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a b s t r a c t

Financial institutions are interconnected by holding debt claims against each other. A default bank may
cause its creditors to default, and the risk may be further propagated to up-stream institutes (risk
contagion). Such interconnection is a key contributing factor to the past worldwide financial crisis. We
show that a good mechanism of default liquidation may improve the total wealth of the financial system
and therefore may curb the risk contagion. We formulate this problem as a nonlinear optimization
problem with constraints and propose an optimal liquidation policy to minimize the system’s loss.
We show that the problem resembles a Markov decision problem (MDP) and therefore we can apply
the direct-comparison based optimization approach to solve this problem. Higher order directional
derivatives and some optimality properties are obtained. Furthermore, we derive an iterative algorithm
which combines both the policy iteration and the gradient based approach to find a local optimal policy,
and under some conditions, a global optimal policy. Our work provides a new direction in curbing the
risk contagion in financial networks; and it illustrates the advantages of the direct-comparison based
approach, originated in the field of discrete event dynamic system, in nonlinear optimization problems.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

This paper ismotivated by two recent developments in financial
engineering and performance optimization. First, financial insti-
tutions are interconnected by borrowing-and-lending activities
among themselves or holding marketable securities against each
other (Chen, Liu, & Yao, 2014). Such interconnection is a critical
influencing factor to the past worldwide financial crisis and the
European sovereignty debt crisis, and could potentially threaten
the stability of financial networks. For example, a default bank
may cause its creditors to default, and the risk may be further
propagated to up-stream institutes. During default liquidation, it is
extremely significant to curb such risk contagion among financial
networks. The goal of this paper is to propose a new liquidation
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scheme based on performance optimization and to provide com-
putation algorithms that solve the problem.

The problem formulated above has a large dimension andmany
highly nonlinear constraints, and we need to develop an efficient
algorithm for an optimal solution. On this side, a direct-comparison
based approach has been developed in the past years to the opti-
mization of nonlinear problems and has been successfully applied
to many problems, such as optimization of singular controlled
diffusion processes (Ni & Fang, 2013), MDP with long-run average
criterion (Cao, 2007, 2015), and variance criterion (Xia, 2016), and
nonlinear performance with probability distortion (Cao & Wan,
2017). In this paper, we show that the special features of the
financial risk contagion problem make it possible to be solved
by the direct-comparison based approach, leading to some new
insights to the problem.

While network connections have a positive effect by diversify-
ing risk (Haldane, 2009; Summer, 2013), it can have a negative ef-
fect by adding spreading channels for risks.When a global shortage
for liquidity happens, the systemic riskwill be transmitted through
the risk-sharing mechanism (Allen & Gale, 2000; Leitner, 2005;
Rochet & Tirole, 1996). Such risk contagions may result in consec-
utive consequences for the financial system, such as declines in
asset prices, higher price volatility,more bank defaults, andmarket
inefficiency (Allen & Gale, 2004; Brunnermeier & Pedersen, 2009;
Holmstrom & Tirole, 2000).
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In response to the financial crisis and its consequences, it is
natural to expect the central bank (CB) to take an active role in
controlling systemic risk. Yellen’s speech appeals governments
to improve financial stability and reduce the risks posed by the
interconnected financial system (Yellen, 2013). Dasgupta (2004)
claims that a CB is indispensable no matter the structure of a
financial system is complete or not. Castiglionesi (2007) presents a
model in which a CB can prevent financial contagion by imposing
reserve requirements.

In this paper, we propose another possible role that the CBmay
take in curbing contagion: arbitrating the liquidation among banks
in the system during financial crisis, and providing required com-
pensation to achieve fairness. In the literature, it is often assumed
that all financial institutes are paid off in proportion to the size of
their claims on bank assets (Chen et al., 2014; Eisenberg & Noe,
2001). We show that by allowing different liquidation schemes
we may reduce the system’s total debts and save banks from
defaulting. However, this may violate the fairness of the prorated
scheme, and CB arbitration and compensation are needed; this is
consistent with both Yellen’s speech (Yellen, 2013) and others’
work on the roles of CBs (Castiglionesi, 2007; Dasgupta, 2004).

The above problem can be formulated as a performance opti-
mization problem. However, it has a large dimension and many
highly nonlinear constraints and is therefore difficult to analyze.
Fortunately, we solve this problem through an approach originally
developed for the optimization of discrete event dynamic systems
(Cao, 2007), called the direct-comparison based approach. The ap-
proach is intuitively clear, and it can provide new insights, leading
to new results to many problems (Cao, 2007, 2015; Cao & Wan,
2017; Ni & Fang, 2013; Xia, 2016).

More precisely, a liquidation schemedetermines how the finan-
cial institutes pay their debts among themselves, and is also called
a policy. After implementing a liquidation scheme, some banks
are default and some others non-default, leading to a partition of
default and non-default banks. All the policies leading to the same
partition are called a region in the policy space. The policy space
may have multiple regions corresponding to different partitions.
The optimization problem for policies in the same region was
reported in the conference paper (Ye, Xue, Gao, & Cao, 2017). In
this paper, we study both the one-region and multi-region opti-
mization problems;we show that by choosing the right liquidation
scheme, wemay significantly reduce system’s total debts and save
banks from defaulting.

The difficulty of this optimization problem is mainly caused
by the nonconvexity of the regions and nonlinear constraints in-
volved; and there are discontinuities in the performance gradients
across the boundaries of the different regions in the policy space. In
this paper, we apply the direct comparison based approach to solve
this optimization problem in curbing risk contagion among finan-
cial institutes. The approach is based on a performance difference
formula (PDF), and this PDF explicitly shows the cost difference
across different regions. Based on it, we may develop a policy
iteration–performance gradients combined algorithm,which leads
to a local optimal policy, and under some conditions, a global
optimal policy. Numerical examples indicate a significant improve-
ment in the system’s loss and the number of default banks. Our
work casts new insights to the problem, extends the Eisenberg–
Noe model (Eisenberg & Noe, 2001) and obtains the optimal liqui-
dation scheme in curbing risk contagion.

The reminder of the paper is organized as follows. In Section 2,
we review the Eisenberg–Noe model (Eisenberg & Noe, 2001) and
other related works, and we formulate the optimization problem.
In Section 3, we apply the direct-comparison based approach and
propose a policy iteration–gradient combined algorithm for the
optimal liquidation scheme tominimize the possible system’s loss.
In Section 4, we provide two numerical examples to demonstrate
the efficiency of our approach. Finally, we conclude this paper in
Section 5.

2. Problem formulation

2.1. A brief review

Our work is based on the structural framework for contagion
in financial network proposed in Eisenberg and Noe (2001). This
model illustrates how shocks to individual agents can be propa-
gated through interbank networks, and it was followed by many
subsequent works (Chen et al., 2014; Glasserman & Young, 2015;
Liu & Staum, 2010).

There are n banks with interconnected balance sheets. The
banks in the financial systemmay have liabilities to each other. The
interconnection of the banks is represented via an n × n liability
matrix L := (Li,j), where Li,j denotes the nominal obligation of bank
i to bank j. Naturally, Li,j ≥ 0 for i ̸= j and Li,i = 0. Every bank
may also have some liabilities to creditors outside the network,
denoted as a row vector b = (bi), bi ≥ 0. We denote the liability
vector as l := (li), li := bi +

∑
j̸=iLi,j, and assume li > 0, for

i = 1, 2, . . . , n. We set ri,j := Li,j/li to denote the relative liability,
and let R := (ri,j).We assume that there is only one seniority for the
liability. We use a vector α := (αi), αi ≥ 0, to represent the values
of exogenous assets of the banks. Then the total asset of bank i is
αi +

∑
j̸=iLj,i. A bank is defined to be in default if its total liability

exceeds its total asset. It is often assumed that bank default will
not change the prices outside the network, i.e., α is independent of
defaults.

Let P := (pi,j) be the liquidation matrix of a liquidation scheme,
meaning that in this scheme bank i pays bank j proportionally to
pi,j, j ̸= i, j = 1, 2, . . . , n. More precisely, let xi be the total debt that
bank i pays to others, then bank i pays bank j with xipi,j. x = (xi)
is called a clearing vector. In normal situation, P = R. It is called a
pro rata scheme, i.e., debts are paid proportionally to the relative
liabilities.

Next, x and P satisfy the following conditions:
a. Limited liability.

xi ≤ αi +

n∑
j=1

xjpj,i, ∀i = 1, 2, . . . , n.

b. Absolute priority. Either liabilities are paid in full xi = li, or all
value is paid to creditors, i.e.,

xi = αi +

n∑
j=1

xjpj,i, ∀i = 1, 2, . . . , n.

Putting them into a matrix form as the fixed-point characteriza-
tion, we have

x = min[l, α + xP]. (1)

Based on fixed-point arguments, Eisenberg and Noe (2001) proves
that a clearing vector exists for any realization ofα, andunder some
mild regularity conditions, the clearing vector is unique. As an
example, if every bank has a positive external liability, i.e., bi > 0
for all i (Glasserman & Young, 2015), then the matrix P is sub-
stochastic (all the row sums are strictly less than 1), and thus there
exists a unique clearing vector x, because the above fixed-point
formulation (1) is a contraction.

Simple and fast algorithms have been developed to calculate
the clearing vector x. Eisenberg and Noe (2001) shows that it can
be obtained by solving the following linear programming problem,
with the performance measure η :=

∑n
i=1xi:

max
x

η, s.t., x(I − P) ≤ α, 0 ≤ x ≤ l. (2)
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As an improvement of the linear programming approach, a parti-
tion algorithm has been developed (Chen et al., 2014; Staum, Feng,
& Liu, 2016). LetD = {i : xi < li} andN = {i : xi = li} be the default
set and the non-default set. Partition P so that

P =

(
PD PD,N
PN,D PN

)
,

where PD and PN correspond to setsD andN , respectively. Then the
problem (2) is equivalent to solving the following optimization:

max
xD,D,N

η

s.t. xD = αD+xNPN,D + xDPD, xN = lN , (3)
xN ≤ αN+xNPN + xDPD,N , xD < lD. (4)

PD is substochastic and thus (ID − PD)−1 exists (Chen et al., 2014).
Then (3) is equivalent to

xD = (αD + lNPN,D)(ID − PD)−1, xN = lN . (5)

The Partition Algorithm determines the default set D and the non-
default set N resulted by a liquidation scheme P , and x can then be
easily determined by (5). In this paper, all the P ’s corresponding to
the same partition D and N are called a region in the policy space
of P . A bank d with ld = αd +

∑n
i=1xipi,d can be either in D or N;

such a bank is called a boundary bank.
Another related work is the sensitivity analysis of the

Eisenberg–Noemodel of contagion by Liu and Staum (2010). Define
the terminal wealth v of the banks as v = α+xP−x = α+x(I−P).
Liu & Staum (2010) derives the derivatives of the payment x and
wealth v w.r.t. the exogenous (initial) wealth α, ∂x

∂α
and ∂v

∂α
. In

particular, it shows that at a boundary bank, the left and right-sided
derivatives are different, i.e., ∂+x

∂α
̸=

∂−x
∂α

and ∂+v
∂α

̸=
∂−v
∂α

.

2.2. Our model

Most existing works deal with the pro rata liquidation scheme
with P = R. It naturally raises the following question: can we
adjust the scheme P to reduce the system’s loss and the number
of default banks? If so, what is the best liquidation scheme? We
first consider a simple example.

Example 1. There are 4 banks in the system with liabilities L1,2 =

L2,3 = L3,4 = L4,3 = 2, L1,4 = 8, and Li,j = 0 for all other terms.
The exogenous assets are α1 = 5, αj = 0, j ̸= 1; and the outside
debts are b3 = 2, bj = 0, j ̸= 3. Following the pro rata schemewith
P = R, r1,2 = 0.2, r1,4 = 0.8, r2,3 = r4,3 = 1, r3,4 = 0.5, and ri,j = 0
for all other terms, we have x = (5, 1, 3, 2) and η = 11. There are
three default banks, D = {1, 2, 3} and N = {4}. However, if we
slightly adjust the scheme, e.g., apply p1,2 = 0.4, p1,4 = 0.6, and
pi,j = ri,j for all other terms instead, then we have x′

= (5, 2, 4, 2)
and η′

= 13 (We denote the values under the new scheme by a
prime in the superscript). It can be verified that it has only one
default bank, D = {1} and N = {2, 3, 4}. □

This example shows that if we apply a different liquidation
scheme, we may indeed reduce the system’s total debts and save
some banks from defaulting. The price we pay is that ‘‘fairness’’
in the normal sense may be violated. However, this may provide
a possible way to curb risk contagion for the CB to consider. The
sacrificed fairness may be properly compensated in some way,
e.g., by setting future liabilities between both sides of banks who
benefited and suffered from the scheme, or by offering tax benefits
to those who suffer, etc.

Motivated by the example, we state our problem as the follow-
ing optimization problem:

max
P

{max
x

η} (6)

s.t. x = min[l, α + xP], (7)

pi,i = 0, pi,j ≥ 0,
∑

j

pi,j = 1 − bi/li,

∀i, j = 1, 2, . . . , n, i ̸= j.

The performance measure to be optimized in this problem is η =∑n
i=1xi, as suggested in Cont,Moussa, and Santos (2010) and Eisen-

berg and Noe (2001). As shown in (2), the ‘‘maxx’’ in (6) is simply
for determining the value of clearing vector according to a fixed P;
and the control variable is the matrix P . We refer to a liquidation
scheme P as a policy in the terminology of optimization. η is all the
payments made by the whole system. If there is no bank default,
η =

∑n
i=1li; otherwise η <

∑n
i=1li. Maximizing η is equivalent to

minimizing the total loss of the financial system
∑n

i=1li − η.
Because x depends on P via (7), the variable x can be considered

as an implicit function of P . Then the problem is a nonlinear bilevel
(leader–follower) problem, which contains two levels of variables.
However, the gradients ∇P [η(P, x)] and ∇P [x(P)] are not continu-
ous because of the nonconvex feasible region. Compared with ex-
isting works on bilevel programming (Colson, Marcotte, & Savard,
2005, 2007; Kolstad & Lasdon, 1990), the above problem has a
large dimension, highly nonlinear constraints and discontinuous
gradients. Moreover, the policy space may have multiple regions,
which brings challenges for determining the effect on η when the
partition changes. Fortunately, this problem can be solved by the
direct-comparison based approach.

In this paper, we want to find an optimal scheme Pmax among
all regions. While under some conditions, there is only one region
in the policy space. Then the problem becomes a one-region op-
timization problem as reported in the conference paper (Ye et al.,
2017). Here, we give a sufficient condition under which there is
only one region in the policy space:⎧⎨⎩αi +

∑
j̸=i

(lj − bj) < li, for i ∈ D,

αi ≥ li, for i ∈ N.

In the remainder of the paper, we apply the direct-comparison
based approach; its central piece is a performance difference for-
mula (PDF) that provides all the details of the difference of the
performance under any two policies, including those in different
regions. Based on the PDF, we develop an efficient algorithm for
the optimal liquidation scheme, which combines policy iteration
and gradient together.

3. Optimal liquidation scheme

3.1. Performance difference formula

We first derive the PDF. To this end, let P and P ′ denote two
different policies; the quantities related to P ′ are denoted by a
prime in the superscript, such as x′. According to (3), we have

(xD xN ) = (xD xN )
(

PD 0
PN,D 0

)
+ (αD lN ).

Rewrite it as

x = xP̄ + β,

where

P̄ =

(
PD 0
PN,D 0

)
, β = (αD lN ).
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Then we have

x = β(I − P̄)−1,

Π := (I − P̄)−1
=

(
(ID − PD)−1 0

PN,D(ID − PD)−1 IN

)
.

In the default set D, we define the depth of nodes ρD = (ID −

PD)−1e = (ID+PD+PD2
+· · · )e, where e = (1, 1, . . . , 1)T is a column

vector with all components being one, and it has a proper dimen-
sionmaking the relatedmatrix operationmeaningful. ρD measures
the amplification of losses due to interconnections among nodes
in the default set (Glasserman & Young, 2015). Similarly, we can
define ρ as follows:

ρ = (I − P̄)−1e =

(
ρD

PN,DρD + eN

)
, (8)

where eN = (1, 1, . . . , 1)T is a column vector with all components
being one, and it has the same dimension with xN . Then we have

η := xe = βρ.

Thus (I − P̄)ρ = e, x′e = x′(I − P̄)ρ, and

x′(P̄ ′
− P̄)ρ = x′(I − P̄)ρ + x′(P̄ ′

− I)ρ = x′e − β ′ρ.

Then we can derive the PDF as follows:

x′e − xe = x′(P̄ ′
− P̄)ρ + (β ′

− β)ρ, (9)

with the constraints (3) and (4).
In the PDF (9), β , β ′, P̄ , and P̄ ′ depend on the partitions D,N and

D′,N ′. Next, we derive a more explicit PDF indicating the effect of
the change of the scheme from P to P ′. Define Ñ as the set of all
banks moving from D to N ′, and D̃ as the set of all banks moving
from N to D′. Then (9) takes the following form:

x′e − xe =

n∑
i=1

[

∑
j∈D

x′

i(p
′

i,j − pi,j)ρj]

+

∑
j∈Ñ

[(lj − αj) −

n∑
i=1

x′

ip
′

i,j]ρj

+

∑
j∈D̃

[

n∑
i=1

x′

ip
′

i,j + (αj − lj)]ρj

= A1 + A2 + A3, (10)

where A1, A2, and A3 denote the terms in the three lines on the
right-hand side of the above equation, respectively. Because the
spectral radius of PD is less than 1 (Chen et al., 2014), we know
ρj > 0, for j = 1, 2, . . . , n. If bank j ∈ N , then lj ≤ αj +

∑n
i=1xipi,j,

and if j ∈ D, then lj ≥ αj+
∑n

i=1xipi,j. The following lemma specifies
the values of A2 and A3.

Lemma 1. In (10), it holds that A2 ≤ 0 and A3 ≤ 0.

Proof. If j ∈ Ñ from D to N ′, which means under the new scheme
P ′, bank j will be non-default. Thus, we have lj ≤ αj +

∑n
i=1x

′

ip
′

i,j,
then

[(lj − αj) −

n∑
i=1

x′

ip
′

i,j]ρj ≤ 0,

where ‘‘=’’ holds only when Ñ = ø, or contains only boundary
points.

For j ∈ D̃ from N to D′, which means under the new scheme P ′,
bank j will be default. Thus, we have lj ≥ αj +

∑n
i=1x

′

ip
′

i,j, then

[

n∑
i=1

x′

ip
′

i,j + (αj − lj)]ρj ≤ 0,

where ‘‘=’’ holds only when D̃ = ø, or contains only boundary
points. □

The intuitive reason for this lemma is that when bank d changes
from D to N ′, the maximum payout for bank d becomes ld, and the
payment it receives is αd +

∑n
i=1x

′

ip
′

i,d. Considering the amplifica-
tion factor ρd, the amount of [αd +

∑n
i=1x

′

ip
′

i,d − ld]ρd is wasted; on
the other hand, when bank d+ 1 changes from N to D′, the payout
for bank d + 1 was calculated as ld+1, however, after the change
its payout in fact is only

∑n
i=1x

′

ip
′

i,d+1 + αd+1. Considering the am-
plification factor ρd+1, the total payment after the change should
be reduced by the amount of [ld+1 − (

∑n
i=1x

′

ip
′

i,d+1 + αd+1)]ρd+1.
Compared with one-region optimization (Ye et al., 2017), the PDF
(10) explicitly shows the cost across partitions from D,N to D′,N ′,
through the last two terms A2 and A3, respectively.

Surprisingly, the PDF (9) resembles the PDF for a Markov de-
cision problem with P as the transition probability matrix and x
as the states of a Markov system (Cao, 2007); although there is
no dynamics in the current problem. Since the number of banks
is much smaller than the number of states in a Markov process,
the dimension of the risk contagion problem is much smaller than
an MDP. Because of Lemma 1, policy iteration cannot be directly
applied in different regions; we need to use the performance
gradients as well. In the next section, we derive the directional
derivative of η with respect to policy changes.

3.2. Directional derivatives

For any δ ∈ [0, 1], P and P ′, let P(δ) = P+δQ = P+δ(P ′
−P) and

η(δ) := x(δ)e be the corresponding performance, with x(0) = x and
x(1) = x′. The directional derivative along the direction defined by
Q = P ′

− P is (cf. Cao (2007))
dη(δ)
dδ

|δ=0 = lim
δ↓0

η(δ) − η

δ
.

If P is not a boundary point, then for any P ′, when δ is small enough,
P(δ) and P are in the same region. Similar to the matrix P , we can
partition Q accordingly as

Q =

(
QD QD,N
QN,D QN

)
, Q̄ =

(
QD 0
QN,D 0

)
.

Then we have

x(δ)e − xe =

n∑
i=1

[

∑
j∈D

xi(δ)(p′

i,j − pi,j)ρj]δ,

and

dη(δ)
dδ

|δ=0 =

n∑
i=1

[

∑
j∈D

xi(p′

i,j − pi,j)ρj] = xQ̄ρ. (11)

This derivative can also be obtained by taking derivatives of x(δ)[I−
P̄(δ)] = β, with P̄(δ) = P̄ + δQ̄ , i.e.,
dx(δ)
dδ

= x(δ)Q̄ [I − P̄(δ)]−1.

Taking derivatives on both sides with respect to δ yields

d2x(δ)
dδ2

=
dx(δ)
dδ

Q̄ [I − P̄(δ)]−1
+ x(δ)Q̄

d
dδ

[I − P̄(δ)]−1

= 2x(δ)Q̄ [I − P̄(δ)]−1Q̄ [I − P̄(δ)]−1,

and
d2x(δ)
dδ2

|δ=0 = 2xQ̄ [I − P̄]
−1Q̄ [I − P̄]

−1.

In general, we have the nth directional derivatives
dnx(δ)
dδn

|δ=0 = n!x{Q̄ [I − P̄]
−1

}
n.



218 X.-S. Ye et al. / Automatica 94 (2018) 214–220

At boundary points, different Q ’s may point to different regions.
Since a boundary point can be viewed as in any neighboring re-
gions, the above derivation still holds for directional derivatives;
and the set D in (11) may be different for different directions.

3.3. The optimization algorithm

Based on the PDF (10) and Lemma 1, we propose the following
optimization algorithm to obtain the optimal scheme Pmax.

Algorithm1. 1. Choose the initial liquidationmatrix as the relative
liability matrix, i.e., set P0 := R, and set k = 0.
2. Determine D,N for Pk by the Partition Algorithm, or by solving
the linear programming (2), in Section 2.1. Calculate ηk.
3. Calculate ρ for Pk by (8), denote Pk = P , and determine a P ′ by

max
p′
i•

∑
j∈D

(p′

i,j − pi,j)ρj, i = 1, 2, . . . , n, (12)

where p′

i• denotes the ith row of the matrix P ′. The choice may not
be unique. If pi• reaches the maximum, choose p′

i• := pi•.
4. If p′

i• := pi•, for all i = 1, 2, . . . , n, i.e.,

arg{max
p′
i•

[

∑
j∈D

(p′

i,j − pi,j)ρj]} = pi•, (13)

for all i = 1, 2, . . . , n, then stop. Otherwise, go to Step 5.
5. Set Q = P ′

− P and P(δ) = P + δQ .
6. Find a δ∗ such that η(δ∗) is as large as possible in the direction.
If η(δ∗) < η, then reduce the size of δ∗ until η(δ∗) > η; avoid
boundary points in the process.

Set Pk+1 = P(δ∗) and k := k + 1, then go to Step 2. □

If all the policies are in the same region, then the A2 and A3
in (10) are zero, and Algorithm 1 becomes a pure policy iteration
algorithm. This is discussed in Ye et al. (2017). In this case, all the
policies have the same number of default banks, but the algorithm
helps reducing the total debts among all banks. If the algorithm
does not stop in Step 4, then the directional derivative along Q
is positive and therefore η(δ∗) > η if δ∗ is small enough. In each
iteration we go along the direction with the largest performance
derivative, and this is the same as policy iteration in Markov
decision processes (MDPs) (Cao, 2007). Compared with the one-
region optimization problem discussed in Ye et al. (2017), we
extend the search space from one region to multiple regions; and
therefore, the performance can be further improved and some
banks in danger of default can be saved. However, because the
policies may go across different regions, it is not necessary that
the performance still improves after moving over the boundary;
therefore we need to adjust the step size as in Step 6.

3.4. Some implementation issues

In Step 6 of Algorithm 1, boundary points are avoided; in real
implementation, because of the discrete nature of sampling, this
is naturally implemented. However, if the optimal policy is on the
boundary, because of the continuity of η in P , the algorithm may
end up with an approximation that may as close as we wish to the
true optimal. This is common to numerical implementations.

We found another issue when implementing Algorithm 1. As
the performance improves in each step, the performance sequence
ηk, k = 1, 2, . . ., converges. However, following the deterministic
sequence generated by (12), the convergence rate may be very
slow, or itmay even converge to a value less than themaximum. To
avoid this, we need to add some randomness in Step 5. We modify
it as

Step 5′: Choose 1 > θ > 0, With probability 1 − θ , set
Q = P ′

− P . With probability θ , set Q = P ′′
− P , where P ′′ is any

other matrix such that∑
j∈D

(p′′

i,j − pi,j)ρj > 0, i = 1, 2, . . . , n.

Set P(δ) = P + δQ . □
The performance derivative along P to P ′′ is also positive; the

iteration can be carried on. We call the algorithm with Step 5
replaced by Step 5′ theModified Algorithm.

The last implementation issue is the stopping criteria. In prac-
tice, Algorithm 1 may go on forever. This issue can be resolved
in a standard way: choose a predetermined integer K > 0 and a
small positive number ϵ > 0, and stop the iteration process if in
K consecutive iterations the improvement in performance is less
than ϵ.

3.5. Properties of the algorithm

We say that a policy P reaches a local maximum if the direc-
tional derivative along any direction is non-positive. A policy P
reaches a global maximum if no other policy has a better perfor-
mance. By (1), li ≥ xi for all i = 1, 2, . . . , n. In addition, we assume
that xi > 0 for all i = 1, 2, . . . , n; i.e., every bank with debts pays
something in any scheme. We can obtain the following Lemma 2.

Lemma 2. If P is not a boundary point and its performance η is a
local maximum, it is also a global maximum.

Proof. Let P withD andN be a localmaximum. Suppose the lemma
is not true, then there is a P ′, with D′ and N ′, and x′, such that
x′e > xe. We use the PDF (10). By Lemma 1, A2 ≤ 0 and A3 ≤ 0.
Thus, there must be a bank, denoted as i∗, such that

∑
j∈Dx

′

i∗ (p
′

i∗,j −

pi∗,j)ρj > 0. Because x′

i∗ > 0, we have
∑

j∈D(p
′

i∗,j − pi∗,j)ρj > 0.
Next, we construct a policy P∗ with

p∗

i,j =

{
p′

i∗,j, for i = i∗, j = 1, 2, . . . , n,
pi,j, for i ̸= i∗, j = 1, 2, . . . , n.

Set P(δ) = P + δQ ∗; we can choose δ small enough so that P(δ)
and P are in the same region (i.e., with the same D andN). Then the
directional derivative along Q ∗

= P∗
− P from P is

dη(δ)
dδ

=

∑
j∈D

x∗

i∗ (p
′

i∗,j − pi∗,j)ρj > 0,

where x∗

i∗ corresponds to P∗. This contradicts to the fact that P is a
local maximum. □

The lemma may not hold if P is a boundary point, because the
P∗ constructed in the lemma and P may not be in the same region.

Lemma 3. If Algorithm 1 stops in Step 4, it stops at a local maximum
as well as a global maximum.

Proof. According to (13), if the algorithm stops at P̂ , then the
directional derivative along any direction at P̂ is non-positive and
P̂ is a local maximum. The lemma then follows from Lemma 2
directly. □

Lemma 4. Let P and P ′ be the two policies in Step 3 of Algorithm 1,
and η and η′ be the corresponding performance measures, respec-
tively. If η′

− η < 0, P ′ and P are in two different regions.

Proof. In each iteration, according to (12), we have
∑

j∈D(p
′

i,j −

pi,j)ρj ≥ 0, i = 1, 2, . . . , n. Thus, we have A1 ≥ 0 in the PDF.
Because η′ < η, we have A2 + A3 < 0 by Lemma 1. Then P ′ nd
P are in different regions. □
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Both Algorithm 1 and the Modified Algorithm provide a se-
quence of Pk’s with increasing ηk’s. By Lemma 3, if it stops, it
stops at an optimal policy. However, when the optimal policy is a
boundary point, or in some rare cases, Algorithm 1may never stop.
But we have

Lemma 5. The sequence ηk, k = 1, 2, . . ., generated by the Modified
Algorithm converges to themaximumvalueηmax, with probability one.

Proof. We have shown that ηk+1 > ηk if the algorithm does
not stop at the kth iteration. Then the sequence ηk, k = 1, 2, . . .,
must converge to some value η̂, we prove that η̂ = ηmax. Suppose
this is not true. Let V := {P ∈ Rn×n, η ≥ η̂}, where η is the
performance corresponding to P . V is a compact set in Rn×n. Now,
because ηk → η̂, by continuity, Pk can be as close as possible to
the boundary of V . By the randomness in Step 5′, the Modified
Algorithm will eventually choose a policy pointing to the inside
of V with probability one, resulting in a policy with performance
larger than η̂. That means it is not possible (with probability zero)
to keep all ηk < η̂ forever in the iteration process, for any η̂ < ηmax.
The lemma thus holds. □

While there is a trade-off between performance and iteration
times of the algorithm. Algorithm1may converge to a local optimal
policy with fewer iterations. While the Modified Algorithm can
converge to the global optimal policywith probability 1, withmore
iterations. Therefore, one may choose Algorithm 1 to improve the
performance given fixed small number of iterations. Also, random-
ness adds some additional cost for exploration. Thus, sometimes
one may wish to save it, so to choose Algorithm 1. On the other
hand, if one wants to improve the performance further, he/she
can choose the Modified Algorithm at the cost of possible more
iterations. Therefore, we list these two algorithms for people to
choose according to different requirements.

4. Examples

We illustrate our method with some examples.

Example 2. There are 3 banks in the system. All banks are intercon-
nected by holding debt claims against each other. This relationship
can be presented by the liability matrix L. The exogenous assets
and outside liabilities of banks can be denoted as vectors α and b,
respectively. The parameters are as follows:

L =

( 0 40 40
20 0 60
5 5 0

)
, α = (41, 42, 50), b = (0, 10, 10).

Therefore, the pro rata scheme matrix is

P =

( 0 0.5 0.5
0.22 0 0.67
0.25 0.25 0

)
.

The total liability of the system is
∑3

i=1li = 190. While by the
Partition Algorithm, the original payment is x = (63.5, 78.75, 20),
and the total payment is η = 162.25. That means, with this
scheme, the system loses some money and there are two default
banks, 1 and 2, i.e., D = {1, 2}, N = {3}.

We choose the pro rata scheme P as an initial policy and apply
the Algorithm 1. The algorithm stops at Step 4 through only 1
iteration. As Lemma 2 states, Algorithm 1 converges to a local
as well as global maximum. We get the optimal payment x∗

=

(80, 90, 20) and the total payment η∗
= 190. That means all the

banks are safe (non-default) and the new scheme is

P∗

1 =

( 0 1 0
0.89 0 0
0.5 0 0

)
.

We can also apply the Modified Algorithm. The algorithm con-
verges to the same global maximum, i.e., the optimal payment
x∗

= (80, 90, 20) and the total payment η∗
= 190, but through

2 iterations and with a different scheme

P∗

M =

( 0 0.634 0.366
0.383 0 0.507
0.227 0.273 0

)
.

In this case, we can find that compared with the Modified Algo-
rithm, Algorithm 1 can achieve the global optimal policy within
fewer iterations.

Example 3. There are 30 banks in the system with the liability
matrix L and vectors α and b. The data of this system are generated
randomly. For the limit of space, we omit the detailed data of
this example. Because of heavy liquidity, the whole system is
confrontedwith a severe systemic crisis.With the pro rata scheme,
all banks in the system will default except Bank 19, with a total
payment η = 68034.47.

Without randomness, Algorithm 1 converges to a local maxi-
mum with a significant improvement of performance. By setting
a stopping criterion, Algorithm 1 yields a new liquidation scheme
P1, with a total payment η1 = 75181.23. This scheme curbs
the financial contagion by reducing 8.13% of the system’s loss.
This is achieved only by improving the payment scheme, and no
additional money is needed from the CB or government.

Then we apply the Modified Algorithm. The algorithm yields
an alternative liquidation scheme, with a total payment η∗

=

132583.13. This ismuch larger than both the results of Algorithm 1
and the pro rata scheme. This scheme curbs the financial contagion
well, totally reducing 73.45% of the system’s loss. In addition to
Bank 19, there are totally 20 banks safe now. Therefore, the Mod-
ified Algorithm is demonstrated to be more efficient for reducing
the system’s loss and the number of default banks.

5. Conclusion

In this paper, we study the risk contagion problem and char-
acterize analytically the effect of the liquidation mechanism on
the total wealth of financial networks. We formulate contagion
reduction as a performance optimization problem with nonlin-
ear constraints. We apply the direct-comparison based approach
to solve this problem. In this approach, we derive the perfor-
mance difference formula which clearly shows the details of the
differences of any two liquidation schemes, and we derive the
directional derivatives of the performance measures in the policy
space. Some optimality properties are obtained. Furthermore, we
develop a policy iteration–gradient combined algorithm for the
optimal liquidation scheme. Finally, we provide some examples to
illustrate the efficiency of our algorithm for reducing the system’s
loss and the number of default banks.

Compared with the pro rata scheme, our proposed optimal
liquidation scheme reduces the system’s total debts and save banks
from defaulting. This provides a new direction for curbing the con-
tagion among financial institutes for the government and central
bank to consider during financial crisis.

The direct-comparison based approach to performance opti-
mization was first developed for discrete event dynamic systems,
and has been applied to many theoretical as well as practical
problems. In this paper, we find that surprisingly the performance
difference formula for the risk contagion problem looks similar to
that in MDPs. Our research indicates that this approach can also
be applied to static problems such as the risk contagion problem.
In addition, since for some other problems, ‘‘fairness’’ is not an
essence, our results of this paper can be extended to these contexts,
such as power grids systems, logistics systems, and some other
network systems.
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