
lable at ScienceDirect

Digital Investigation xxx (2018) 1e9
Contents lists avai
Digital Investigation

journal homepage: www.elsevier .com/locate/d i in
An in-depth analysis of Android malware using hybrid techniques

Abdullah Talha Kabakus a, *, Ibrahim Alper Dogru b

a Duzce University, Faculty of Engineering, Department of Computer Engineering, 81620, Duzce, Turkey
b Gazi University, Faculty of Technology, Department of Computer Engineering, 06560, Ankara, Turkey
a r t i c l e i n f o

Article history:
Received 29 September 2017
Received in revised form
26 December 2017
Accepted 10 January 2018
Available online xxx

Keywords:
Android malware
Android
Play store
Mobile security
Malware analysis
* Corresponding author.
E-mail address: talhakabakus@gmail.com (A.T. Kab

1 http://idc.com.
2 https://checkpoint.com.

https://doi.org/10.1016/j.diin.2018.01.001
1742-2876/© 2018 Elsevier Ltd. All rights reserved.

Please cite this article in press as: Kabaku
Investigation (2018), https://doi.org/10.1016
a b s t r a c t

Android malware is widespread despite the effort provided by Google in order to prevent it from the
official application market, Play Store. Two techniques namely static and dynamic analysis are commonly
used to detect malicious applications in Android ecosystem. Both of these techniques have their own
advantages and disadvantages. In this paper, we propose a novel hybrid Android malware analysis
approach namely mad4a which uses the advantages of both static and dynamic analysis techniques. The
aim of this study is revealing some unknown characteristics of Android malware through the used
various analysis techniques. As the result of static and dynamic analysis on the widely used Android
application datasets, digital investigators are informed about some underestimated characteristics of
Android malware.

© 2018 Elsevier Ltd. All rights reserved.
Introduction

Smartphones have changed the life of people dramatically in the
last decade thanks to the provided functionalities and mobility.
Android leads the mobile operating system market by being used
on over 2 billion monthly active devices (Burke, 2017; Popper,
2017). According to a recent report by IDC1, Android dominates
the global smartphone market with being used on 85% of smart-
phones in all around the world (IDC Smartphone OS Market Share,
2017). It is expected that Android's global market share is expected
to rise to 90% in 2017 (Bosnjak, 2017). As a result of this popularity,
the official applicationmarket, Play Store, is used to install 82 billion
applications in 2016 (Burke, 2017). It is reported that Play Store is
growing at three times the rate of Apple's App Store which is the
official application market of iOS and the biggest official mobile
application market after Play Store (Lookout, 2011). As a result of
this popularity, Play Store attracts the attention of malware de-
velopers (Delac et al., 2011; Portokalidis et al., 2010;Wu et al., 2012;
Zhou et al., 2012). Android malware has grown by 580% between
September 2011 and September 2012 (Protalinski, 2012). According
to a recent report by Check Point2, the Android malware app “Judy”
akus).

s, A.T., Dogru, I.A., An in-de
/j.diin.2018.01.001
may have reached as many as 36.5 million users (The Judy Malware
Possibly the largest malware campaign found on Google Play, 2017).
McAfee Labs report that there are around 2.5 million new Android
malware samples exposed yearly (McAfee Labs Threats Predictions
Report, 2016). Also, they report that total mobile malware grew 79%
in the past four quarters to 16.7 million samples (McAfee Labs
Threats Report June 2017, 2017). Despite that these reports
demonstrate how serious the threat is, the lack of security aware-
ness of Android digital investigators is reported bymany researches
(Enck et al., 2009; Kelley et al., 2012; King et al., 2011; Mylonas
et al., 2013). According to a recent report, while only 17% of par-
ticipants are interested in permissions while installing the appli-
cations, 42% of participants are even unaware of the permissions
(Felt et al., 2012). Google uses Bouncer which is a service supposed
to detect malicious applications which are available on Play Store by
scanning every available application using dynamic analysis
(Alzaylaee et al., 2017; Lockheimer, 2012). Alongside to the Bouncer,
Google has announced Google Play Protect during the event Google
I/O 2017 (Android e Google Play Protect, 2017; Cunningham, 2017).
Google Play Protect is an always-on service which is bundled with
the Play Store app. Google Play Protect scans the applications auto-
matically even after the installation to ensure the applications
remain safe in terms of security. According to the official website of
Google Play Protect, it is reported that 50 billion applications are
scanned byGoogle Play Protect daily (AndroideGoogle Play Protect,
2017). An advantage of Google Play Protect over Bouncer is that
Google Play Protect is able to scan applications which are not
pth analysis of Android malware using hybrid techniques, Digital

mailto:talhakabakus@gmail.com
http://idc.com
https://checkpoint.com
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
https://doi.org/10.1016/j.diin.2018.01.001
https://doi.org/10.1016/j.diin.2018.01.001
https://doi.org/10.1016/j.diin.2018.01.001


A.T. Kabakus, I.A. Dogru / Digital Investigation xxx (2018) 1e92
installed from Play Store. To the best of our knowledge, this paper is
the first academic paper which introduces the Google Play Protect.

Android malware detection systems are generally categorized
into two: (1) Static analysis, and (2) dynamic analysis. Both of them
have own advantages and disadvantages as it is discussed in Sec-
tion 3. To combine the advantages of each analysis technique, we
propose a hybrid Android malware analysis framework namely
mad4a which stands for “Malicious Application Detector for
Android”. The main objective of this study is revealing the char-
acteristics of Android applications through the proposed frame-
work named mad4awhich combines static and dynamic analyzing
techniques in order to detect malware in Android. We investigate a
large variety of Android applications in order to make a conclusion
about the characterization and behavior of Android applications.
The rest of the paper is structured as follows: Section 2 presents the
related work. Section 3 discusses the proposed framework in detail.
Section 4 discusses the findings and the result. Finally, Section 5
concludes the paper with future directions.

Related work

The related work can be classified through the technique it uses
as follows: (1) Static analysis techniques, and (2) dynamic analysis
techniques.

Static analysis

Feizollah et al. (Feizollah et al., 2017). propose an analysis of the
effectiveness of intents for identifying malicious applications.
They report that intents are a more valuable feature than per-
missions in terms of detecting Android malware. According to
their evaluation, on an average, while an infected application
declares 1.18 intent-filters, a benign application declares 1.61
intent-filters. Their proposed approach performs analysis on the
smartphones. Due to the lack of both computation and storage
resources, and power, mad4a is intentionally designed to perform
analysis on a remote server. RiskRanker (Grace et al., 2012) is a
scalable framework which utilizes various static analysis tech-
niques such as the evaluation of program control flow graph and
bytecode signatures. Stowaway (Felt et al., 2011a) detects the
overprivilege by determining the set of API (Application Pro-
gramming Interface) calls that an application uses which are
mapped to the related permissions. They have evaluated Stow-
away using a set of 940 applications and have found that about
one-third of these applications are overprivileged. Dendroid
(Suarez-Tangil et al., 2014) uses a text mining approach in order to
analyze the code chunks in Android malware families. A high-
level representation of the Control Flow Graph (CFG) is extrac-
ted using the detected code chunks instead of focusing on the
specific sequence of instruction in the code chunks. The samples
are classified into Android malware families by adopting the
standard Vector Space Model and measuring the similarity be-
tween malware samples. Peng et al. (Peng et al., 2012). propose a
static analysis approach solely based on permissions. They discuss
the importance of effectively communicating the risk of an
application to digital investigators. Also, they propose to use
probabilistic generative model for risk scoring which they intro-
duce. Schmidt (Schmidt, 2011) proposes a static analysis approach
which uses the amount of free RAM (Random Access Memory),
user inactivity in the last 10 s, the number of running processes,
the percentage of CPU (Central Processing Unit) usage, and the
number of SMS (Short Message Service) messages sent. Nauman
et al. (Nauman et al., 2010). propose Apex, a policy enforcement
framework for Android that allows a user to selectively grant
permissions to applications as well as impose constraints on the
Please cite this article in press as: Kabakus, A.T., Dogru, I.A., An in-de
Investigation (2018), https://doi.org/10.1016/j.diin.2018.01.001
usage of resources. Apex enables dynamic permission revocation
which is also enabled with the release of Android 6.0 (API Level
23). Kirin (Enck et al., 2009) is a static analysis tool which evalu-
ates application's permissions to perform lightweight certifica-
tion to mitigate malware at installation time. APK Auditor
(Kabakus et al., 2015) is a permission-based Android malware
detection system which consists of three components namely (1)
a central server, (2) a signature database, and (3) the Android
client to interact with the server to scan applications for threats.
APK Auditor calculates a malware score based on the requested
permissions and then calculates the malware threshold limit
dynamically using logistic regression. Finally, APK Auditor clas-
sifies the application as malicious if the calculated application
malware score exceeds the malware threshold limit.

Dynamic analysis

Mahmood et al. (Mahmood et al., 2012). present an approach
that utilizes Robitium test automation in order to test Android
applications automatically in the cloud. The biggest limitation of
using Robotium framework is that it requires the tested applica-
tion to be signed in debug mode which is rarely used with the
production-ready applications (Bierma et al., 2014). Even though
applications which are not signed in debug mode can be resigned,
this approach prevents these resigned applications to be distrib-
uted in Play Store. Unlike that work, mad4a does not have a lim-
itation like that. AppsPlayground (Rastogi et al., 2013) is an
automated dynamic analysis tool for Android applications. Apps-
Playground uses permissions, and API calls. MADAM (a Multi-level
Anomaly Detector for Android Malware) (Dini et al., 2012) is a dy-
namic analysis tool which concurrently monitors Android at both
kernel and user levels in order to detect malware infections.
MADAM exploits machine learning techniques to distinguish be-
tween benign and malicious behaviors. The features MADAM uses
for the kernel-level analysis are system calls, running processes,
memory and CPU usage. The user-level features MADAM uses are
user-state, keystrokes, called numbers, sent or received SMS, and
Bluetooth/Wi-Fi analysis. While monitoring and analysis pro-
cesses of MADAM are performed on the local device, mad4a is
specifically designed to perform the analysis on a remote server
considering the limited resources (e.g., memory, CPU, disk space,
battery) of smartphones. Crowdroid (Burguera et al., 2011) is a
behavior-based dynamic analysis tool which monitors and ana-
lyzes system calls per application. Some dynamic analysis ap-
proaches (Buennemeyer et al., 2008; Jacoby and Davis, 2004; Kim
et al., 2008) use the power consumption as the main malware
detection feature for their analysis. Those approaches may be
useful for the attacks which target power consumption but it is
not sufficient since there are lots of different malware types
(Alzaylaee et al., 2017). mad4a uses both static and dynamic fea-
tures in order to cover as many malware types as possible.
TaintDroid (Enck et al., 2010) is a system-wide information flow
tracking tool that can simultaneously track multiple sources of
sensitive data such as variables, methods, file, and messages
throughout the program execution. According to their evaluation
of 30 random and popular applications which are selected from
Play Store, 15 applications have reported the location of users’ to a
remote advertising server. Paranoid Android (Portokalidis et al.,
2010) transfers the recorded execution trace which is recorded
on the smartphone to the cloud server over an encrypted channel.
The cloud server replays the execution trace within the emulator.
Paranoid Android uses a network proxy to connect to the Internet
in order to intercept inbound traffic. Instead of using a proxy,
mad4a accesses the network log file related to the simulated
application which is located on the device.
pth analysis of Android malware using hybrid techniques, Digital



Fig. 1. The process of fetching applications from Play Store.

Table 1
The list of permission groups with the related permissions.

Permission Category Related Permission(s)

Location � android.permission.ACCESS_COARSE_LOCATION
� android.permission.ACCESS_FINE_LOCATION

Call � com.android.voicemail.permission.VOICEMAIL
� android.permission.USE_SIP

Camera � android.permission.CAMERA
Contacts � android.permission.GET_ACCOUNTS

� android.permission.WRITE_CONTACTS

A.T. Kabakus, I.A. Dogru / Digital Investigation xxx (2018) 1e9 3
Material and method

Fetching applications from Play Store

The benign applications are fetched from Play Store using a
third-party website named APKPure3 which provides a web page
for the applications available on Play Store with a link to download
the related application in the following URL (Uniform Resource
Locator) format: “https://apkpure.com/app_title/package_name”.
The benign applications are fetched from the various top charts
such as “Top Grossing Games”, “Top Selling Games”, “Music and
Audio”, and “Weather”which are available on Play Store. The topics
of the applications which are fetched from Play Store are specifically
selected as a diverse range of topics in order to reflect the variety of
the Android applications. Information related to the application
such as title and package name are extracted from the related web
page by using web mining techniques since APKPure does not
provide an API (Application Programming Interface) to query and
retrieve the data defined on its knowledge-base. Therefore, web
mining techniques are used to parse the retrieved response from
APKPure. The whole process of fetching applications from Play Store
is presented in Fig. 1.

Static analysis

Static analysis techniques use the application's resources in or-
der to investigate the application to categorize it as malicious or
benignwithout executing the application (Chandramohan and Tan,
2012). Static analysis is helpless when the analyzed app is protected
with advanced camouflage techniques (e.g., obfuscation) which
remove, or limit access to the code (Moser et al., 2007), dynamic
loading techniques (e.g., reflection), and encryption algorithms
(Bae and Shin, 2017; Tam et al., 2017; Tong and Yan, 2017; Wang
et al., 2017). An Android application archive (apk) file contains
compiled source code (classes.dex), string and constant definitions,
images, and the application manifest file (AndroidManifest.xml)
which is used to define the metadata about the application such as
requested permissions, unique package name, version, referenced
libraries, and application components (e.g., activities) (Tam et al.,
2017). Each apk file is firstly converted into a jar file using the
dex2jar4 tool. Then, the jar file is decompiled using the jd-cli5 tool in
order to retrieve the application's source code (Java files). PScout II
(Wain et al., 2012) provides a list of methods defined in Android API
which is mapped with the default permissions defined on Android
3 https://apkpure.com.
4 https://github.com/pxb1988/dex2jar.
5 https://github.com/kwart/jd-cmd/tree/master/jd-cli.

Please cite this article in press as: Kabakus, A.T., Dogru, I.A., An in-de
Investigation (2018), https://doi.org/10.1016/j.diin.2018.01.001
4.1.1 (API Level 16).mad4a uses a servicewhich is implemented Java
programming language is developed in order to find the API calls in
the decompiled source code recursively and map them with the
relative permission groups which are provided by PScout II. The list
of permission groups with the related permissions is listed in
Table 1.

Alongside themethodmapping,mad4a extracts the permissions
which are defined in AndroidManifest.xml for the static analysis
using the aapt tool that is bundled with Android SDK (Software
Development Kit). Thewhole process of the static analysis ofmad4a
is presented in Fig. 2.

Dynamic analysis

Dynamic analysis techniques monitor the application in real-
time in an isolated environment, which is also known as a
sandbox (Bl€asing et al., 2010; Spreitzenbarth et al., 2013). These
techniques use the artifacts generated by the application during this
monitoring period. Dynamic analysis enables to uncover vulnera-
bilities that can only be detected at runtime (Bierma et al., 2014;
Tong and Yan, 2017). Dynamic analysis evades the restrictions of
static analysis such as obfuscation, dynamic loading (Gadhiya et al.,
2013). The monkey tool which is provided by Android SDK lets
generating pseudo-random streams of user events such as clicks,
touches, and gestures (Azim and Neamtiu, 2013; Bl€asing et al., 2010;
Hu and Neamtiu, 2011; UI/Application Exerciser Monkey j Android
Studio, 2017). mad4a uses monkeyrunner which is a tool based on
the monkey in order to control the real device or emulator through
the provided API (Machiry et al., 2013; monkeyrunner, 2017).
Additionally, it is possible to write a script using Python program-
ming language to execute batch commands.

mad4a generates a script during runtime after extracting the
package name and the main activity information of the application
Calendar � android.permission.READ_CALENDAR
Telephony � android.permission.READ_PHONE_STATE
Microphone � android.permission.RECORD_AUDIO
SMS � android.permission.SEND_SMS
Storage � android.permission.WRITE_EXTERNAL_STORAGE

pth analysis of Android malware using hybrid techniques, Digital

https://apkpure.com/app_title/package_name
https://apkpure.com
https://github.com/pxb1988/dex2jar
https://github.com/kwart/jd-cmd/tree/master/jd-cli


Fig. 2. The static analysis process of mad4a.

A.T. Kabakus, I.A. Dogru / Digital Investigation xxx (2018) 1e94
through the apk file. The generated script used to simulate each
application in the dataset on the Android virtual device (emulator).
Before running the application on the emulator, the mobile data
connection and GPS (Global Positioning System) are enabled in
order to reveal whether the application disables these settings or
not. Then, the application is installed and run on the emulator. 500
random events are generated on the emulator in order to cover the
application's functionality and generate related artifacts. After that,
the mobile data connection and GPS are checked in order to reveal
whether the simulated application disables these settings or not.
Alongside these settings, the network usage of the simulated
application in terms of the size of data downloaded or uploaded,
and the number of incoming and outgoing connections through
the local file located under/proc/UID/net/xt_qtaguid/stats are also
Fig. 3. The content of a sample applic

Please cite this article in press as: Kabakus, A.T., Dogru, I.A., An in-de
Investigation (2018), https://doi.org/10.1016/j.diin.2018.01.001
monitored. The content of a sample application's network log file is
presented in Fig. 3. From the available data, we only use rx_bytes
and tx_bytes information which represent the downloaded bytes
and uploaded bytes, respectively.

When the monitoring phase is finished, the related network log
file is parsed and stored on a relational database management
system. The whole process of the dynamic analysis of mad4a is
presented in Fig. 4.

Result and discussion

The proposed approach is evaluated using the sample applica-
tions from various widely used datasets. While the benign appli-
cations are fetched from Play Store, the malicious ones are retrieved
ation's network log file content.

pth analysis of Android malware using hybrid techniques, Digital



Fig. 4. The dynamic analysis process of mad4a.

A.T. Kabakus, I.A. Dogru / Digital Investigation xxx (2018) 1e9 5
from various datasets as the statistics about these datasets are lis-
ted in Tables 2 and 3.

According to the result of static analysis ofmad4awhich is listed
in Table 4, benign applications tend to demandmore permissions as
well as make more API method calls compared to malicious ap-
plications. It is reasonable since the more API method calls mean
Table 2
The statistics about the dataset used by mad4a.

Dataset Number of Applications

Play Store 2999
ASHISHB Malwarea 58
Genome Project (Zhou and Jiang, 2012) 728
Drebin (Arp et al., 2014; Spreitzenbarth et al., 2013) 1953
Contagio Mobileb 70

a https://github.com/ashishb/android-malware
b http://contagiominidump.blogspot.com

Table 3
The distribution of malicious and benign applications in the dataset used by
mad4a.

Application Category Number of Applications

Malicious 2999
Benign 2809
Total 5808

Table 4
The result of the static analysis of mad4a.

Criteria Malicious Benign

Average number of API method calls 16 18
Average number of demanded permissions 7 8

Table 5
The most requested 10 permissions by malicious applications.

Permission Number of Malicious Applicatio

android.permission.INTERNET 1776
android.permission.READ_PHONE_STATE 1,650
android.permission.ACCESS_NETWORK_STATE 1484
android.permission.WRITE_EXTERNAL_STORAGE 1204
android.permission.RECEIVE_BOOT_COMPLETED 1067
android.permission.ACCESS_WIFI_STATE 1042
android.permission.READ_SMS 818
android.permission.WAKE_LOCK 755
android.permission.SEND_SMS 731
android.permission.VIBRATE 718

Please cite this article in press as: Kabakus, A.T., Dogru, I.A., An in-de
Investigation (2018), https://doi.org/10.1016/j.diin.2018.01.001
the need of more permissions to be granted and the Android se-
curity mechanism highly relies on the permission model (Barrera
et al., 2010; Felt et al., 2011b). In order to access a hardware, or
personal information or do potentially dangerous actions such as
sending SMS messages, making calls, taking photos, etc., applica-
tions need to define the related permissions in their manifest files
and those permissions are needed to be granted by end users.
Otherwise, when the application tries to complete an action that
requires one of these permissions, the application crashes.

The Android security mechanism is mainly based on permis-
sions. According to the static analysis ofmad4a, themost requested
10 permissions by both malicious and benign applications are
listed in Tables 5 and 6, respectively. android.permission.INTERNET
is themost requested permission by both themalicious and benign
applications which is the permission that is needed to be granted
in order to connect the Internet. When we investigate the most
used permissions, the permissions that are included in the list of
malicious applications but not included in the list of most used
permissions by benign applications are android.permission.-
READ_SMS and android.permission.SEND_SMS which are the per-
missions needed to be granted in order to read and send SMS,
respectively.

Some malicious applications are reported to demand more per-
missions than they actually use which is also known as “over-
privilege” (Kalutarage et al., 2012; Wang et al., 2014, 2013).
Overprivilege is against the well-known principle “least-privilege”
(Wei et al., 2012). In order to reveal the usage of overprivileged
permissions for both malicious and benign applications, the appli-
cations in the mad4a's database are analyzed. mad4a detects the
overprivileged permissions as follows: If an application demands a
permission, it should be found in somewhere in the decompiled
source code. Otherwise, the application is accepted as overprivileged.
ns Used By Percentage of Malicious Applications Use the Permission (%)

63
59
53
43
38
37
29
27
26
26

pth analysis of Android malware using hybrid techniques, Digital

https://github.com/ashishb/android-malware
http://contagiominidump.blogspot.com


Table 6
The most requested 10 permissions by benign applications.

Permission Number of Benign Applications Used By Percentage of Benign Applications Use the Permission (%)

android.permission.INTERNET 2975 99
android.permission.ACCESS_NETWORK_STATE 2937 98
android.permission.WRITE_EXTERNAL_STORAGE 2067 69
android.permission.WAKE_LOCK 1976 66
android.permission.ACCESS_WIFI_STATE 1463 49
android.permission.VIBRATE 1310 44
android.permission.READ_EXTERNAL_STORAGE 976 33
android.permission.READ_PHONE_STATE 915 31
android.permission.RECEIVE_BOOT_COMPLETED 861 29
android.permission.ACCESS_FINE_LOCATION 799 27

Fig. 5. The proposed algorithm to detect overprivileged permissions.

Table 7
The number of overprivileged permissions for both malicious and benign applications.

Application Category Number of Overprivileged Permissions Number of Applications Average Number of Overprivileged Permission

Malicious 1532 2809 0.55
Benign 163 2999 0.05

Table 8
The most used top three permission categories according to API method calls for the
malicious applications.

Permission Category Number of Applications

android.permission.CONTACTS 2790
android.permission.CALENDAR 10
android.permission.LOCATION 3

Table 9
The most used top three permission categories according to API method calls for the
benign applications.

Permission Category Number of Applications

android.permission.CONTACTS 2994
android.permission. LOCATION 3
android.permission.CAMERA 2

A.T. Kabakus, I.A. Dogru / Digital Investigation xxx (2018) 1e96

Please cite this article in press as: Kabakus, A.T., Dogru, I.A., An in-de
Investigation (2018), https://doi.org/10.1016/j.diin.2018.01.001
The proposed algorithm to detect overprivileged permissions is
presented in Fig. 5.

All the applications stored in mad4a's database are analyzed in
order to reveal the usage of overprivileged permissions for both
malicious and benign applications. As the result is listed in Table 7,
the average number of overprivileged permission is about eleven
times fold common in malicious applications compared to the
benign applications. The result validates the reports that mention
Table 10
The result of dynamic analysis of mad4a.

Criteria Malicious Benign

Average number of incoming and outgoing connections 87 233
Average size of download (MB) 15 671
Average size of upload (MB) 2 18
Average number of INTERNET_CLOSE action 519 464

pth analysis of Android malware using hybrid techniques, Digital



Table 11
The comparison of the malware detection techniques of mad4a to the related work.

Related Work Analysis Technique Malware Detection Method

(Feizollah et al., 2017) Static analysis Based on permission and intent-filters of the analyzed application
(Grace et al., 2012) Static analysis Based on various static analysis techniques such as evaluation of program control

flow graph and bytecode signatures
(Felt et al., 2011a) Static analysis Based on determining the set of API (Application Programming Interface) calls that

an application uses which are mapped to the related permissions
(Peng et al., 2012) Static analysis Based on analysis of permissions
(Schmidt, 2011) Static analysis Based on static analysis techniques such as amount of free RAM, number of running

processes, percentage of CPU usage
Kirin (Enck et al., 2009) Static analysis Based on the evaluation of application's permissions to perform lightweight

certification to mitigate malware at installation time
APK Auditor (Kabakus et al., 2015) Static analysis Based on calculation of application malware score (namely AMS) through analysis of

permissions each application demands
(Mahmood et al., 2012) Dynamic analysis Based on the utilization of Robitium test automation in order to test Android

applications automatically in the cloud
MADAM (Dini et al., 2012) Dynamic analysis Based on monitoring the operating system at both kernel and user levels
Crowdroid (Burguera et al., 2011) Dynamic analysis Based on monitoring and analyzing system calls per application
TaintDroid (Enck et al., 2010) Dynamic analysis Based on simultaneously tracking multiple sources of sensitive data such as

variables, methods, file, and messages throughout the program execution
Paranoid Android (Portokalidis et al., 2010) Dynamic analysis Based on replaying the recorded the execution trace of each application over a

network proxy that intercepts the inbound traffic
mad4a Both static and dynamic analysis Based on analyzing the permissions and network log of applications

A.T. Kabakus, I.A. Dogru / Digital Investigation xxx (2018) 1e9 7
the usage of overprivileged permissions is one of the characteristics
of the malicious applications (Ali-Gombe, 2017; Felt et al., 2011a;
Wei et al., 2012).

We introduce a new static analysis criterion for each analyzed
app namely “major category”. The major category of the application
defines the most used category of API method calls which are
decompiled from the application's compiled source file (class-
es.dex). The most used top three permission categories according to
API method calls for both malicious and benign applications are
listed in Tables 8 and 9, respectively. The result indicates that
android.permission.CALENDAR is the one needs to be highlighted
since being highly used by malicious applications.

629 malicious and 629 benign as total 1258 applications are
simulated on the emulator. As the result is listed in Table 10, the
benign applications tend to use the network more compared to
malicious ones in terms of the number of incoming and outgoing
connections, the download and upload size. However, disabling
mobile network data is more common in themalicious applications
compared to benign applications.

The comparison of the malware detection techniques of mad4a
to the related work is listed in Table 11.

Conclusion

Smartphones are key targets of malware developers since they
contain sensitive information about users such as contact lists
which contain personal phone numbers, the details of user's bank
accounts, the location of the user, the notes of the user, the calendar
of the user, and the private chats of the user. According to the re-
ports, Android is currently the most popular mobile operating
system in the world. Android applications are distributed through
the official application market namely Play Store. Despite that
Google utilizes some security tools to detect the malicious appli-
cations which are available in Play Store, it is reported that the store
still contains some malicious applications. Hence, a more compre-
hensive approach is necessary to detect more malicious application
while not including the false negative samples. Therefore, in this
paper, we propose a hybrid Android malware analysis approach
namely mad4a. mad4a utilizes both static and dynamic analysis
techniques in order to provide more comprehensive analysis and
cover moremalware detection approaches as many as possible. The
widely used datasets which are publicly available are used to
Please cite this article in press as: Kabakus, A.T., Dogru, I.A., An in-de
Investigation (2018), https://doi.org/10.1016/j.diin.2018.01.001
evaluate the proposed approach. The key contribution of the work
is listed below:

� A hybrid approach is used to detect malicious applications
instead of solely static or dynamic approach. The applications
are monitored in an emulator which is configured for tests and
monitored during these tests.

� According to the test result, malicious applications tend to
disable the mobile data connection during their executions.

� The size of the data exchanged over the Internet is limited
for malicious applications when it is compared to benign
applications.

� Benign applications are more complex in terms of requested
permissions in order to provide more functionalities compared
to malicious applications which focus on its malicious actions.

� Since android.permission.INTERNET, android.permission.ACCESS_
NETWORK_STATE, android.permission.WRITE_EXTERNAL_STORAGE,
android.permission.WAKE_LOCK, android.permission.ACCESS_WIFI_
STATE, android.permission.VIBRATE, android.permission.READ_
EXTERNAL_STORAGE, android.permission.READ_PHONE_STATE,
android.permission.RECEIVE_BOOT_COMPLETED, and android.per-
mission.ACCESS_FINE_LOCATION are the permissions which are
used by both the malicious and benign applications, we believe
that these permissions cannot be solely used to detect malicious
applications.

� Since the permissions android.permission.READ_SMS and
android.permission.WRITE_SMS are only used by malicious ap-
plications, these permissions can be effectively used by the
malware detection approaches based on permissions analysis.

� The permission android.permission.CALENDAR is commonly
detected in the malicious applications' decompiled source code
which can be used as a distinctive feature by the Android mal-
ware detection approaches based on source code analysis. To the
best of our knowledge, no related work has indicated this
information.

� The overprivileged permissions are more common (about
eleven times fold) in malicious applications compared to benign
applications. Therefore, this static analysis criterion can be
efficiently used to classify Android applications as malicious or
benign.

� Since we provide an entirely automated approach, it is possible
to apply mad4a to bigger datasets.
pth analysis of Android malware using hybrid techniques, Digital



A.T. Kabakus, I.A. Dogru / Digital Investigation xxx (2018) 1e98
The proposed approach can be extended by analyzing the API
method call patterns in order to identify the reason behind the calls
and the permissions these calls demand. As a future work, we
would like to include the traces of API calls and explain the
meaning of calls as a part of the static analysis.

Declaration of conflicting interests

The authors declare no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The authors received no financial support for the research,
authorship, and/or publication of this article.

Appendix A. Supplementary data

Supplementary data related to this article can be found at
https://doi.org/10.1016/j.diin.2018.01.001.

References

Ali-Gombe, A.I., 2017. Malware Analysis and Privacy Policy Enforcement Techniques
for Android Applications. University of New Orleans.

Alzaylaee, M.K., Yerima, S.Y., Sezer, S., 2017. Improving dynamic analysis of android
apps using hybrid test input generation. In: IEEE Int. Conf. Cyber Secur. Prot.
Digit. Serv. (Cyber Secur. 2017), London, UK.

Android e Google Play Protect, 2017. Google. https://www.android.com/play-
protect/. (Accessed 21 August 2017).

Arp, D., Spreitzenbarth, M., Malte, H., Gascon, H., Drebin, Rieck K., 2014. Effective
and Explainable Detection of Android Malware in Your Pocket. In: Symp. Netw.
Distrib. Syst. Secur., San Diego, California, USA, pp. 23e26.

Azim, T., Neamtiu, I., 2013. Targeted and depth-first exploration for systematic
testing of android apps. ACM SIGPLAN Not. 48, 641e660. https://doi.org/
10.1145/2509136.2509549.

Bae, C., Shin, S., 2017. A collaborative approach on host and network level android
malware detection. Secur. Commun. Network. 9, 5639e5650. https://doi.org/
10.1002/sec.1723.

Barrera, D., Kayacik, H.G., van Oorschot, P.C., Somayaji, A., 2010. A Methodology for
Empirical Analysis of Permission-based Security Models and its Application to
Android. Proc. 17th ACM Conf. Comput. Commun. Secur. (CCS ’10). ACM Press,
Chicago, IL, USA, pp. 73e84. https://doi.org/10.1145/1866307.1866317.

Bierma, M., Gustafson, E., Erickson, J., Fritz, D., Choe, Y.R., 2014. Andlantis: large-
scale android dynamic analysis. In: Proc. Third Work. Mob. Secur. Technol.
2014, San Jose, CA, USA.

Bl€asing, T., Batyuk, L., Schmidt, A.D., Camtepe, S.A., Albayrak, S., 2010. An Android
Application Sandbox System for Suspicious Software Detection. 5th IEEE Int.
Conf. Malicious Unwanted Softw. (Malware 2010). IEEE, Nancy, France,
pp. 55e62. https://doi.org/10.1109/MALWARE.2010.5665792.

Bosnjak, D., 2017. Report: Android's Global Market Share to Rise to 90% in 2017.
AndroidHeadlines. https://www.androidheadlines.com/2017/04/report-androids-
global-market-share-rise-90-2017.html. (Accessed 21 August 2017).

Buennemeyer, T.K., Nelson, T.M., Clagett, L.M., Dunning, J.P., Marchany, R.C.,
Tront, J.G., 2008. Mobile device profiling and intrusion detection using smart
batteries. In: Proc. 41st Annu. Hawaii Int. Conf. Syst. Sci. (HICSS 2008), Wai-
koloa, HI, USA. https://doi.org/10.1109/HICSS.2008.319, 296e296.

Burguera, I., Zurutuza, U., Nadjm-Tehrani, S., 2011. Crowdroid: behavior-based
malware detection system for Android. Science (80), 15e25. https://doi.org/
10.1145/2046614.2046619.

Burke, D., 2017. Android: Celebrating a Big Milestone Together with You. Google.
https://www.blog.google/products/android/2bn-milestone/. (Accessed 21
August 2017).

Chandramohan, M., Tan, H.B.K., 2012. Detection of mobile malware in the wild.
Computer (Long Beach Calif) 45, 65e71. https://doi.org/10.1109/MC.2012.36.

Cunningham, E., 2017. Keeping You Safe with Google Play Protect. Google. https://
blog.google/products/android/google-play-protect/. (Accessed 21 August
2017).

Delac, G., Silic, M., Krolo, J., 2011. Emerging security threats for mobile platforms. In:
2011 Proc. 34th Int. Conv. MIPRO, Opatija, Croatia, pp. 1468e1473.

Dini, G., Martinelli, F., Saracino, A., Sgandurra, D.M.A.D.A.M., 2012. A multi-level
anomaly detector for android malware. In: Kotenko, I., Skormin, V. (Eds.),
Comput. Netw. Secur, vol. 7531. Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 240e253. https://doi.org/10.1007/978-3-642-33704-8.

Enck, W., Gilbert, P., Chun, B.-G., Cox, L.P., Jung, J., Mcdaniel, P., et al., 2010. Taint-
Droid: an information-flow tracking system for realtime privacy monitoring on
Please cite this article in press as: Kabakus, A.T., Dogru, I.A., An in-de
Investigation (2018), https://doi.org/10.1016/j.diin.2018.01.001
smartphones. In: Proc. 9th USENIX Conf. Oper. Syst. Des. Implement. (OSDI ’10),
Vancouver, BC, Canada, pp. 393e407.

Enck, W., Ongtang, M., McDaniel, P., 2009. On lightweight mobile phone application
certification. In: Proc. 16th ACM Conf. Comput. Commun. Secur. (CCS ’09),
Chicago, Illinois, USA, pp. 235e245. https://doi.org/10.1145/1653662.1653691.

Feizollah, A., Anuar, N.B., Salleh, R., Suarez-Tangil, G., Furnell, S., 2017. AndroDialysis:
analysis of android intent effectiveness in malware detection. Comput. Secur.
65, 121e134. https://doi.org/10.1016/j.cose.2016.11.007.

Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D., 2011a. Android Permissions
Demystified. Proc. 18th ACM Conf. Comput. Commun. Secur. e CCS ’11. ACM
Press, New York, New York, USA, p. 627. https://doi.org/10.1145/2046707.
2046779.

Felt, A.P., Greenwood, K., Wagner, D., 2011b. The Effectiveness of Application Per-
missions. Proceeding WebApps'11 Proc. 2nd USENIX Conf. Web Appl. Dev.
USENIX Association, Berkeley, CA, USA, p. 7.

Felt, A.P., Ha, E., Egelman, S., Haney, A., Chin, E., Wagner, D., 2012. Android per-
missions: user attention, comprehension, and behavior. In: Proc. Eighth Symp.
Usable Priv. Secur. e SOUPS ’12, Washington, DC, USA, p. 1. https://doi.org/
10.1145/2335356.2335360.

Gadhiya, S., Bhavsar, K., Student, P.D., 2013. Techniques for malware analysis. Int. J.
Adv. Res. Comput. Sci. Software Eng. 3, 972e975.

Grace, M., Zhou, Y., Zhang, Q., Zou, S., Jiang, X., 2012. RiskRanker: Scalable and
Accurate Zero-day Android Malware Detection. Proc. 10th Int. Conf. Mob. Syst.
Appl. Serv. e MobiSys ’12. ACM Press, Low Wood Bay, Lake District, United
Kingdom, pp. 281e294. https://doi.org/10.1145/2307636.2307663.

Hu, C., Neamtiu, I., 2011. Automating GUI testing for android applications. In: 6th
Int. Work. Autom. Softw. Test (AST 2011). ACM, Waikiki, Honolulu, HI, USA,
pp. 77e83. https://doi.org/10.1145/1982595.1982612.

IDC Smartphone OS Market Share, 2017. IDC. http://www.idc.com/promo/
smartphone-market-share/os. (Accessed 21 August 2017).

Jacoby, G.A., Davis, N.J., 2004. Battery-based intrusion detection. In: Glob. Tele-
commun. Conf. 2004 (GLOBECOM ’04), vol. 4. IEEE, Dallas, Texas, USA,
pp. 2250e2255. https://doi.org/10.1109/GLOCOM.2004.1378409.

Kabakus, A.T., Dogru, I.A., Cetin, A., 2015. APK Auditor: permission-based Android
malware detection system. Digit. Invest. 13, 1e14. https://doi.org/10.1016/
j.diin.2015.01.001.

Kalutarage, H.K., Krishnan, P., Shaikh, S.A., 2012. A certification process for android
applications. In: 10th Int. Conf. Softw. Eng. Form. Methods (SEFM 2012), The-
ssaloniki, Greece, pp. 288e303. https://doi.org/10.1007/978-3-642-54338-8_24.

Kelley, P.G., Consolvo, S., Cranor, L.F., Jung, J., Sadeh, N., Wetherall, D., 2012.
A conundrum of permissions: installing applications on an android smart-
phone. In: Blyth, J., Dietrich, S., Camp, L.J. (Eds.), Financ. Cryptogr. Data Secur,
vol. 7398. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 68e79. https://
doi.org/10.1007/978-3-642-34638-5.

Kim, H., Smith, J., Shin, K.G., 2008. Detecting Energy-greedy Anomalies and Mobile
Malware Variants. Proceeding 6th Int. Conf. Mob. Syst. Appl. Serv. (MobiSys ’08).
ACM, Breckenridge, CO, USA, p. 239. https://doi.org/10.1145/1378600.1378627.

King, J., Lampinen, A., Smolen, A., 2011. Privacy: Is There an App for that? Proc.
Seventh Symp. Usable Priv. Secur. e SOUPS ’11. ACM Press, New York, NY, USA,
p. 1. https://doi.org/10.1145/2078827.2078843.

Lockheimer, H., 2012. Android and Security. Google. http://googlemobile.blogspot.
com/2012/02/android-and-security.html. (Accessed 21 August 2017).

Lookout, 2011. App Genome Report. https://www.lookout.com/resources/reports/
appgenome. (Accessed 10 October 2014).

Machiry, A., Tahiliani, R., Naik, M., 2013. Dynodroid: an input generation system for
android apps. In: Proc. 2013 9th Jt. Meet. Found. Softw. Eng. (ESEC/FSE 2013),
Saint Petersburg, Russia, p. 224. https://doi.org/10.1145/2491411.2491450.

Mahmood, R., Esfahani, N., Kacem, T., Mirzaei, N., Malek, S., Stavrou, A., 2012.
A Whitebox Approach for Automated Security Testing of Android Applications
on the Cloud. 7th Int. Work. Autom. Softw. Test (AST 2012). IEEE Press, Zurich,
Switzerland, pp. 22e28. https://doi.org/10.1109/IWAST.2012.6228986.

Santa Clara, CA, USA McAfee Labs Threats Predictions Report, 2016.
Santa Clara, CA, USA McAfee Labs Threats Report June 2017, 2017.
monkeyrunner, 2017. Google. https://developer.android.com/studio/test/

monkeyrunner/index.html. (Accessed 21 August 2017).
Moser, A., Kruegel, C., Kirda, E., 2007. Limits of static analysis for malware detection.

In: 23rd Annu. Comput. Secur. Appl. Conf. (ACSAC 2007), Miami Beach, FL, USA,
pp. 421e430. https://doi.org/10.1109/ACSAC.2007.21.

Mylonas, A., Kastania, A., Gritzalis, D., 2013. Delegate the smartphone user? Security
awareness in smartphone platforms. Comput. Secur. 34, 47e66. https://doi.org/
10.1016/j.cose.2012.11.004.

Nauman, M., Khan, S., Zhang, X., 2010. Apex: Extending Android Permission Model
and Enforcement with User-defined Runtime Constraints. Proc. 5th ACM Symp.
Information, Comput. Commun. Secur. (ASIA CCS ’10). ACM, Beijing, China,
pp. 328e332. https://doi.org/10.1145/1755688.1755732.

Peng, H., Gates, C., Sarma, B., Li, N., Qi, Y., Potharaju, R., et al., 2012. Using proba-
bilistic generative models for ranking risks of android apps. In: Proc. 2012 ACM
Conf. Comput. Commun. Secur. (CCS ’12), Raleigh, North Carolina, USA,
pp. 241e252. https://doi.org/10.1145/2382196.2382224.

Popper, B., 2017. Google Announces over 2 Billion Monthly Active Devices on
Android. The Verge. https://www.theverge.com/2017/5/17/15654454/android-
reaches-2-billion-monthly-active-users. (Accessed 21 August 2017).

Portokalidis, G., Homburg, P., Anagnostakis, K., Bos, H., 2010. Paranoid android:
versatile protection for smartphones. In: Annu. Comput. Secur. Appl. Conf.,
Austin, Texas, USA, pp. 347e356. https://doi.org/10.1145/1920261.1920313.
pth analysis of Android malware using hybrid techniques, Digital

https://doi.org/10.1016/j.diin.2018.01.001
http://refhub.elsevier.com/S1742-2876(17)30318-3/sref1
http://refhub.elsevier.com/S1742-2876(17)30318-3/sref1
http://refhub.elsevier.com/S1742-2876(17)30318-3/sref2
http://refhub.elsevier.com/S1742-2876(17)30318-3/sref2
http://refhub.elsevier.com/S1742-2876(17)30318-3/sref2
https://www.android.com/play-protect/
https://www.android.com/play-protect/
http://refhub.elsevier.com/S1742-2876(17)30318-3/sref4
http://refhub.elsevier.com/S1742-2876(17)30318-3/sref4
http://refhub.elsevier.com/S1742-2876(17)30318-3/sref4
http://refhub.elsevier.com/S1742-2876(17)30318-3/sref4
https://doi.org/10.1145/2509136.2509549
https://doi.org/10.1145/2509136.2509549
https://doi.org/10.1002/sec.1723
https://doi.org/10.1002/sec.1723
https://doi.org/10.1145/1866307.1866317
http://refhub.elsevier.com/S1742-2876(17)30318-3/sref8
http://refhub.elsevier.com/S1742-2876(17)30318-3/sref8
http://refhub.elsevier.com/S1742-2876(17)30318-3/sref8
https://doi.org/10.1109/MALWARE.2010.5665792
https://www.androidheadlines.com/2017/04/report-androids-global-market-share-rise-90-2017.html
https://www.androidheadlines.com/2017/04/report-androids-global-market-share-rise-90-2017.html
https://doi.org/10.1109/HICSS.2008.319
https://doi.org/10.1145/2046614.2046619
https://doi.org/10.1145/2046614.2046619
https://www.blog.google/products/android/2bn-milestone/
https://doi.org/10.1109/MC.2012.36
https://blog.google/products/android/google-play-protect/
https://blog.google/products/android/google-play-protect/
http://refhub.elsevier.com/S1742-2876(17)30318-3/sref16
http://refhub.elsevier.com/S1742-2876(17)30318-3/sref16
http://refhub.elsevier.com/S1742-2876(17)30318-3/sref16
https://doi.org/10.1007/978-3-642-33704-8
http://refhub.elsevier.com/S1742-2876(17)30318-3/sref18
http://refhub.elsevier.com/S1742-2876(17)30318-3/sref18
http://refhub.elsevier.com/S1742-2876(17)30318-3/sref18
http://refhub.elsevier.com/S1742-2876(17)30318-3/sref18
http://refhub.elsevier.com/S1742-2876(17)30318-3/sref18
https://doi.org/10.1145/1653662.1653691
https://doi.org/10.1016/j.cose.2016.11.007
https://doi.org/10.1145/2046707.2046779
https://doi.org/10.1145/2046707.2046779
http://refhub.elsevier.com/S1742-2876(17)30318-3/sref22
http://refhub.elsevier.com/S1742-2876(17)30318-3/sref22
http://refhub.elsevier.com/S1742-2876(17)30318-3/sref22
https://doi.org/10.1145/2335356.2335360
https://doi.org/10.1145/2335356.2335360
http://refhub.elsevier.com/S1742-2876(17)30318-3/sref24
http://refhub.elsevier.com/S1742-2876(17)30318-3/sref24
http://refhub.elsevier.com/S1742-2876(17)30318-3/sref24
https://doi.org/10.1145/2307636.2307663
https://doi.org/10.1145/1982595.1982612
http://www.idc.com/promo/smartphone-market-share/os
http://www.idc.com/promo/smartphone-market-share/os
https://doi.org/10.1109/GLOCOM.2004.1378409
https://doi.org/10.1016/j.diin.2015.01.001
https://doi.org/10.1016/j.diin.2015.01.001
https://doi.org/10.1007/978-3-642-54338-8_24
https://doi.org/10.1007/978-3-642-34638-5
https://doi.org/10.1007/978-3-642-34638-5
https://doi.org/10.1145/1378600.1378627
https://doi.org/10.1145/2078827.2078843
http://googlemobile.blogspot.com/2012/02/android-and-security.html
http://googlemobile.blogspot.com/2012/02/android-and-security.html
https://www.lookout.com/resources/reports/appgenome
https://www.lookout.com/resources/reports/appgenome
https://doi.org/10.1145/2491411.2491450
https://doi.org/10.1109/IWAST.2012.6228986
http://refhub.elsevier.com/S1742-2876(17)30318-3/sref38
http://refhub.elsevier.com/S1742-2876(17)30318-3/sref39
https://developer.android.com/studio/test/monkeyrunner/index.html
https://developer.android.com/studio/test/monkeyrunner/index.html
https://doi.org/10.1109/ACSAC.2007.21
https://doi.org/10.1016/j.cose.2012.11.004
https://doi.org/10.1016/j.cose.2012.11.004
https://doi.org/10.1145/1755688.1755732
https://doi.org/10.1145/2382196.2382224
https://www.theverge.com/2017/5/17/15654454/android-reaches-2-billion-monthly-active-users
https://www.theverge.com/2017/5/17/15654454/android-reaches-2-billion-monthly-active-users
https://doi.org/10.1145/1920261.1920313


A.T. Kabakus, I.A. Dogru / Digital Investigation xxx (2018) 1e9 9
Protalinski, E., 2012. Android Malware up 580% Year-over-year. Next Web. https://
thenextweb.com/google/2012/10/25/in-one-year-android-malware-up-580-
23-of-the-top-500-on-google-play-deemed-high-risk/#.tnw_CnCxdv0x.
(Accessed 21 August 2017).

Rastogi, V., Chen, Y., Enck, W., 2013. AppsPlayground : Automatic Security Analysis
of Smartphone Applications. CODASPY ’13 Proc. Third ACM Conf. Data Appl.
Secur. Priv, pp. 209e220. https://doi.org/10.1145/2435349.2435379.

Schmidt, A.-D., 2011. Detection of Smartphone Malware. Technische Universit€at,
Berlin.

Spreitzenbarth, M., Freiling, F.C., Echtler, F., Schreck, T., Hoffmann, J., 2013. Mobile-
sandbox: Having a Deeper Look into Android Applications. Proc. 28th Annu.
ACM Symp. Appl. Comput. (SAC 2013). ACM, Coimbra, Portugal, pp. 1808e1815.
https://doi.org/10.1145/2480362.2480701.

Suarez-Tangil, G., Tapiador, J.E., Peris-Lopez, P., Blasco, J., 2014. Dendroid: a text
mining approach to analyzing and classifying code structures in Android mal-
ware families. Expert Syst. Appl. 41, 1104e1117. https://doi.org/10.1016/
j.eswa.2013.07.106.

Tam, K., Feizollah, A., Anuar, N.B., Salleh, R., Cavallaro, L., 2017. The evolution of
android malware and android analysis techniques. ACM Comput. Surv. 49, 1e41.
https://doi.org/10.1145/3017427.

The Judy Malware Possibly the largest malware campaign found on Google Play,
2017. Check Point. https://blog.checkpoint.com/2017/05/25/judy-malware-
possibly-largest-malware-campaign-found-google-play/. (Accessed 21 August
2017).

Tong, F., Yan, Z., 2017. A hybrid approach of mobile malware detection in Android.
J. Parallel Distr. Comput. 103, 22e31. https://doi.org/10.1016/j.jpdc.2016.10.012.

UI/Application Exerciser Monkey j Android Studio, 2017. Google. https://developer.
android.com/studio/test/monkey.html. (Accessed 21 August 2017).
Please cite this article in press as: Kabakus, A.T., Dogru, I.A., An in-de
Investigation (2018), https://doi.org/10.1016/j.diin.2018.01.001
Wain, K., Au, Y., Zhou, Y.F., Huang, Z., Lie, D., 2012. PScout: Analyzing the Android
Permission Specification. CCS ’12 Proc. 2012 ACM Conf. Comput. Commun.
Secur. ACM, Raleigh, North Carolina, USA, pp. 217e228. https://doi.org/10.1145/
2382196.2382222.

Wang, C., Li, Z., Mo, X., Yang, H., Zhao, Y., 2017. An android malware dynamic
detection method based on service call co-occurrence matrices. Ann. Tele-
commun. 72, 1e9. https://doi.org/10.1007/s12243-017-0580-9.

Wang, W., Wang, X., Feng, D., Liu, J., Han, Z., Zhang, X., 2014. Exploring
permission-induced risk in android applications for malicious application
detection. IEEE Trans. Inf. Forensics Secur. 9, 1869e1882. https://doi.org/10.
1109/TIFS.2014.2353996.

Wang, Y., Zheng, J., Sun, C., Mukkamala, S., 2013. Quantitative security risk assess-
ment of android permissions and applications. In: Wang, L., Shafiq, B. (Eds.),
27th Annu. IFIP WG 11.3. Springer, Newark, NJ, USA, pp. 226e241. https://
doi.org/10.1007/978-3-642-39256-6_15.

Wei, X., Gomez, L., Neamtiu, I., Faloutsos, M., 2012. Permission Evolution in the
Android Ecosystem. ACSAC ’12 Proc 28th Annu Comput Secur Appl Conf,
pp. 31e40. https://doi.org/10.1145/2420950.2420956.

Wu, D.-J., Mao, C.-H., Wei, T.-E., Lee, H.-M., Wu, K.-P., 2012. DroidMat: android
malware detection through manifest and api calls tracing. In: 2012 Seventh Asia
Jt. Conf. Inf. Secur., Minato, Tokyo, Japan, pp. 62e69. https://doi.org/10.1109/
AsiaJCIS.2012.18.

Zhou, Y., Jiang, X., 2012. Dissecting Android Malware: Characterization and Evolu-
tion. Proc. 33rd IEEE Symp. Secur. Priv. (Oakl. 2012), San Francisco, CA, USA.
IEEE, pp. 95e109. https://doi.org/10.1109/SP.2012.16.

Zhou, Y., Wang, Z., Zhou, W., Jiang, X., 2012. Hey, you, get off of my market:
detecting malicious apps in official and alternative android markets. In: Proc.
19th Annu. Netw. Distrib. Syst. Secur. Symp., San Diego, California, USA.
pth analysis of Android malware using hybrid techniques, Digital

https://thenextweb.com/google/2012/10/25/in-one-year-android-malware-up-580-23-of-the-top-500-on-google-play-deemed-high-risk/#.tnw_CnCxdv0x
https://thenextweb.com/google/2012/10/25/in-one-year-android-malware-up-580-23-of-the-top-500-on-google-play-deemed-high-risk/#.tnw_CnCxdv0x
https://thenextweb.com/google/2012/10/25/in-one-year-android-malware-up-580-23-of-the-top-500-on-google-play-deemed-high-risk/#.tnw_CnCxdv0x
https://doi.org/10.1145/2435349.2435379
http://refhub.elsevier.com/S1742-2876(17)30318-3/sref49
http://refhub.elsevier.com/S1742-2876(17)30318-3/sref49
http://refhub.elsevier.com/S1742-2876(17)30318-3/sref49
https://doi.org/10.1145/2480362.2480701
https://doi.org/10.1016/j.eswa.2013.07.106
https://doi.org/10.1016/j.eswa.2013.07.106
https://doi.org/10.1145/3017427
https://blog.checkpoint.com/2017/05/25/judy-malware-possibly-largest-malware-campaign-found-google-play/
https://blog.checkpoint.com/2017/05/25/judy-malware-possibly-largest-malware-campaign-found-google-play/
https://doi.org/10.1016/j.jpdc.2016.10.012
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
https://doi.org/10.1145/2382196.2382222
https://doi.org/10.1145/2382196.2382222
https://doi.org/10.1007/s12243-017-0580-9
https://doi.org/10.1109/TIFS.2014.2353996
https://doi.org/10.1109/TIFS.2014.2353996
https://doi.org/10.1007/978-3-642-39256-6_15
https://doi.org/10.1007/978-3-642-39256-6_15
https://doi.org/10.1145/2420950.2420956
https://doi.org/10.1109/AsiaJCIS.2012.18
https://doi.org/10.1109/AsiaJCIS.2012.18
https://doi.org/10.1109/SP.2012.16
http://refhub.elsevier.com/S1742-2876(17)30318-3/sref63
http://refhub.elsevier.com/S1742-2876(17)30318-3/sref63
http://refhub.elsevier.com/S1742-2876(17)30318-3/sref63

	An in-depth analysis of Android malware using hybrid techniques
	Introduction
	Related work
	Static analysis
	Dynamic analysis

	Material and method
	Fetching applications from Play Store
	Static analysis
	Dynamic analysis

	Result and discussion
	Conclusion
	Declaration of conflicting interests
	Funding
	Appendix A. Supplementary data
	References


