¼ x2
1 þ 106 �

PD
i¼1 x

2
i

[- 5.12, 5.12] [0, 0, …, 0]T 0

10 Discus minF xð Þ ¼ 106 � x2
1

� �
þ
PD

i¼1 x
2
i

[- 5.12, 5.12] [0, 0, …, 0]T 0

*The minimum value for the quartic function is variable based on the generated value by rand (0, 1)
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selects another food source, for example k-th, randomly

and goes from the i-th food source to the selected k-th

one using (8) again where w2 is used instead. Actually,

w2 is a coefficient used to tune and control local search

in ABC. At this time, the onlooker bee measures the

nectar amounts of the neighborhood (vi:j tð Þ); if the fit-

ness value of the neighborhood is better than the current

food source location (xi:j tð Þ), it is replaced with its

neighborhood location; else, it will be remained

unchanged. (3) Determining each scout bee, for exam-

ple i-th one (each food source that has not been changed

for a limited number of iterations simply known as

limit), and then sending it to search for the potential yet

undiscovered food sources using (9).

xi:j tð Þ ¼ xmin þ rand 0:1ð Þðxmax � xminÞ
jfor every j ¼ 1; 2; . . .;Nvar

ð9Þ

By means of these simple steps, the bees will converge

to the most profitable locations in terms of the given

fitness function.

• Teaching–learning-based optimization (TLBO) TLBO

algorithm was first introduced by Rao et al. [19],

working based on the interacting behavior of a teacher

and some learners in a classroom [19]. Teaching–

learning is an important motivating process where any

individual tries to learn something from the others.

Traditional classroom teaching–learning environment is

one sort of motivating process where the students try to

learn from a teacher as well as to share their learned

subjects to improve their knowledge. Based on this

interacting process, TLBO has been proposed which

simulates the traditional teaching–learning phenomenon

in a classroom. Actually, TLBO is a population-based

algorithm where a group of students (i.e., solution

vectors) is considered, and the different subjects offered

to the learners are analogous with the manipulation of

different decision variables of the given optimization

problem. The algorithm simulates two fundamental

modes of learning: (1) learning through teacher known

as the teaching phase (global search) and (2) interacting

with the other learners known as the learning phase

(local search). In each iteration, the best solution in the

entire population is considered as the teacher to perform

teaching phase, and then learners start to share their

knowledge to each other as to perform learning phase.

In this way, the whole population converge to a same

position supposed to be the best global solution of the

problem under consideration.

5 The achieved results and comparison
study

Table 4 shows the results obtained by each optimization

algorithm on the unimodal benchmark functions listed in

Table 2 with a dimension of 30 decision variables. It is

worth mentioning that each result illustrated in this paper is

extracted from 30 independent runs as mean and standard

deviation for the algorithm in consideration. For each

function, the bolded number is the best result achieved by

the algorithms. As can be seen, the TLBO outperforms the

others by far in this set of experiments. Actually, the rank-

sum-based ranking for the algorithms drawn by this set of

experiments is {TLBO, PSO, ABC, GA, A-COA, and

COA}, which indicates that the TLBO is the best and COA

is the worst from the performance point of view.

Nevertheless, as stated in [25], we should not exclu-

sively rely on these results because most of the benchmark

functions have a global minimum in [0, 0, …,0]T, which

can be exploited as a background knowledge for some

algorithms to promptly converge to this point. In order to

address the issue, Liang et al. [26] suggested the utilization

of these randomly shift-rotated benchmark functions. On

this basis, another set of experiments were conducted.

Table 5 shows the results obtained by each optimization

algorithm on the shift-rotated previous unimodal functions.

Surprisingly, the TLBO not only loses its efficiency versus

other methods but also unable to find any best solution for

all the functions! The resulting rank-sum-based ranking for

the algorithms drawn by this set of experiments is {ABC,

PSO = TLBO, GA, A-COA, and COA}, suggesting the

superiority of ABC and retardation of COA in terms of

performance. Again, the proposed A-COA has a better

ranking versus the basic COA.

On the other hand, most of the actual engineering

optimization problems have a multimodal nature; i.e., the

objective function in consideration may have a large

number of suboptimal local minima as well as a few

identical global ones distributed over the search space.

Therefore, it is very important for each algorithm to

illustrate a high potentiality to solve such kinds of prob-

lems efficiently. Table 6 shows the results achieved by

each optimization algorithm on the multimodal benchmark

functions listed in Table 3 with a dimension of 30 decision

variables. As one can see, the ABC outperforms the others

in this set of experiments. It can be said that the rank-sum-

based ranking for the algorithms drawn by this set of

experiments is {ABC, TLBO, GA, PSO, A-COA, and

COA}, indicating the superiority of ABC versus the others

from the performance perspective.

Again, another set of experiments should be conducted

using the aforementioned shift-rotated multimodal
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benchmark functions. Table 7 shows the results obtained

by each optimization algorithm for these experiments. For

another time, we observe a reordering among the

algorithms where the resulting rank-sum-based ranking for

the algorithms drawn by this set of experiments is {ABC,

GA, PSO, TLBO, A-COA, and COA}; i.e., ABC has the

Table 4 Results achieved by the algorithms on unimodal functions (dimension = 30)

GA PSO ABC TLBO COA A-COA

Sphere

Mean 3.07E-02 1.01E-28 7.36E-12 1.31E-90 8.56E-02 4.17E-02

SD 0.008412629 2.9698E-28 1.63016E-11 1.68062E-90 0.031097058 0.019156775

Rank 4 2 3 1 6 5

Rosenbrock

Mean 59.20573856 35.64582342 9.947050402 23.90273766 50.37957632 35.32396209

SD 28.23859642 36.34705511 8.50422904 0.502877374 26.16473546 14.64594875

Rank 6 4 1 2 5 3

Schwefel N1.2

Mean 956.8894976 6.48103E-52 2.72144E-16 8.7636E-174 132,114.8616 26,893.99995

SD 852.71958 1.34821E-51 8.3935E-16 0.0 98,653.09966 24,084.60954

Rank 4 2 3 1 6 5

Schwefel N2.21

Mean 10.60590625 4.262234194 27.41483971 1.17742E-35 11.89867221 17.32514169

SD 0.879586902 1.084514635 4.817762468 4.94052E-36 4.724000479 7.149512303

Rank 3 2 6 1 4 5

Schwefel N2.22

Mean 1.005158186 2.5609E-13 1.28889E-05 4.855E-44 15.58286598 11.67770652

SD 0.183674212 4.72262E-13 5.44574E-06 2.5279E-44 7.743056979 5.566045985

Rank 4 2 3 1 6 5

Step

Mean 10.97022622 5.88379E-27 2.53218E-09 4.4781E-08 46.80671072 17.36374744

SD 3.501800115 1.00916E-26 4.63253E-09 5.05706E-08 16.55761503 8.647170574

Rank 4 1 2 3 6 5

Quartic

Mean 2.17459E-05 1.4988E-16 3.33067E-17 0.0 0.000193904 0.00010185

SD 2.08773E-05 4.57008E-17 2.86658E-17 0.0 0.000133849 5.5355E-05

Rank 4 3 2 1 6 5

Elliptic

Mean 1213.614811 48.79010576 1.55772E-07 1.0159E-86 36,265.6778 30,457.63395

SD 672.8818255 90.73217672 1.72225E-07 1.15347E-86 14,446.76903 12,319.11386

Rank 4 3 2 1 6 5

BentCigar

Mean 19,893.77169 1.76809E-25 1.63294E-06 2.64285E-84 73,399.1959 32,348.44856

SD 6450.949155 3.63978E-25 1.26209E-06 4.60142E-84 40,995.21048 14,416.5772

Rank 4 2 3 1 6 5

Discus

Mean 189.3995226 28.83584 4.49287E-08 9.54749E-89 28.55259352 18.67795529

SD 513.9928242 26.06835764 8.89152E-08 1.35295E-88 8.413472576 9.716353333

Rank 6 5 2 1 4 3

Rank-sum 43 26 27 13 55 46

Lexicographic rank 4 2 3 1 6 5
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best performance and COA is the worst. Still, the proposed

A-COA has a better ranking versus the basic COA which

certifies the superiority of the proposed A-COA over the

basic COA from the performance point of view.

5.1 A-COA versus the basic COA

Figures 9 and 10 show the improvement diagrams (in

percentile) of the proposed A-COA compared to the basic

COA for all the original and shift-rotated unimodal and

Table 5 Results achieved by the algorithms on the randomly shift-rotated unimodal functions (dimension = 30)

GA PSO ABC TLBO COA A-COA

Sphere

Mean 0.030676378 8.18058E-29 4.69091E-12 1.87272E-07 0.094082404 0.055176046

SD 0.008746727 1.34589E-28 8.11838E-12 2.53865E-07 0.05317034 0.016353852

Rank 4 1 2 3 6 5

Rosenbrock

Mean 61.0987845 37.57106258 9.743094335 24.30563695 57.2270359 39.01432771

SD 37.84372065 38.73174732 7.694775458 2.25314498 27.69644613 19.87789943

Rank 6 3 1 2 5 4

Schwefel N1.2

Mean 1115.536642 1.39473E-48 1.9234E-16 5.83827E-08 139,783.022 41,243.22694

SD 1009.04402 4.22662E-48 1.86957E-16 1.67974E-07 113,361.1896 60,650.81816

Rank 4 1 2 3 6 5

Schwefel N2.21

Mean 10.34282207 9.693647047 30.58646859 31.27068723 20.79259838 25.79655459

SD 1.875693164 15.38797822 4.920389627 3.744403097 4.913544586 8.659163679

Rank 2 1 5 6 3 4

Schwefel N2.22

Mean 0.996989369 4.428137779 1.30404E-05 0.01200855 25.7591043 22.35350269

SD 0.157362998 10.10730958 4.56787E-06 0.021578317 7.243019293 8.443787756

Rank 3 4 1 2 6 5

Step

Mean 10.72734764 8.96357E-26 1.10539E-09 3.15692E-05 43.15350058 19.57825918

SD 2.676714481 2.75058E-25 1.2218E-09 3.99374E-05 12.53891498 7.591265913

Rank 4 1 2 3 6 5

Quartic

Mean 7.93032E-06 0.017107815 3.33067E-17 1.1951E-10 0.000169865 0.000145469

SD 4.31453E-06 0.054099662 2.86658E-17 1.50557E-10 9.12399E-05 0.000255965

Rank 3 6 1 2 5 4

Elliptic

Mean 1034.359163 22,641.67664 9.64456E-07 0.001788973 43,363.00725 45,991.83966

SD 571.428337 23,389.10844 1.42869E-06 0.003162159 17,053.41193 13,187.00655

Rank 3 4 1 2 5 6

BentCigar

Mean 19,088.41517 6.125539449 5.40424E-06 1.056550259 77,836.26624 38,602.33248

SD 6849.322476 16.4195847 8.6117E-06 2.592681982 21,453.33461 20,092.25686

Rank 4 3 1 2 6 5

Discus

Mean 232.723504 23.8880058 8.62859E-08 8.31763E-06 34.74057923 19.50658179

SD 334.5629227 19.47031341 1.79406E-07 1.85611E-05 10.69517658 7.672827801

Rank 6 4 1 2 5 3

Rank-sum 39 28 17 27 53 46

Lexicographic rank 4 2 1 2 6 5
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multimodal benchmark functions, respectively. The most

improvements in original functions belong to the Schwefel

N1.2 and Schwefel functions (one unimodal and another

multimodal functions) with 80% and 100% of improve-

ment, respectively, while the A-COA has a worse perfor-

mance on Schwefel N2.21, Rastrigin, Ackley,

Table 6 Results achieved by the algorithms on multimodal functions (dimension = 30)

GA PSO ABC TLBO COA A-COA

Rastrigin

Mean 3.999839652 73.45610078 6.03437E-05 14.69520556 67.98148885 69.96418794

SD 0.615374489 29.76536083 0.000190608 4.304927659 24.31606898 15.99580375

Rank 2 6 1 3 4 5

Ackley

Mean 1.563654234 1.671420002 7.4865E-06 2.88658E-15 3.693481383 3.299307109

SD 0.287783709 0.960558013 3.97443E-06 1.07258E-15 0.379272633 0.501693221

Rank 3 4 2 1 6 5

Griewank

Mean 1.077329269 0.034526632 0.001762648 4.33681E-20 1.437366487 1.290771095

SD 0.02081186 0.035936495 0.005573959 2.2857E-20 0.111199708 0.118190432

Rank 4 3 2 1 6 5

Schwefel

Mean 0.00658767 3.62591E-17 1.42997E-06 1.76766E-65 4.28115E-17 1.1021E-21

SD 0.006485682 1.013E-16 2.01461E-06 5.57541E-65 1.03681E-16 1.46543E-21

Rank 6 3 5 1 4 2

Weierstrass

Mean 2.837354614 3.267368397 3.63708E-08 1.01568E-07 19.00749617 18.35233666

SD 0.405983153 1.732510766 3.22178E-08 1.13973E-07 3.819742263 3.760551716

Rank 3 4 1 2 6 5

NCRastrigin

Mean 3.053180478 49.77008472 0.434927835 23.66916675 57.69584403 61.76860044

SD 0.782289588 15.34500885 0.74104605 5.764291924 18.15991707 13.87227466

Rank 2 4 1 3 5 6

Penalized

Mean 0.060566235 0.249181125 2.04594E-10 2.7343E-09 8.51730668 12.0706585

SD 0.035570121 0.380017546 1.73979E-10 7.34765E-09 8.757466939 15.52759219

Rank 3 4 1 2 5 6

Penalized2

Mean 0.616476232 0.247823977 1.29719E-09 0.459544203 54.34260864 24.87058754

SD 0.203488048 0.486100008 2.50989E-09 0.228131294 82.29065982 16.38548542

Rank 4 2 1 3 6 5

Xin-She Yang F4

Mean 1.00 1.00 1.00 1.00 1.00 1.00

SD 0.0 0.0 0.0 0.0 0.0 0.0

Rank 1 1 1 1 1 1

Inverted Vincent

Mean 0.000355299 0.139973929 1.77965E-05 0.034148733 0.195707624 0.155526258

SD 5.97435E-05 0.000998358 2.56955E-05 0.000482401 0.084655017 0.043486855

Rank 2 4 1 3 6 5

Rank-sum 30 35 16 20 54 45

Lexicographic rank 3 4 1 2 6 5
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NCRastrigin, and Penalized functions up to - 31%, - 2%,

- 7%, - 24%, and - 39%, respectively. On average, a

37% improvement for original unimodal functions and a

13% for the original multimodal ones are observed.

On the other hand, the most improvements for shift-

rotated functions belong to the Schwefel N1.2, Schwefel

(again) as well as Penalized2 functions (where the first is

unimodal and the last both are multimodal functions) with

Table 7 Results achieved by the algorithms on randomly shift-rotated multimodal functions (dimension = 30)

GA PSO ABC TLBO COA A-COA

Rastrigin

Mean 3.083235545 77.13585957 1.36636E-05 44.88763155 101.4422262 69.17721021

SD 0.828532202 8.695860847 4.30203E-05 7.125717498 30.86562771 25.40927198

Rank 2 5 1 3 6 4

Ackley

Mean 1.708941902 1.296393696 1.00145E-05 7.280337076 3.907358314 3.984613572

SD 0.246079433 1.050427098 8.10704E-06 2.061197124 0.61594009 0.949398511

Rank 3 2 1 6 4 5

Griewank

Mean 1.096534942 0.018676134 0.003816886 0.064061973 1.391340595 1.196438324

SD 0.027378731 0.027685844 0.008047465 0.090243566 0.10741895 0.121136291

Rank 4 2 1 3 6 5

Schwefel

Mean 0.005924389 5.1418E-16 3.14741E-06 0.0 9.52304E-17 9.46185E-26

SD 0.007199123 1.58915E-15 5.92209E-06 0.0 2.66053E-16 1.33721E-25

Rank 6 4 5 1 3 2

Weierstrass

Mean 2.82237824 7.668301539 4.73802E-08 10.96305038 24.31145159 19.08651806

SD 0.409797475 2.570109955 4.122E-08 2.564721382 3.355842236 3.66010872

Rank 2 3 1 4 6 5

NCRastrigin

Mean 2.405475301 56.8527291 0.300091876 46.99844973 101.5015375 76.2013121

SD 0.586761582 23.4882275 0.482990219 9.232907087 41.1310273 18.19642579

Rank 2 4 1 3 6 5

Penalized

Mean 0.044705363 0.405949937 3.04326E-10 7.272889865 20.26999494 14.04353488

SD 0.038998014 0.675565842 3.71891E-10 6.327039958 14.00054352 10.22406677

Rank 3 2 1 4 6 5

Penalized2

Mean 0.539863696 1.405913819 2.72487E-09 60.47457633 104.0140477 37.11022169

SD 0.199468796 1.5139566 6.02866E-09 9.111843458 138.0667509 22.98654937

Rank 2 3 1 5 6 4

Xin-She Yang F4

Mean 1.00 1.00 1.00 1.00 1.00 1.00

SD 0.0 0.0 0.0 0.0 0.0 0.0

Rank 1 1 1 1 1 1

Inverted Vincent

Mean 0.000190822 0.656290425 3.0413E-06 0.108911148 0.178184464 0.084366811

SD 4.91952E-05 0.036145927 4.05053E-06 0.105777027 0.06615309 0.004865411

Rank 2 6 1 4 5 3

rank-sum 27 32 14 34 59 39

Lexicographic rank 2 3 1 4 6 5
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70%, 89%, and 60% of improvement, respectively, while

A-COA has a worse performance on Schwefel N2.21,

Elliptic, and NCRastrigin functions up to - 19%, - 6%,

and - 8%, respectively. On average, there are a 29% and a

23% of improvement for the shift-rotated unimodal and

multimodal benchmark functions, respectively. Finally, the

proposed A-COA has an overall 25.85% of improvement

over the basic COA considering all the 20 original and

shift-rotated unimodal and multimodal benchmark func-

tions used in comparison study which is of course a sig-

nificant improvement.

5.2 Statistical tests

There are a lot of metrics to compare the performance of

different algorithms versus each other such as best solution,

worst solution, sample mean for a predefined number of

independent runs, sample deviation, speedup, etc., while

none of them are able to determine the superiority of an

individual algorithm in a definite way, and here we need

the statistical tests to be sure about our conclusions to a

degree of confidence. The Wilcoxon rank-sum test [27] is a

nonparametric statistical test used to compare two

independent samples to assess whether the real means of

their ranks are different or not. Actually, this test make us

capable of determining whether two independent samples

are selected from the same population with identical dis-

tribution or not; if so, none of them has an actually better

performance; otherwise, one of them may outperform the

other based on the achieved results. Here, the test is con-

ducted at the significance level of a = 0.05 (95% of con-

fidence interval). The h values in Tables 8 and 9 show the

results of the significance comparisons over all the 20

original and shift-rotated benchmark functions, respec-

tively, where h = 1, h = 0, and h = - 1 indicate that the

A-COA has statistically better, equal, or worse perfor-

mance compared to the basic COA with 95% of confi-

dence, respectively.

5.3 Convergence speed

In order to study the convergence speed of the proposed

A-COA and basic COA, two unimodal (Sphere and

Rosenbrock) and two multimodal (Ackley and Schwefel)

benchmark functions among Tables 2 and 3 were consid-

ered. The settings and configurations are exactly the same
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as the previous experiments; for example, the dimension is

30 and the maximum number of FFEs is 40,000. In case

that the algorithms are terminated before the maximum

number of FFE is for all the population is trapped in a same

point, and no further investigation is possible. Figures 11

and 12 are the convergence diagram (the fitness value of

the best cuckoo in the population) between the function

value (in logarithmic scale) and algorithm iterations. The

plotted convergence graphs for both unimodal and multi-

modal functions demonstrate the superiority of the pro-

posed A-COA over the basic COA from the convergence

rate point of view, and this is true for the most other

benchmark functions, as we have tested.

6 Multiprocessor task graph scheduling
using the proposed approach

In this section, we investigate the application and perfor-

mance of the proposed A-COA on multiprocessor task

scheduling problem (MTSP). Task graph scheduling opti-

mization plays an essential role in different computational

environments such as multiprocessor systems in which a

number of processing elements are coupled and perform as

a whole high-performance supercomputer [28, 29]. In such

systems, each application program is decomposed into

smaller and maybe dependent subprograms named tasks.

Some tasks need the data generated by other tasks so that

there will be precedence constraints among them. On this

basis, each application problem can be modeled using a

directed acyclic graph (DAG), the so-called task graph. In a

sample task graph, nodes indicate tasks and edges are

precedence constraints among them. In static scheduling,

all the requisite parameters such as required execution

times of tasks, communication costs among them, and

precedence constraints are determined during the

program’s compiling step. The main objective is to derive

an appropriate topological order of tasks from the given

task graph and assign them to a number of computational

elements respecting the tasks’ precedence constraints in

such a way that some criteria such as overall finish time of

the given program or total energy consumption by pro-

cessors are minimized [30–32]. This is an NP-hard problem

from the time complexity perspective so that the exact

methods may not be able to respond in a predefined and

restricted time budget, especially for large-scale inputted

samples [33].

Most conventional as well as state-of-the-art approaches

reported in the literature to cope with the task scheduling

problem in such environments are working based on the list

scheduling method. These methods can be divided into two

important categories: (1) heuristic approaches, for example

HLFET1 [34], ISH2 [35], CLANS3 [36], LAST4 [37], ETF5

[38], DLS6 [39], and MCP7 [40], which exploit different

priority measurements of tasks to navigate the search

process, and (2) metaheuristics, for example ACO-based

[41–45] and CLA-based [46, 47] ones, which rely on the

foraging potentiality of these nature-inspired approaches.

The philosophy behind the list scheduling technique is that

a complete set of ready tasks is selected as a ready list in

each iteration. The ready tasks are either those without any

parents or without any unscheduled ones. Then, in con-

tinuum of each iteration, the task with the most priority in

the ready list is chosen to be allocated to that computa-

tional unit (processor) allowing the earliest start time

(EST), until all the tasks in the task graph are scheduled.

Ref. Kwok and Ahmad [33], Boveiri [48], Buyya [28] and

Cao et al. [30] are of the most complete reviews on these

systems and the corresponding task scheduling problem.

Some real-world applications requiring such a supercom-

puter infrastructure can be enumerated as biomedicine and

Table 8 Results of the Wilcoxon rank-sum test to compare the

A-COA versus the basic COA for all the 20 original benchmark

functions with 95% of confidence

Unimodal functions h-value Multimodal functions h-value

Sphere 1 Rastrigin 0

Rosenbrock 1 Ackley 0

Schwefel N1.2 1 Griewank 1

Schwefel N2.21 - 1 Schwefel 1

Schwefel N2.22 0 Weierstrass 0

Step 1 NCRastrigin - 1

Quartic 0 Penalized 0

Elliptic 0 Penalized2 0

BentCigar 1 Xin-She Yang F4 0

Discus 1 Inverted Vincent 1

Table 9 Results of the Wilcoxon rank-sum test to compare the

A-COA versus the basic COA for all the 20 shift-rotated benchmark

functions with 95% of confidence

Unimodal functions h-value Multimodal functions h-value

Sphere 1 Rastrigin 0

Rosenbrock 1 Ackley 0

Schwefel N1.2 1 Griewank 1

Schwefel N2.21 0 Schwefel 0

Schwefel N2.22 0 Weierstrass 0

Step 1 NCRastrigin 0

Quartic 1 Penalized 0

Elliptic 0 Penalized2 0

BentCigar 1 Xin-She Yang F4 0

Discus 1 Inverted Vincent 1
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bioinformatics [49, 50], urbane surveillance and smart city

[51], quantum computing [52], and big-data processing

[53], to mention a few.

6.1 Problem formulation

A directed acyclic graph G = {N, E, W, C} called task

graph is considered as a model to formulate a parallel

application program executed on a multiprocessor com-

puting environment, where N = {n1, n2,…, nn}, E = {(ni,

nj)|ni, nj [ N}, W = {w1, w2,…, wn}, C = {c(ni, nj)|(ni, -

nj) [ E), in which N is a set of nodes, E is a set of edges,

W is the set of the weights of the nodes, C is the set of

weights of the edges, and n is the number of nodes in the

task graph.

Figure 13 shows the task graph of a real parallel pro-

gram comprised of nine different tasks inside. In such a

graph, nodes indicate tasks (so we use them interchange-

ably across the paper), each of which to be executed only

one time and only on one processor, and edges are prece-

dence constraints among them. Each edge such as (ni, -

nj) [ E demonstrates that the task ni is over before the task

nj starts. In this case, ni is called a parent for nj, and nj is

called a child for ni. The ‘‘entry nodes’’ and ‘‘exit nodes’’

are definitions applied for those nodes without any parents

and nodes without any children, respectively. Each node’s

weight such as wi is the necessary execution time for task

ni, and each weight of edge such as c(ni, nj) is the time

required for data transmission from task ni to task nj
identified as communication cost/delay. If both tasks ni and

nj are executed on the same processor, the communication

cost will be zero between them. In static scheduling, all the

decision parameters, i.e., execution times of tasks, prece-

dence constraints among them, and communication costs,

are available beforehand and generated during the pro-

gram’s compiling stage so that the scheduling can be

deterministic. Tasks should be mapped into the given set of
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m processors, i.e., P = {p1, p2,…, pm}, according to their

precedence so that the overall finish time (makespan) of the

given problem would be minimized.

Most different scheduling algorithms in different cate-

gories are based on the same strategy called list scheduling

technique. The underlying philosophy behind the list

scheduling is to make a sequence of nodes as a list by

assigning them some priorities [55], and then, repeatedly

removing the most prior node from the list, and mapping it

to the computational unit (processors) that allows the EST,

until the scheduling of all the nodes in the given task graph.

If the parent set (all the parents) of a task, for example

ni, were executed on a processor, for example ps, EST (ni,

ps) would be Avail (ps), that is, the earliest time at which ps
is available to execute the next task. Otherwise, the earliest

start time of task ni on the processor ps should be computed

using Eq. (10).

ESTðni; psÞ ¼
0; if ni ¼ entery � node

max
nk2ParentðniÞ

AFTðnkÞð Þ;
AFTðnkÞ þ cðnk; niÞð Þ;


if ProcessorðnkÞ ¼ ps

else

�
8<
: ;

ð10Þ

where AFT(nk) = AST(nk) ? wk is the actual finish time of

the task nk, Parents(ni) is the set of all the parents of ni,

Processor(nk) is a function that returns the index of pro-

cessor in which nk was run, and AST(nk) is the actual start

time of task nk, which can be computed using Eq. (11).

ASTðnkÞ ¼ min
m

x¼1
max AvailðpxÞ;ESTðnk; pxÞð Þð Þ ð11Þ

Finally, the total finish time of the given parallel program is

calculated using Eq. (12):

makespan ¼ max
n

i¼1
AFTðniÞð Þ ð12Þ

For a given task graph with n tasks inside using its adja-

cency matrix, an efficient implementation of the EST

method for mapping all the tasks over a given m identical

processors’ machine has a time complexity belonging to

O(mn2) [56].

6.2 Discretization and application of A-COA
to MTS

Actually, the basic A-COA is naturally proposed for con-

tinuous optimization while the MPSP is intrinsically a

discrete combinatorial problem. Therefore, to resolve the

issue, we propose the following discretized version of the

A-COA. In the proposed approach, each solution called a

‘‘scheduling’’ is equivalent to a ‘‘habitat’’ in the COA.

Actually, a habitat or scheduling is just a list with the

length of n, where n is the number of tasks in the given task

graph. Accordingly, each element/cell of this list is asso-

ciated with one individual task of the inputted task graph;

for example, H [34] is associated with task n1, H [16] is

associated with the task n2, and so on. The value of each

cell is the priority of selecting that task which is a real

number in the range of [0, 1]; the higher the priority, the

sooner it will be selected for scheduling. Figure 14 shows a

typical habitat and its corresponding task order as well as

the final task mapping on two processors demonstrated by a

Gantt chart, where the inputted task graph is the one shown

in Fig. 13. On this basis, the COA’s duty is to properly

adjust the values of cells (priorities) so that the optimum

scheduling can be eventuated. For this aim, first of all, all

the input parameters are adjusted (Algorithm 1), and a set

of habitats is created as the cuckoos’ population (each task

priority or cell’s value is initiated randomly in the range of

[0, 1]). In the following, each habitat, for example habi-

tat[i], is evaluated, and the final makespan achieved is

computed using Algorithm 2 as the habitat’s fitness value.

To do this, first of all, the corresponding task order based

on the tasks’ priorities in the habitat is extracted. Secondly,

this task order is distributed over the processors using the

EST method, and the overall finish time (makespan) is

calculated using Eqs. (10), (11) and (12), which is also

considered as the fitness/objective value or the desirability

of this habitat.

H [n1] H [n2] H [n3] H [n4] H [n5] H [n6] H [n7] H [n8] H [n9]

A typical Habitat, briefly as H 1.0 0.71 0.65 0.85 0.9 0.5 0.41 0.3 0.1

n9n8n7n6n3n2n4n5n1Corresponding task-order extracted from the upper Habitat

Fig. 14 A typical habitat and its corresponding task order as well as the final EST task mapping on two processors demonstrated by a Gantt chart
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Then, the main loop starts (Algorithm 3); in each iter-

ation, all of the habitats are selected one by one and sub-

jected to the following operations:

1. The number of eggs laid by this cuckoo (associated

with this habitat) is selected randomly in the range of

[Neggmin, Neggmax]; this range should be selected

experimentally which is a trade-off between time

budget and performance. Indeed, the more eggs, the

more fitness function evaluations (FFEs), i.e., much

time will be consummed, but better overall perfor-

mance can be achieved.

2. The egg-laying radius (ELR) coefficient (a) for this

iteration is computed based on the selected amin and

amax using Eq. (3).

3. The ELR is calculated for each cuckoo based on her

number of eggs using Eq. (1).

4. Each cuckoo lays her eggs inside her calculated ELR.
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In continuum of the current iteration, all the eggs in the

same locations (using an e tolerance) are recognized and

killed without any evaluation (just like the description

given about the basic COA in Sect. 2). The value of e
tolerance should be investigated experimentally, or one in

the basic COA manuscript should be considered [20]. In

the following, the survived eggs and mutated cuckoos are

subjected to evaluation like the randomly generated habi-

tats using Algorithm 2. Then, all the cuckoos and alive

eggs are sorted in ascending order of their produced

makespans (fitness values), and the first Npop number of

better habitats is selected as the next population. This

population should be decomposed into several clusters, and

the best cluster and then the best habitat in the best cluster

are selected for the migration phase. In the migration

phase, all the cuckoos (habitats) move from their locations

toward the best global cuckoo using Eq. (2), and this

changes the priority of tasks for each habitat which leads

different scheduling orders and makespans.

By means of these operations, the whole population will

move toward the best solution and finally converge to an

optimal/suboptimal solution. This solution, which is the

best one found so far, is the final selected solution of the

proposed A-COA approach in the current run.

6.3 The comparison dataset, metrics,
and configurations

The proposed approach was implemented on the same

desktop computer as the previous experiments with the

same configuration. Exceptionally, although the total

number of iterations was set to 1000, the algorithm was

terminated after n 9 100 fitness function evaluations

(FFEs), where n is the number of tasks in the given task

graph. In addition, if all the populations reach the same

point, i.e., the standard deviation (SD) of all the individuals

in the population is equal to zero, the algorithm is

considered as converged, and hence, is terminated, though

there are some unused iterations or EFFs. The other details

and configurations of the proposed approach and its

counterparts are summarized in Table 10. The proposed

approach is evaluated versus not only the strongest

heuristic approaches, i.e., MCP [40], ETF [38], and DLS

[39], but also metaheuristics like ant colony optimization

(ACO) [42] and the basic COA.

6.3.1 The utilized dataset

To do a rational judgment, a set of 125 random task graphs

are exploited for comparison study and the evaluations.

These random task graphs are with the different shapes

based on the three following parameters:

• Size (n) The number of nodes in the given task graph.

Five different values as size are considered {32, 64,

128, 256, and 512}.

• Communication-to-computation ratio (CCR) To show

how much a graph is intensive from computational or

communicational perspective. The execution time of

the nodes in the task graph was randomly chosen from

the uniform distribution with mean equal to the

specified average computation cost that was 50 time

instances. The weight of each edge was also randomly

selected from the uniform distribution with mean equal

to average computation cost 9 CCR. Five different

values of CCR were considered {0.1, 0.5, 1.0, 5.0, and

10.0}, so that selecting 0.1 makes the generated task

graphs computation intensive, while selecting 10.0

makes them communication intensive.

• Parallelism The average number of children for each

node in the task graph. Increasing this parameter makes

the generated graphs fully connected, while lower

parallelism makes the generated task graphs dispersed.

Five different values of parallelism were selected {3, 5,

10, 15, and 20}.
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6.3.2 Comparison metrics

It should be noted that because of the various structural

parameters, the achieved makespan for the aforementioned

random graphs is in a wide range. Therefore, the normal-

ized schedule length (NSL), which is a normalized metric,

is used. It can be computed for every inputted graph by

dividing the achieved makespan (schedule length) to a

lower bound. Although different lower bounds can be

assumed, we chose the sum of weights of the nodes on the

computationally critical path of the graph as in (9):

NSL ¼ makespanP
ni2CP wi

; ð9Þ

where CP is the set of nodes on the longest computational

path inside the given task graph (a computational path is a

regular path excluding the communication costs along the

path). It is worth to mention that such lower bounds are

theoretical and may not always be possible to achieve; i.e.,

the optimal schedule length is often some larger than this

bound.

Another extensively used metric for empirical study in

the realm of task scheduling is ‘‘speedup’’ which is the

ratio of assigning all the tasks to a single processor (i.e., the

aggregation of all the tasks’ execution times) to the

obtained schedule length (makespan) using many proces-

sors. In other words,

Speedup ¼
Pn

i¼1 wi

makespan
: ð10Þ

Obviously, the lower NSL means the better performance,

while the higher speedup is a consequence of the better

performance.

Table 10 Configurations of the proposed approach and other competitors

Algorithm Parameter Symbol Value

ACO [42] Initial value of pheromone variables S 0.1

Relative weight of pheromone trail A 1

Relative weight of heuristic values B 0.5

Evaporation rate Q 0.998

Total no. of iterations Cmax 2500

The basic COA ELR coefficient A 1.0

Migration coefficient F p/6 9 rand (0, 1)

The no. of clusters C 1

The minimum no. of eggs for each cuckoo Neggmin 2

The maximum no. of eggs for each cuckoo Neggmax 5

Epsilon tolerance to kill the eggs in the same locations E 1.00E-08

The population size – 20

Total no. of iterations Cmax 1000

Total no. of fitness function evaluations FFE n 9 100

Other termination criteria – SD of population = 0

A-COA (the proposed approach) ELR coefficient amax 1.0

amin 0.01

Migration coefficient

Fmax 1.5

Fmin 0.3

The no. of clusters C 1

The minimum no. of eggs for each cuckoo Neggmin 2

The maximum no. of eggs for each cuckoo Neggmax 5

Epsilon tolerance to kill the eggs in the same locations emax 1.00E-08

emin 0.0

The population size – 20

Total no. of iterations Cmax 1000

Total no. of fitness function evaluations FFE n 9 100

Other termination criteria – SD of population = 0
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6.3.3 Experimental results and comparisons

Figures 15 and 16 show the average NSLs and speedups

achieved by all the experiments conducted on entire 125

random task graphs, respectively. Different numbers of

processors ranging from two processors to the 64 ones were

considered. Utilization of the higher numbers of processors

did not made any sensible effect, so we neglected them. It

is worse mentioning that each individual experiment was

conducted ten times, and the presented results are the

average of these independent runs. As a rule, we can say

that the final performance ranking is {A-COA, ACO,

ETF & COA, MCP & DLS}; that is, the A-COA is the

best (especially with the small-scale inputs), ACO is a little

bit worse, ETF and the basic COA are moderate and almost

identical (their rankings change alternately in the different

experiments), and finally, the MCP and DLS are the worst

methods from the performance point of view. Figure 17

shows the improvement diagram achieved by the proposed

A-COA compared to the basic COA, ACO-based approach,

and the other conventional DLS, ETF, and MCP sched-

ulers, where, on average, A-COA achieved 2.70%, 0.94%,

4.35%, 2.84%, 3.05% better performance compared to

them, respectively.

7 Conclusion

In this paper, an adaptive version of cuckoo optimization

algorithm named A-COA with three novelties in the egg-

laying and migration phases was proposed. (1) The egg-

laying radius (ELR) was nonlinearly reduced over the

iterations for faster convergence, inducing a better balance

between exploration and exploitation, especially in the last

iterations. (2) After egg-laying phase, those eggs laid in the

same locations (with an e tolerance) are recognized and

killed except one of them. While in the basic COA the

epsilon coefficient was constant all over the execution, in

the A-COA this coefficient was decreased linearly with the

iterations. This idea lets compacter populations in the last

iterations help with the exploitation and local search for

getting exact final solutions. (3) In contrast to the basic

COA in which the motion coefficient is constant during the

algorithm execution, in the A-COA, we applied an adop-

tive motion coefficient for each cuckoo based on the

cuckoo’s distance to the global best; i.e., the farer cuckoo

would get higher coefficient to move forward. This idea, on

the one hand, helped the farer cuckoos get trapped in the

local minima having a big jump toward the global best and

exiting off the stagnation while helping the convergence

speed; on the other hand, it slowed down the speed of the

nearer cuckoos for a better investigation around the global

best in order to improve the accuracy as well as avoid

premature convergence.
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A set of 20 numerical unimodal and multimodal

benchmark functions with various search space structures

were considered to evaluate the proposed A-COA. All of

these benchmark functions were minimization ones. Since

most of these functions have a global minimum in [0, 0,

…,0]T, which can be exploited as a background knowledge

for some algorithms, we also used these randomly shift-

rotated functions. In addition, a complete list of stochastic

optimization algorithms, i.e., not only the evolutionary

algorithms such as GA but also the swarm intelligence-

based ones such as PSO, ABC, and TLBO, were consid-

ered for a rational judgment about the performance of the

proposed A-COA. Different sets of experiments were

conducted and different results and conclusions were

obtained. Generally speaking, the proposed A-COA had

37% and 13% better performance for the original unimodal

and multimodal benchmark functions in comparison with

the basic COA and 29% and 23% better performance for

the shift-rotated unimodal and multimodal ones, respec-

tively. Finally, a total improvement of 25.85% was

achieved which is a significant improvement for these

algorithms. Moreover, the statistical Wilcoxon rank-sum

test conducted over the achieved results certified the

superiority of A-COA on most of the functions with 95% of

confidence. Meanwhile, the convergence diagrams

achieved by all the experiments revealed the superiority of

the proposed A-COA versus the basic COA from the

convergence rate point of view.

Finally, we investigated the application and perfor-

mance of the proposed A-COA on multiprocessor task

scheduling problem (MTSP). To this aim, first of all, we

introduced a discretized version of A-COA and adapted it

to MTSP. A set of 125 randomly generated task graphs

with different shape parameters, i.e., size, communication-

to-computation ratio (CCR), and connectivity (paral-

lelism), were considered to evaluate the performance of the

proposed approach. Among the competitors were both

heuristic approaches like MCP, ETF, and DLS and meta-

heuristics like ACO and basic COA. Based on a compre-

hensive set of experiments on different number of

processors from two up to 64 ones, the proposed A-COA-

based approach was the sole winner of the race with an

excellent performance.
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