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ABSTRACT

The Ambulance Location and Dispatching Problem (ALDP) identifies the location of the available ambulances
and the best dispatching policy to minimize the response times to answer the calls. However, the uncertain
nature of the emergency calls makes it impossible to know in advance if the ambulance identified by the
dispatching policy is available or not upon a call arrival. Thus, the probability that a vehicle is busy when
a call arises, denoted as busy fraction, is usually considered in the literature. Probabilities can be estimated
in several manners, but simulation seems to be well suited for this purpose. In this work, we propose
four Recursive Optimization-Simulation Approaches to estimate the ALDP busy fraction, and we apply
them to a set of realistic instances. Numerical results confirm that the most sophisticated and computing
demanding approaches offer a better performance.

1 INTRODUCTION

Emergency Medical Services (EMSs) are crucial in health care systems. They provide out-of-hospital acute
medical care and transportation to the appropriate health center for injured and ill people. Organizing and
managing the service is an extremely challenging task, as EMSs manage a large variety of resources (e.g.,
health care personnel, ambulances and call centers) and face difficult challenges related to the uncertainty of
the emergency calls. Indeed, calls randomly arrive from different areas of the served territory and must be
served quickly: every second is important in life threatening situations. In this context, EMS organizations
must answer two important questions, i.e., where should the ambulances be located? and which ambulance
should take care of the arriving call?

These decisions are the aim of the Ambulance Location and Dispatching Problem (ALDP), which
identifies the location of the available ambulances and provides a dispatching policy to minimize the
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expected response time to answer the calls (Bélanger et al. 2015). In particular, the ALDP defines an
ordered dispatching list of ambulances for each demand zone, so that, when a call arises from a zone,
the first available ambulance in its dispatching list is sent to answer the call. If no vehicles in the list
are available, the closest available ambulance is sent. Finally, if no vehicle is available at all, the call is
redirected to another emergency service. Therefore, the ALDP merges tactical and operational decisions.
Tactical decisions can be considered as static, as they do not change during the planning horizon. In fact,
once the locations of the ambulances are decided, vehicles are assigned to them and come back every time
as soon as they complete their mission. On the other hand, dispatching decisions are rather dynamic, since
they require the knowledge of the ambulances that will be available when a call arrives. However, call
arrivals are random, and it is almost impossible to know the busy ambulances in advance.

An effective approach to handle this uncertainty is to model ambulances’ availabilities in a probabilistic
manner, but doing so is far from being trivial and requires a fair estimation of ambulances’ probabilities to
be busy. In the literature, a well-recognized approach is to describe such probabilities in function of the
so-called busy fraction, i.e., the ratio of time in which an ambulance is serving a call and not available
to serve another call (Daskin 1983). However, also in this case, a fair estimation of the busy fractions is
needed. The EMS literature has relied for a long time on queueing theory to estimate busy fractions, and
a large number of models are available. However, most of these analytical models tend to be very difficult
and often require assumptions that are hardly acceptable in real-life contexts.

Simulation, on the other hand, seems to be well suited to estimate busy fractions. Anyway, although
simulation has been largely used in the EMS literature, in most of the cases its purpose was only to
evaluate the performance of a plan, usually produced by an optimization model (Fujiwara et al. 1987;
Harewood 2002). Just recently, a new trend is gaining more popularity in EMS, especially for location
problems: optimization for simulation (Aboueljinane et al. 2013). This approach consists of selecting
some deployment strategies to be tested in the simulator (Silva and Pinto 2010).

In this work, we propose a Recursive Optimization-Simulation Approach (ROSA) to model and
estimate ambulance busy fractions. The ROSA exploits simulation not only to validate a solution, but also
to recursively improve the optimization model. We propose four variants of the ROSA and we analyze
their performance. To the best of our knowledge, ROSA has never been applied to ALDP nor to more
general EMS optimization problems.

The rest of the paper is structured as follows. Section 2 briefly presents the two ingredients of the
approach, i.e., the ALDP and the simulator. Section 3 proposes the first three variants of the ROSA,
while Section 4 reports their empirical results. In addition, Section 5 presents a fourth variant that further
improves the outcomes with respect to the others. Finally, Section 6 draws some conclusions.

2 OPTIMIZATION AND SIMULATION MODELS

This work considers a version of the ALDP in which i) relocation is neglected, and ii) each standby site
may host up to one ambulance, which is a reasonable assumption when the number of standby sites is
much larger than the number of ambulances, as it is in most of real cases, including our numerical tests.

In the following, we briefly present the ALDP formulation, which is used to locate ambulances and
define the dispatch policy, and then we describe the simulator, which is used to execute a solution.

2.1 ALDP formulation

The ALDP is defined on a graph G = (V,E) with V = I ∪ J, I = {v1, . . . ,vn}, J = {vn+1, . . . ,vn+m}, and
E = {(vi,v j) : vi,v j ∈V}. I is the set of demand zones, J the set of potential standby sites, and E the set
of edges, where each edge has associated a traveling time t ji. A demand zone vi is characterized by a
centroid and an overall demand di over the planning horizon. A potential standby site is a site within a
zone where one ambulance can be located while waiting for calls. The set of available vehicles is denoted
by K, and the set of positions in the dispatching list of each zone by Z. For each ambulance, we define
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the maximum workload W as the maximum number of missions a vehicle can answer during the planning
horizon, and we denote by q the busy fraction; both of them are the same for all vehicles.

Two sets of decision variables are used. Variable x j is equal to 1 if a vehicle is located in v j ∈ J (0
otherwise), and variable yz

i j is equal to 1 if a vehicle located in v j ∈ J is in position z of the dispatching
list of vi ∈ I (0 otherwise). The goal is to minimize the sum of the response times to answer to the calls.

The ALDP is formulated as:

min∑
i∈I

∑
z∈Z

∑
j∈J

(1−q)qz−1dit jiyz
i j (1)

subject to
∑
j∈J

x j = |K| (2)

∑
z∈Z

∑
i∈I

(1−q)qz−1diyz
i j ≤W ∀ j ∈ J (3)

∑
z∈Z

yz
i j ≤ 1 ∀ j ∈ J, i ∈ I (4)

∑
j∈J

yz
i j ≤ 1 ∀z ∈ Z, i ∈ I (5)

yz
i j ≤ x j ∀z ∈ Z, i ∈ I, j ∈ J (6)

x j ∈ {0,1} ∀ j ∈ J (7)

yz
i j ∈ {0,1} ∀z ∈ Z, i ∈ I, j ∈ J (8)

Constraints (2) impose that the |K| vehicles are located in the standby sites. Constraint (3) ensure that the
demand assigned to a vehicle is less than or equal to W . Finally, a vehicle cannot occupy more than one
position in the dispatching list of a given demand zone – constraints (4) – and exactly one vehicle appears
at each position of the dispatching list of a given demand zone – constraints (5). Additional details can be
found in (Bélanger et al. 2015).

Let us now focus on the term (1−q)qz−1 in (1) and (3), which accounts for the probability that the
ambulance in position z of a dispatching list of a zone answers the call. In fact, the first ambulance in the
dispatching list answers the call only if it is idle, i.e., with probability 1−q. The second ambulance of the
list answers the same call only if it is idle and if the first ambulance is busy, i.e., with probability (1−q)q.
The third ambulance of the list answers the call with probability (1−q)q2, and so on.

With the locations of the ambulances and the dispatching lists, it is possible to compute the Expected
Response Time (ERT ), which also includes the potential contribution of the ambulances that are not in the
dispatching list, as well as a penalty Tp if no ambulance is available. To this end, we define an extended
list for each zone, whose length is |K|: the first |Z| elements are given by the dispatching list and, starting
from position |Z|+1, the remaining ambulances are ordered from the closest to the farthest. Extended lists
are defined by variables ỹz

i j, where ỹz
i j = yz

i j for z≤ |Z|, and for z > |Z| we state that ỹz
i j = 1 if and only if

an ambulance is located in v j and is the closest remaining ambulance to zone vi. Then:

ERT = ∑
i∈I

ERTi = ∑
i∈I

∑
z∈Z

∑
j∈J

(1−q)qz−1dit jiỹz
i j +∑

i∈I
diq|K|Tp (9)

2.2 Simulator

We consider a Discrete Event Simulation (DES) model, which contains two types of entities (i.e., calls and
vehicles) and two types of events.

A vehicle is either idle or busy, and it can be assigned to a call only if idle. Whenever a vehicle is
assigned to a call, its status switches to busy for a service time given by the sum of the response time (the
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travel time from its standby site to the call zone) and the working time (which includes transportation to the
hospital and return to the standby site). Although the working time is quite regular, it slightly varies from
mission to mission. However, since this variability is limited and would impact all the proposed methods
in a similar manner, we assume a constant working time to better focus on the comparison of the proposed
ROSA variants. In particular, we set all working times to 4320 seconds (i.e., 1.2 hours).

The first type of event (dispatch) occurs when a call arises in a demand zone and is assigned to an
idle ambulance; the second type of event (release) happens when a vehicle comes back to its standby site
after having completed a service and becomes idle. In fact, we consider that each vehicle returns back to
its standby site, defined by the ALDP, without being relocated or rerouted to serve another call. Dispatch
events follow the dispatching policy produced as a solution by the ALDP.

The simulator uses as an input a demand scenario, which is in terms of a call list generated as follows.
We consider the demand di in each zone i, and we convert this information into rates per second to obtain
the vector Λ = (λ1,λ2, . . . ,λ|I|), where λi is the average number of calls per second in zone i. Then, we
use a Poisson model to exploit the memoryless property of the interarrival times, i.e., the time interval in
seconds until the next call is modeled via an exponential variable with parameter λTOT = ∑

N
i=1 λi. Finally,

to assign a zone to each call, we consider the following probabilities:

Pr{call arises from zone i}= λi

λTOT
.

Several scenarios, associated with as many call lists, are considered to compute average values and
confidence intervals for the system variables. The simulator also uses as inputs the ALDP solution (i.e.,
the location of each vehicle k and the dispatching list for each zone i) and the travel times t ji, which are
assumed known and deterministic. The main outputs of the simulator are the busy fraction, the response
time and the working time of each vehicle k. The pseudocode of the simulator is presented in Algorithm 1.

Algorithm 1 Simulator
1: for each simulated scenario do
2: Initialize response time and working time to 0 for each vehicle
3: Initialize each vehicle as idle
4: while event set is not empty do
5: Look for the next event
6: if next event is a call from zone i then
7: Send vehicle k (the first available for zone i according to the extended list)∗

8: Switch vehicle k status from idle to busy
9: Create the future event: “vehicle k finishes the service”

10: else if next event is a finish service for vehicle k then
11: Switch vehicle k status from busy to idle
12: Add the response time and the working time to ambulance k
13: Calculate the busy fraction of each ambulance for the scenario
14: Calculate global response time and global working time for the scenario
15: Calculate other relevant data
16: Extract mean and confidence intervals of busy fractions
17: Extract mean and confidence intervals of global response time and global working time
18: Extract other relevant statistics

∗ if there are no idle vehicles when a call is received, the model deals with it by adding a penalty
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3 ROSA-BASED APPROACHES

We present here the first three variants of the ROSA, and discuss their advantages and disadvantages in
terms of complexity and accuracy.

3.1 BRM

In the basic ROSA model (BRM), we consider the ALDP formulation presented in Section 2.1, and we
only tune the value of the busy fraction q, which is the same for all ambulances. We remark that the
term (1−q)z−1 relies on assuming independence among the ambulances. Thus, the two assumptions of
independence and equal q values are at the basis of the BRM.

We run the ALDP with an initial q0; then, we run the simulator to compute an empirical q as the
average over the simulated scenarios. This new q is then used for solving the ALDP again. We iterate the
process up to convergence, i.e., until the busy fraction does not change between two consecutive iterations.
In practice, we consider that convergence is reached when the difference between two busy fractions is
lower than a tolerance ε = 10−5.

3.2 PSSM and QTSSM

To relax the independence assumption of the BRM, we generalize the ALDP model of Section 2.1 as
follows:

min∑
i∈I

∑
z∈Z

∑
j∈J

ξzdit jiyz
i j (10)

subject to
∑
z∈Z

∑
i∈I

ξzqz−1diyz
i j ≤W ∀ j ∈ J (11)

Constraints (2), (4)− (8)

In particular, the term (1−q)qz−1 in (1) and (3) is replaced by a parameter ξz for each z∈ Z. Accordingly,
also (9) is modified as follows:

ERT = ∑
i∈I

∑
z∈Z

∑
j∈J

ξzdit jiỹz
i j +∑

i∈I
di

(
1−∑

z∈Z
ξz

)
Tp (12)

Now, the optimization model and the simulator exchange the set of parameters ξz instead of the single
parameter q. For the rest, the iterative optimization-simulation scheme is the same. As for the initialization,
we start with ξ 0

z = (1−q0)qz−1
0 . The convergence of the optimization-simulation framework cannot rely

on a single parameter as in the BRM. Here, convergence is reached when L[ι ]
k = L[ι+1]

k and D[ι ]
j = D[ι+1]

j

∀k, j, where L[ι ]
k denotes the locations generated by the ALDP at iteration ι and D[ι ]

j the corresponding
dispatching lists.

We consider two different methods to estimate the parameters ξk. The former relies only on simulation
and combinatorics (Section 3.2.1); the latter is based on both queuing theory and simulation (Section 3.2.2).
In both cases, the assumption of equal q among the ambulances still persists.

3.2.1 PSSM

The first estimation method is referred to as Pure Simulation Sampling Model (PSSM).
All vehicles have the same probability q of being busy; thus, given two groups G1 and G2 with n

ambulances, the probability that all ambulances in G1 are busy is the same as the probability that all
ambulances in G2 are busy. We refer to this probability as ψn.
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If we randomly select a time instant and observe that the number of busy ambulances is b, then the
probability that an ambulance k is busy is given by:

Pr{ambulance k is busy | b ambulances are busy}= b
|K|

. (13)

Similarly, the probability that a given n-uple of ambulances are all busy is:

Pr{a given n-uple of ambulances are all busy | b ambulances are busy}=
(b

n

)(|K|
n

) (14)

If we know that b ambulances are busy, ψn is given by (14). Finally, we derive ξz based on ψz:

ξz = Pr{ambulance z+1 is idle and ambulances 1 to z are busy}=
= Pr{first z ambulances are busy}−Pr{first z+1 ambulances are busy}= ψz−ψz+1 (15)

We can thus estimate ξz from the simulator. To this end, we randomly sample 400 time instants for
each simulation scenario. For each time instant and scenario, we get the number b of busy ambulances,
we compute with b the value of ψz for each z ∈ Z, and we finally compute the corresponding ξz. Then, for
each ψz, we get the average value over the time instants and the scenarios.

3.2.2 QTSSM

The second estimation method is referred to as Queuing Theory and Simulation Sampling Model (QTSSM),
as it uses both simulation and queuing theory to improve the estimation.

We refer to two literature works. (Larson 1974) solved the location problem for EMS using an exact
hypercube model, in which each vertex of the hypercube is associated with a particular combination of
busy vehicles. The Markov properties of the Poisson interarrival times were then exploited to generate
the so-called balance equations. While this method provides an exact solution, generating and solving the
balance equations is extremely demanding from a computational viewpoint and becomes infeasible as the
number of vehicles increases. Thus, (Larson 1975) used the conditional probability to derive a correction
factor for the non-independence of the vehicles. In particular, we use the following expression that (Budge
et al. 2009) derived from (Larson 1975):

ξz ' Q(|K|,ρ,z)(1−q)qz−1 (16)

Q(|K|,ρ,z) = π0

|K|!
(
1−ρ

(
1−π|K|

)) (|K|− z)!(
1−π|K|

)z−1

|K|−1

∑
u=z−1

(|K|−u)|K|uρu−z+1

(u− z+1)!
(17)

where πn are the steady-state probabilities and ρ is the occupation rate per server. It is worth noting that
Larson estimated all parameters using conditional probability and queuing theory results, by solving a set
of non-linear simultaneous equations, without relying on simulation.

To estimate the parameters, we look at our problem from a queuing theory perspective and we model it
as an Erlang loss system (Gross and Harris 2008), where the emergency calls are the customers who enter
the system and the ambulances are the servers. Servers are busy when they are dealing with a call (during
response and working times). We have already assumed that the call is lost and a penalty is incurred when
all ambulances are busy, and we have already stated that the calls follow a Poisson process. The process
is thus modeled as an M/G/|K|/|K| queue, where M indicates that the interarrival times are exponential,
and G that the service times follow any distribution. |K| is the number of servers, equal to the maximum
number of customers handled by the system (in our case, the maximum number of calls that can be served
in a given time instant).
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Table 1: Summary of the tested alternatives (times in seconds).

|I| |J| |K| |Z| Tp W
di t ji

min max min max
SI–2 30 30 2 2 420 5000 41 496 15 557
SI–3 30 30 3 2 420 5000 41 496 15 557
SI–4 30 30 4 2 420 5000 41 496 15 557
MI–12 149 48 12 2 420 5000 16 737 15 1174
LI–60 595 218 60 2 420 5000 1 1715 15 3124

We define the occupation rate a = λ

µ
and compute the occupation rate per server ρ as a

|K| =
λ

|K|µ . ρ is
very similar to the busy fraction q, but it also takes into consideration the calls that are lost (q≤ ρ). Then,
the steady state probability πn of state n is the probability that n clients will be in the system and that n
servers will be busy in the long run. Based on the Markov chains theory (Jarvis 1985), we have:

πn =
an

n!

∑
|K|
j=0

a j

j!

(18)

Notice that, although this formula is derived for the M/M/|K|/|K| queue, the insensitivity or robustness
property of queueing systems (Burman 1981) states that the distribution form of the service times is
irrelevant; thus, it can also be applied to the M/G/|K|/|K| queue, provided that the mean service time µ

is known. Moreover, let us observe that in our case the service times include both the response and the
working times. While the latter is assumed to be constant, the response time is variable and depends on
the ALDP solution. Anyway, its relative contribution with respect to the working time is negligible, and
we may consider a fixed mean service time µ . We can now can calculate Q(|K|,ρ,z) based on λ and µ .
As for λ , it is the known parameter λTOT of the Poisson model of the interarrival times. µ is estimated
empirically as the average of the sum of response and working times across all trips over all simulations.
Finally, we also compute q from simulation, as in BRM, and we obtain ξz ∀z ∈ Z.

4 RESULTS

The main goal of this section is to assess the accuracy of the ROSA variants proposed in Section 3. To this
end, we compare the ERT to the corresponding empirical response time from simulation. More precisely,
we consider the empirical total transportation and penalty time in each scenario and we compute its average
value over the scenarios, which is denoted as Simulated Response Time (SRT ). Moreover, we consider the
probability θ z

o that the ambulance in position z of an extended list answers a call; with that, we derive the
contribution θ l

o of the |Z| ambulances in the dispatching list, the contribution θ nl
o of the other ambulances,

and the penalty contribution θ
p
o . As for the optimization, they are derived as follows:

θ
z
o = ξz θ

l
o = ∑

z∈Z
θ

z
o θ

p
o = 1−∑

z∈Z
ξz θ

nl
o = 1−θ

l
o−θ

p
o

while, for the simulation, the corresponding probabilities θ z
s , θ l

s , θ nl
s and θ

p
s are simply sampled.

Tests are run considering pseudo-real data from the city of Montréal and the near suburb of Laval,
Québec, Canada. The territory is divided into 595 demand zones, and both demands di and travel times t ji
are those in (Bélanger et al. 2015). Additional information about the data can be found in (Kergosien et al.
2015). The entire territory is considered for the Large Instance (LI). Moreover, we define a Small Instance
(SI) and a Medium Instance (MI), which include 30 and 149 zones in downtown Montréal, respectively.
Three cardinalities of the ambulance set are considered for SI, while only one for MI and LI, thus giving 5
alternatives. Their characteristics are summarized in Table 1. The average numbers λi of calls per second
in all zones i, used to generate the call lists for the simulator, are taken according to di. With them, we
randomly generate 500 random scenarios.
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Table 2: Results of BRM. Values of q, ERT and SRT at the initial iteration and at convergence, together
with difference SRT −ERT as percentage of ERT (a). θ 1

o vs θ 1
s ; θ 2

o vs θ 2
s ; θ nl

o vs θ nl
s ; θ

p
o vs θ

p
s (b). Values

of ERT and SRT are expressed in seconds.

q ERT SRT Difference
initial converg initial converg initial converg initial converg

SI–2 0.5 0.43 1555747 1430990 1515390 1515390 –2.66% +5.90%
SI–3 0.5 0.34 1284635 1039699 1112726 1112726 –13.38% +7.02%
SI–4 0.5 0.27 1107145 831067 881520 872687 –20.38% +5.01%
MI–12 0.5 0.57 9030956 9827561 10867120 10867120 +20.33% +10.58%
LI–60 0.5 0.53 42390570 44035665 50529180 50508731 +19.20% +14.70%

(a)

θ 1
o θ 1

s θ 2
o θ 2

s θ nl
o θ nl

s θ
p
o θ

p
s

SI–2 0.566 0.561 0.246 0.209 0.000 0.000 0.189 0.230
SI–3 0.655 0.653 0.226 0.195 0.078 0.073 0.041 0.079
SI–4 0.726 0.724 0.199 0.176 0.069 0.079 0.006 0.021
MI–12 0.434 0.425 0.246 0.202 0.320 0.347 0.001 0.026
LI–60 0.470 0.409 0.249 0.192 0.281 0.399 0.000 0.000

(b)

The ALDP model is solved with CPLEX 12.7 on a Microsoft Windows machine equipped with processor
Intel Core i7-4700MQ @ 2.40 GHz and 8 GB of installed RAM. The computational time of each run is
always below 1 second for SI and MI, while below 1 minute for LI.

We always set q0 = 0.5 as in (Bélanger et al. 2015).
Convergence is reached very quickly in all cases, i.e., after 2 to 6 iterations. Since convergence is

based on a quantitative comparison between optimization and simulation results, a cyclic behavior occurs
in PSSM and QTSSM. However, in all the cases we solved, the cyclic oscillations of ERT and SRT values
are minimal and their impact on the solution negligible. Thus, any solution of the cyclic behavior can be
the outcome of the optimization-simulation framework.

Detailed results are reported below for each ROSA variant.

4.1 BRM

Results in Table 2a show that the difference between the ERT (produced by the optimization) and the SRT
(produced by the simulation) is improved at convergence in all cases but one. We remind that the initial
solution with an a priori defined q = 0.5 corresponds to the approach in (Bélanger et al. 2015). However,
despite of this improvement, the ERT to SRT gap is still too large, ranging from 5.01% up to 14.70%.

To investigate the reasons of this gap, we compare θ 1
o , θ 2

o , θ nl
o , θ

p
o with θ 1

s , θ 2
s , θ nl

s , θ
p
s in Table 2b.

We observe a general overestimation of the probability that the second ambulance in the dispatching list
answers a call. Thus, we may conclude that, while the term 1−q is a good estimate of the probability that
an ambulance is idle, (1−q)qz−1 for z > 1 is not a good estimate. Moreover, we observe that, for LI, also
the probability that the first ambulance in the dispatching list answers a call is overestimated.

4.2 PSSM and QTSSM

The results of PSSM are reported in Table 3a. It can be observed that the PSSM provides a significant
improvement in ERT accuracy for all instances. In fact, the ERT to SRT gap is lower than 2.44% for all
small instances, and equal to 5.79% for MI. Nevertheless, the gap is still high for LI and, in this case, also
the PSSM overestimates the probability that the ambulances in the dispatching lists answer a call (Table
3b). The results of QTSSM are reported in Table 4; they are very similar to those obtained with PSSM.
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Table 3: Results of PSSM. Values of q, ERT and SRT at convergence, together with difference SRT −ERT
as percentage of ERT (a). θ 1

o vs θ 1
s ; θ 2

o vs θ 2
s ; θ nl

o vs θ nl
s ; θ

p
o vs θ

p
s (b). Values of ERT and SRT are

expressed in seconds.

q ERT SRT Difference
SI–2 0.43 1479247 1515390 +2.44%
SI–3 0.34 1091123 1112925 +2.00%
SI–4 0.27 860079 872687 +1.47%
MI–12 0.57 10271879 10867120 +5.79%
LI–60 0.57 44472172 50509121 +13.57%

(a)

θ 1
o θ 1

s θ 2
o θ 2

s θ nl
o θ nl

s θ
p
o θ

p
s

SI–2 0.565 0.561 0.205 0.209 0.000 0.000 0.229 0.230
SI–3 0.656 0.654 0.196 0.194 0.070 0.073 0.078 0.079
SI–4 0.726 0.724 0.180 0.176 0.073 0.079 0.021 0.021
MI–12 0.434 0.425 0.224 0.202 0.316 0.347 0.026 0.026
LI–60 0.470 0.409 0.244 0.192 0.285 0.399 0.000 0.000

(b)

4.3 Comparison

We may first observe that all of the three approaches lead to the same exact SRT in SI with 2 vehicles and in
MI. On the contrary, the solutions are slightly different in the other cases. In SI with 3 vehicles, BRM and
QTSSM share the same solution, while PSSM has a higher (worse) SRT value. In SI with 4 vehicles, BRM
and PSSM share the same solution, while QTSSM has a lower (better) SRT value. Finally, all solutions
are different in LI. These differences show that the ALDP makes different decisions depending on the q
value, confirming that overestimating or underestimating q may lead to different system performance, and
that the ERT values may sometimes seem very attractive but unreliable. To confirm this last statement, we
observe that the response time is always underestimated in the optimization, especially for BRM (positive
differences in Tables 2a, 3a, 4a). To conclude, QTSSM solutions are better for two reasons: they have
lower SRT values and the planned ERT is closer to the simulated SRT.

Further analyses are performed to compare the confidence intervals of the parameters extracted from
simulation. Tables 3b and 4b show very similar values (the difference is less than 1% for each parameter).
However, these values are averaged over 500 scenarios. If we consider the variance of the probabilities
over the scenarios, we may observe much higher values for PSSM.

We recall here that, in PSSM, the probabilities are estimated by sampling 400 time instants; thus, the
variance could be reduced by increasing the number of samples, but empirical studies have shown that this
only increases the computational time while the performance would not be better than for QTSSM.

The lower variance of QTSSM has the following relevant advantage: QTSSM is more stable than
PSSM, thus avoiding cases with impaired quality of the solution. To prove that, we have run the two
models several times using different seeds for the simulation. We have observed that the results obtained
by QTSSM are basically the same for each seed, while for PSSM the probabilities slightly change every
time, leading to small differences in the ERT and sometimes causing different ALDP solutions.

In conclusion, QTSSM almost always provides a better solution for the ALDP, both in terms of efficiency
and precision, and it is more stable than PSSM. However, this is not true for LI, where the solution provided
by QTSSM at convergence is worse than the BRM one in terms of SRT. Moreover, the gap between ERT
and SRT is still large. This is why, in Section 5, we propose a fourth approach that aims to overcome the
drawbacks showed by QTSSM in LI, mainly due to the deviation of θ 1

o with respect to θ 1
s .
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Table 4: Results of QTSSM. Values of q, ERT and SRT at convergence, together with difference SRT−ERT
as percentage of ERT (a). θ 1

o vs θ 1
s ; θ 2

o vs θ 2
s ; θ nl

o vs θ nl
s ; θ

p
o vs θ

p
s (b). Values of ERT and SRT are

expressed in seconds.

q ERT SRT Difference
SI–2 0.43 1480670 1515390 +2.34%
SI–3 0.34 1093288 1112726 +1.78%
SI–4 0.27 860188 872638 +1.45%
MI–12 0.57 10283386 10867120 +5.68%
LI–60 0.57 44482173 50508791 +13.55%

(a)

θ 1
o θ 1

s θ 2
o θ 2

s θ nl
o θ nl

s θ
p
o θ

p
s

SI–2 0.566 0.561 0.204 0.209 0.000 0.000 0.230 0.229
SI–3 0.656 0.653 0.196 0.195 0.070 0.073 0.079 0.079
SI–4 0.726 0.724 0.180 0.175 0.073 0.079 0.021 0.021
MI–12 0.434 0.425 0.224 0.202 0.316 0.347 0.027 0.026
LI–60 0.470 0.409 0.244 0.192 0.285 0.399 0.000 0.000

(b)

5 E-QTSSM

We recall that the main assumption of QTSSM is to consider the same busy fraction q for all vehicles. To
evaluate the pertinence of this assumption, we analyze the simulated busy fraction qk of each ambulance
k in QTSSM at convergence. Table 5 shows that the qk values are homogeneous in all small instances,
with a difference maxk {qk}−mink {qk} of at most 0.05. However, such difference increases with the size,
being 0.17 in MI and 0.65 in LI. This qk heterogeneity can be the reason for the observed gap between θ 1

o
and θ 1

s . Thus, to improve the outcomes, we need to tackle this heterogeneity and, in particular, we should
consider the fact that busier ambulances usually serve high-demand areas.

Our first attempt is to replace the average q with a weighted average q, where the weights are given
by the number of calls received by the zones of competence of each ambulance k. In this way, busier
ambulances from zones with higher demands contribute more to q. However, these weights are hard to
compute from the data produced by the simulator. Therefore, as busier ambulances with higher qk serve
high-demand areas and ambulances with lower qk serve more peripheral areas, we adopt a simple yet
effective approach that assigns weights proportionally to qk. Thus, q = ∑k∈K αkqk with αk =

qk
∑k∈K qk

.
Afterwards, we work as in QTSSM, but with q instead of q, i.e., ξz ' Q(|K|,ρ,z)(1−q)qz−1.
We refer to this new approach as Enhanced QTSSM (E-QTSSM). The same criterion for convergence

of PSSM and QTSSM is adopted.

5.1 Results

We report in Table 6 the results of E-QTSSM only for LI, for which QTSSM shows limitations. We observe
that E-QTSSM reduces the ERT to SRT gap, passing from the 13.55% of QTSSM to the 3.80% (Table 6a),
and the deviation of θ 1

o with respect to θ 1
s (Table 6b). Convergence is reached very quickly (after 2 to 6

iterations) also in this case. In the other instances, outcomes are similar between QTSSM and E-QTSSM.

6 CONCLUSIONS

In this work, we implement several optimization-simulation frameworks to solve the ALDP, with the aim
of improving the busy fraction approximation. The goal is twofold: on the one hand, we make the system
more effective by lowering the SRT; on the other hand, we ensure that the model is a correct approximation
of reality by reducing the gap between SRT and ERT.
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Table 5: Simulated qk values of all ambulances k ∈ K at convergence for QTSSM.

List of qk values
SI–2 0.41; 0.46
SI–3 0.34; 0.34; 0.36
SI–4 0.26; 0.26; 0.28; 0.30
MI–12 0.45; 0.50; 0.50; 0.56; 0.53; 0.57; 0.58; 0.58; 0.61; 0.62; 0.63; 0.65
LI–60 0.12; 0.19; 0.24; 0.24; 0.25; 0.26; 0.33; 0.34; 0.35; 0.36; 0.36; 0.36; 0.38; 0.39; 0.39;

0.39; 0.41; 0.42; 0.42; 0.43; 0.46; 0.46; 0.47; 0.50; 0.51; 0.52; 0.53; 0.53; 0.55; 0.55;
0.56; 0.57; 0.58; 0.58; 0.58; 0.59; 0.60; 0.60; 0.61; 0.61; 0.61; 0.62; 0.62; 0.64; 0.65;
0.66; 0.66; 0.67; 0.69; 0.70; 0.70; 0.70; 0.70; 0.72; 0.73; 0.74; 0.75; 0.75; 0.76; 0.78

Table 6: Results of E-QTSSM. Values of q, ERT and SRT at convergence, together with difference
SRT −ERT as percentage of ERT (a). θ 1

o vs θ 1
s ; θ 2

o vs θ 2
s ; θ nl

o vs θ nl
s ; θ

p
o vs θ

p
s (b). Values of ERT and

SRT are expressed in seconds.

q ERT SRT Difference
LI–60 0.53 48627989 50476458 3.80%

(a)

θ 1
o θ 1

s θ 2
o θ 2

s θ nl
o θ nl

s θ
p
o θ

p
s

LI–60 0.420 0.409 0.239 0.192 0.341 0.399 0.000 0.000
(b)

To validate the approach, we have used pseudo-real data inspired from the city of Montréal and the
near suburb of Laval, Québec, Canada, to produce small, medium and large instances. Numerical results
confirm improvements with respect to the initial model (Bélanger et al. 2015), and small gaps between ERT
and SRT. Comparing the proposed approximation methods, QTSSM outperforms PSSM in terms of both
accuracy and efficiency. Moreover, to address large instances where busy fractions are not homogeneous,
we propose a first attempt to deal with different busy fractions, which we have named E-QTSSM. This
new yet simple approach outperforms QTSSM, producing even lower gaps between ERT and SRT and
more efficient solutions with respect to BRM and QTSSM.

Future research work will be devoted to further improve the approach with different busy fractions
and to include a robust optimization approach (Nicoletta et al. 2017) in the ROSA. Moreover, we want to
extend the ALDP to include different priorities associated to the calls.
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