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Emergency service providers are supposed to locate ambulances such that in case of emergency patients
can be reached in a time-efficient manner. Two fundamental decisions and choices need to be made real-
time. First of all immediately after a request emerges an appropriate vehicle needs to be dispatched and
send to the requests’ site. After having served a request the vehicle needs to be relocated to its next wait-
ing location. We are going to propose a model and solve the underlying optimization problem using
approximate dynamic programming (ADP), an emerging and powerful tool for solving stochastic and
dynamic problems typically arising in the field of operations research. Empirical tests based on real data
from the city of Vienna indicate that by deviating from the classical dispatching rules the average
response time can be decreased from 4.60 to 4.01 minutes, which corresponds to an improvement of
12.89%. Furthermore we are going to show that it is essential to consider time-dependent information
such as travel times and changes with respect to the request volume explicitly. Ignoring the current time
and its consequences thereafter during the stage of modeling and optimization leads to suboptimal
decisions.

� 2011 Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction and related work

Emergency service providers are supposed to locate ambu-
lances such that in case of emergency patients can be reached in
a time-efficient manner. Two fundamental decisions and choices
need to be made real-time. First of all immediately after a request
emerges an appropriate vehicle needs to be dispatched and send to
the requests’ site. Ambulances, when idle, are located at designated
waiting sites. Hence after having served a request the vehicle needs
to be relocated (i.e. its next waiting site has to be chosen). For a
close match to reality, time-dependent information for both travel-
ing times and the request volume will be considered explicitly. We
are going to solve the underlying optimization problem using
approximate dynamic programming (ADP), an emerging and pow-
erful tool for solving stochastic and dynamic problems typically
arising in the field of operations research.

In practice simple rules for dispatching and relocation are in
use. In Austria, because of regulatory rules, in case of an emergency
always the closest ambulance will be dispatched. After having
served a request ambulances are supposed to return to their home
base. Using ADP we are going to relax these assumptions and pro-
pose different strategies in order to improve the performance of
the underlying system and its capability to efficiently serve emer-
gency requests. Empirical studies suggest that after for instance a
Y-NC-ND license.
cardiac and circulatory arrest the chances for a resuscitation to
be successful decrease dramatically. Typically chances decrease
by 10% per minute as long as the patient is not treated accordingly.
Providing a quick response to emergency requests is crucial for the
patients’ state of health.

The contribution of this paper is threefold.

(i) We propose a stochastic dynamic model for the ambulance
relocation and dispatching problem, which will be solved
by means of ADP.

(ii) In order to get a preferably accurate model of reality we will
explicitly take into account time-dependent information and
variations with respect to changing request volumes and tra-
vel times, varying throughout the course of the day.

(iii) We are able to improve dispatching and relocation strategies
currently in use.

Different possibilities exist for measuring and evaluating the
performance of emergency service providers. Typically timeliness
is considered as the primary objective. Most performance mea-
sures are related to response or waiting times. In this paper we will
try to minimize the average response time observed. We can show
that it is not necessarily a good choice to always dispatch the clos-
est vehicle available. From a global perspective it does make sense
(whenever the level/priority of the request permits) to send a vehi-
cle that might be slightly farther away. As a consequence the wait-
ing time observed by this particular request will be marginally
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worse. From a global perspective however the remaining vehicles
are located more effectively in order to cover future demands more
efficiently. By making decisions in an anticipatory manner, while
implicitly taking into account the current situation as well as
potential future requests, the performance of the emergency ser-
vice provider can be improved. The algorithm has been tested on
real data form the city of Vienna and has been benchmarked
against two myopic policies traditionally in use.

We are going to show that it is essential to consider time-
dependent information such as travel times and changes with re-
spect to the request volume explicitly. Ignoring the current time
and its consequences thereafter during the stage of modeling and
optimization leads to suboptimal decisions. Furthermore we have
done extensive parameter testing for the proposed algorithm in
use.

In the last decades several location models for the health care
sector have been discussed. Typically these include the optimiza-
tion of the location of ambulance vehicles, such that the population
can be covered (i.e. reached) in case of an emergency effectively.
Most models found in the literature are extensions of the location
set covering model by Toregas et al. (1971) or the maximal cover-
ing location model by Church and ReVelle (1974). Whereas the for-
mer which tries to minimize the number of ambulances in use and
the latter tries to optimize the demand covered using a fixed fleet
size. These are static location problems that do not consider the
fact that resources might become unavailable over time. Also the
routing aspect itself is not yet present. One possibility for tackling
the former concern includes multiple coverage, i.e. demand points
are supposed to be covered by more than one vehicle. Such a mod-
el, called the double standard model (DSM) was introduced by
Gendreau et al. (1997). Their model has been further extended
with respect to capacity considerations by Doerner et al. (2005)
and successfully applied to eight rural provinces in Austria. Other
successful applications of models based on DSM formulations in-
clude Thirion (2006) for Belgium and Gendreau et al. (2001,
2006, 1997), who applied their models to data from Montreal.

Other possibilities for handling vehicles becoming unavailable
include busy functions, where the probability that vehicles might
become unavailable is modeled explicitly (see Daskin, 1983).

Several approaches already have been proposed that handle the
ambulance location problem in a dynamic setting. An extension of
the maximum expected coverage location problem proposed by
Daskin (1983) has been developed by Repede and Bernardo
(1994). Within their paper the authors propose and solve a mul-
ti-period maximum expected coverage location problems with
time-variant travel times and changing fleet sizes. A similar ap-
proach, also taking into account the resulting number of reloca-
tions, has been developed by Schmid and Doerner (2010). A
dynamic model for real-time ambulance relocation has been pro-
posed in Gendreau et al. (2001), where different redeployment sce-
narios are precomputed. Another multi-period model for dynamic
demand environment which minimized the number of ambulances
required while meeting predetermined ambulance availability
requirements has been proposed in Rajagopalan et al. (2008). A
broad overview on different location problems and their applica-
tions in the context of ambulance location problems can be found
in Brotcorne et al. (2003), Laporte et al. (2009).

We will solve the problem at hand using ADP, a very powerful
approach for modeling and solving stochastic and dynamic optimi-
zation problems. Decisions (such as the choice which vehicle should
be dispatched in case of a request, or where the vehicle should be
sent afterwards, etc.) have to be made over time under uncertainty.
Decisions that have to be made now do have an impact on the
future; hence we need to find a way to anticipate their effect on fu-
ture consequences (i.e. the capability of the system to serve future
requests). Due to the well-known curses of dimensionality most
large-scale stochastic optimization problems cannot be solved to
optimality.

For a general discussion of different algorithms related to the
concept of ADP we refer to Powell (2007). Similar concepts exist
in other communities such as control theory (see Bertsekas and
Tsitsiklis, 1996 for an overview on neuro-dynamic programming)
and the computer science and artificial intelligence community
(see Sutton and Barto, 1998 for an overview on reinforcement
learning).

ADP has been applied successfully to resource allocation prob-
lems (see Powell et al., 2001; Godfrey and Powell, 2002a,b) and
large-scale fleet management (see Simão et al., 2009; Powell and
Topaloglu, 2005). For making ambulance redeployment decisions
in a dynamic setting under uncertainty an ADP approach based
on a policy iteration algorithm has been developed by Maxwell
et al. (2009, 2010). In their papers however the authors focus on
redeployment decisions (for idle vehicles) only, while maximizing
the number of calls reached within a given delay threshold. In
Austria however, by law, repositioning idle ambulances (apart
from sending them back to a waiting location) are not allowed.
Hence we try to compensate for vehicles currently being busy
and the systems’ capability to cover future requests by different
dispatching and relocation strategies. Furthermore, in comparison
to our model, they assume travel times and call arrival rates to be
constant over time.

We will give a detailed description of the model in Section 2. A
mathematical formulation for the underlying dynamic and sto-
chastic problem will be provided in Section 3. Our solution ap-
proach, which is based on ADP, will be presented in Section 4.
The obtained solutions and results, as well as some additional in-
sights and evaluations, will be provided in Section 5.

2. Problem description

Requests for emergency transportation only become known at
very short notice. It is important that the system is highly flexible
and robust in a sense that allows to quickly sending vehicles to the
emergency site in cases needed. Hence it is crucial that idle vehi-
cles are located and dispersed throughout the geographic area un-
der consideration such that emergency patients can be reached
quickly. The response time (i.e. the time necessary from the arrival
of the call until the vehicle finally reaches the corresponding loca-
tion) is a common quality characteristic for measuring the perfor-
mance of ambulance dispatching services.

The dispatching process itself can be described as follows. See
Fig. 1 for a graphical representation of the dispatching process.

A request typically arrives by phone and is answered by a dis-
patcher who enters all relevant data into the dispatching system
and, using a predefined set of questions, determines the priority
of the call. The time at which the emergency request r becomes
known to the system is denoted by tr. In case a suitable idle vehicle
is available it will be assigned and it is supposed to set off towards
the corresponding patient location right away (at time ar). The total
dispatching time required (i.e. the time necessary from the arrival
of the request until a vehicle can be assigned) is denoted by dtr.
This time span typically includes the time necessary for inquiring
information concerning the actual incident, identifying an ade-
quate ambulance and typically a setup time required for the crew
to get ready. Ambulances arrive (after driving for ttp

r time units) at
the call’s scene and start their first-aid measures at time sp

r . Service
is completed (after stp

r time units) and the corresponding ambu-
lance leaves the call’s site at ep

r . The ambulance reaches the final
destination (typically a hospital) after additional tth

r units at sh
r ,

where the crew starts to unload the patient and she will be admit
into the corresponding department. We assume that there are no
setup-times required between individual events. For instance that



Fig. 1. Graphical representation of the dispatching and relocation process.
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assigned ambulances are ready to take off immediately after hav-
ing been assigned. The model however could easily be extended
to handle setup times for the crew to get ready before or after
starting the ambulance or serving the patient. See Maxwell et al.
(2010) for a detailed discussion of so called turn-out times.

The hospital where the patient is going to be hospitalized is typ-
ically not left as a choice to the dispatcher, but rather determined
deterministically depending on the location of the emergency, type
of incident and the availability of resources at hospitals nearby.
Service is finally complete after sth

r time units at eh
r , when the vehi-

cle is idle again and can be dispatched to a currently unassigned re-
quest r0 or relocated to a waiting location.

When idle, ambulances have to wait for future requests at des-
ignated waiting locations. In practice, as soon as an ambulance has
dropped off a patient at a hospitals’ site and in case there is no fur-
ther request to be served, a waiting location needs to be chosen
and the ambulance will be sent there. Waiting locations might be
capacity restricted in terms of the maximum number of ambu-
lances that can wait there at any point in time. Please note that
in Austria by law ambulances are not allowed to be repositioned
empty from one waiting site to another one. Hence in order for
the system to be prepared efficiently for serving future request,
an effective redeployment strategy is indispensable.

Our overall goal is to minimize the resulting response times
rr ¼ sp

r � tr for all requests that occur on a given day. The underlying
problem is highly dynamic and stochastic. Emergency requests are
not known beforehand and typically only become known at very
short notice. In case of a request the ambulance service provider
needs to react immediately in order to treat the patient accordingly,
provide them with first aid and take them to hospital. Two different
sources of random information exist. All requests themselves are
random. However time-dependent temporal and spatial distribu-
tion function of request arrivals (i.e. for their interarrival times
and their corresponding location) are assumed to be available. Fur-
thermore the duration of time during which ambulances are
unavailable due to serving a request are highly stochastic. Resulting
service times when picking up a patient stp

r

� �
or dropping him off

sth
r

� �
are random variables themselves, for which distribution func-

tions, which will be estimated from real-data, are assumed to be
available as well. All travel times to the call’s scene ttp

r

� �
, the hospi-

tal tth
r

� �
and back to the waiting site ttw

r

� �
are time dependent, as

speed and the resulting travel times vary throughout the day.

3. Mathematical formulation

In this section we will present a mathematical formulation for
the problem at hand and the underlying dynamics. Basically two
types of decisions have to be made. First of all, in case of an emer-
gency request, the dispatcher has to decide which vehicle should be
sent to the corresponding patients’ site. After having treated the
patient (hopefully successfully) and dropping her off at a hospital
one needs to decide where (i.e. to which waiting location) the vehi-
cle should be sent, as vehicles cannot just stay at the hospital and
wait for future requests. Requests are served based on a first-come-
first-served rule. In the unlikely event that there is no ambulance
available, requests will be placed in a queue and will be served
at a later stage. There are two events that actually trigger a deci-
sion: upon arrival of a request and once a formerly busy vehicle
is available and idle again. Hence decisions can be made at these
points in time only but without loss of generality we assume that
these events are frequent enough. Please note that we allow deci-
sions to be made for any ambulance available, and not just the one
triggering the event.

We will use states in order to capture the current situation of
the underlying system and the dynamics involved. A systems’ state
captures the status and location of all ambulances and pending re-
quests under consideration. A detailed mathematical formulation
and description of the states will be provided below.

In order to make decisions dynamically one needs to compute
or (in our case) estimate the value of being in the current state,
as well as the state resulting from the previous and the corre-
sponding decision. Due to the fact decisions that are made now
have a downstream impact, one needs to anticipate its effects on
future consequences. More precisely in this context dispatching
an ambulance in order to serve a specific emergency request has
a direct impact on subsequent requests that might appear in the
same region or close by.

Let St be the state of our underlying system at time t and xt the
decision taken in t. The contribution (measured in terms of the
resulting response times) earned for taking decision xt when in
state St is denoted by C(St,xt). We could solve the problem using
a myopic policy – and hence ignore the consequences of our deci-
sions taken now – and simply solve,

VtðStÞ ¼ min
xt

CðSt ; xtÞ; ð1Þ

which could be handled by means of mathematical programming
quite easily. Where decision xt would be chosen, which minimizes
the one-period contribution C(St,xt). As a matter of fact however
decisions taken at time t do have a downstream impact and influ-
ence the state of the system in the future and the contribution
earned thereafter. Dispatching and relocation decisions to be made
now indirectly affect the capability to serve future emergency re-
quests appropriately (measured in terms of the resulting response
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times) and the contribution earned thereafter. Any dispatching and
relocation decisions made now will impact the resulting response
time experienced by future requests as well, as the location of
ambulances available may or may not be prepared and allow for a
quick response. The underlying stochastic problem can be formu-
lated using Bellmann’s equation in standard form

VtðStÞ ¼min
xt

CðSt ; xtÞ þ
X
s02S

PðStþ1 ¼ s0jSt; dtÞVtþ1ðs0Þ
 !

; ð2Þ

where S is the set of all feasible states and P is the one-step transi-
tion matrix indicating the probability of ending up in state s0 in the
next time period t + 1 if we are currently in state St and take deci-
sion xt. The one-step transition matrix P is used to compute the
expectation of the value of the state we end up in t + 1. Hence this
equation can be rewritten as

VtðStÞ ¼min
xt
ðCðSt ; xtÞ þ EfVtþ1ðStþ1ðSt ; xt ;Wtþ1ÞÞg; ð3Þ

which is referred to as Bellmann’s equation in expectation form.
The underlying dynamic system evolves over time. We assume

that decisions can be taken at discrete points in time only. Exoge-
nous information (such as the arrival of new requests and their
location respectively, as well as the random outcome of service
times involved when serving a request) may arrive in continuous
time. Thus the problem can be formulated by means of a dynamic
problem.

Ambulances (Resources). At any point in time ambulances are in
one of the following three statii: (i) idle (waiting) at a waiting site,
(ii) currently busy with a serving or driving to a request or (iii) cur-
rently redeployed to a waiting site. Ambulances, when idle, wait at
waiting locations to be dispatched to incoming emergency re-
quests. Once an ambulance has been assigned to a request it is
busy until the patient has been treated accordingly and eventually
has been taken to a hospital. After serving an emergency request
they become idle again and can be assigned to a new request
immediately or redeployed to a waiting location.

The state of a single ambulance (i.e. our resources) in t is given
by an attribute vector at ¼ a1; a2ð ÞT , where a1 and a2 specify spatial
and temporal information accordingly. Depending on the status of
the corresponding ambulance, when idle, a1 captures the current
location, whereas a2 indicates the time since the vehicle has been
waiting there. In case the vehicle is currently busy with serving a
request or currently being redeployed, the attribute vector cap-
tures its destination and the expected arrival time. The set of all
possible ambulance vectors a is captured by A.

The state of all ambulances is modeled using the resource state
vector Rt ¼ ðRtaÞa2A at time t, where Rta captures the number of
ambulances with attribute a in t.

Requests (Demand). Equivalently the vector of attributes for a
service request is captured by b = (b1,b2,b3,b4)T, which captures
its status (b1), location (b2), time it became known (b3) and priority
level (b4). The status of a request might be either pending or
served. Let B be the set of all possible request attribute vectors b.
The number of requests with attribute b in time t is denoted by
Dtb. The demand state vector is given by Dt ¼ ðDtbÞb2B .

The state of the entire system St in t now can be fully captured
by the resource and demand state vector, i.e. St = (Rt,Dt).

Random Information. Let Wt denote the information that be-
comes known during interval t between t � 1 and t. The dynamics
of the stochastic problem at hand can be formulated as follows.
This information includes random changes in the status of our
ambulances (service times might end up to be longer than origi-
nally expected) and the arrival of new emergency requests.

Dynamic Evolution. The transition functions themselves are
straight forward, hence we refrain from providing a more explicit
description of the transition functions involved. We can model
how Rt evolves over time, which is represented using the resource
and demand transition function RM and DM respectively.

Rtþ1 ¼ RMðRt; xt;Wtþ1Þ ð4Þ
Dtþ1 ¼ DMðDt ; xt ;Wtþ1Þ ð5Þ

The state of the system at time t is fully described by St = (Rt,Dt). Its
dynamic evolution over time is modeled in terms of the state tran-
sition function

Stþ1 ¼ SMðSt ; xt ;Wtþ1Þ: ð6Þ

Decisions. The decision xt we are about to make at time t is rep-
resented using xtad, which models the number of ambulances
with attribute a upon with we act on with an elementary deci-
sion of type d 2 D, whereas xt ¼ ðxtadÞa2A;d2D. There exist two
major decision classes for the problem at hand. First, for any gi-
ven request one needs to assign available ambulances to requests.
The set of ambulances currently busy is characterized by the
attribute vectors a 2 Ab

t , whereas a 2 Ai
t (a 2 Aiþ

t , where
Aiþ

t #Ai
t) represents the attribute vectors corresponding to vehi-

cles currently being (just becoming) idle. Let DD be the set of
decisions to assign an ambulance to a request, where d 2 DD rep-
resents the decision to assign an ambulance to a request of type
bd 2 B. Let DR be the set of decisions to relocate an ambulance to
a waiting site.X
a2Ai

t

xtad 6 Dtbd
8d 2 DD; ð7Þ

X
d2DD

xtad 6 Rta 8a 2 Ai
t ; ð8Þ

X
d2DD[DR

xtad ¼ Rta 8a 2 Aiþ
t ; ð9Þ

X
d2D

xtad ¼ 0 8a 2 Ab
t ; ð10Þ

xtad P 0 8a 2 A; d 2 D: ð11Þ

Eq. (7) captures flow conservation constraints on all requests. Any
request can be assigned to at most one ambulance, which is
currently idle. The flow conservation constraints for ambulance
are given in Eqs. (8)–(10). Only vehicles currently being idle (either
at a waiting location, or just becoming idle after serving a request)
can be assigned to requests. Alternatively – in case no assignment
could be found – the latter group of ambulances, it has to be relo-
cated (empty) to a waiting site. No control can be exerted on ambu-
lances currently being busy.

Decision are made using a policy Xp
t ðStÞ, that returns a vector of

decisions xt, that are feasible in state St. The family of all decision
policies is denoted by P. The optimal policy minimizes – dis-
counted by factor c the expected sum of response times over the
given planning horizon, using

min
p2P

E
XT

t¼0

ctCtðSt;X
pðStÞÞ: ð12Þ
4. Solution procedure

Solving the optimization problem given in (12) is usually com-
putationally intractable. Hence we will try to tackle the problem at
hand using ADP. Unlike traditional approaches based on dynamic
programming, ADP is capable to handle high-dimensional state
spaces and allows overcoming the curses of dimensionality typi-
cally prevalent in large scale stochastic optimization problems.

Traditionally, for a finite horizon problem and assuming there
exists VT+1(ST+1) one would solve the problem at hand by means
of classical (backward) dynamic programming, where one would
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compute the value Vt(St) from Vt+1(St+1) by stepping backward in
time. This strategy however would require to evaluate Vt(St) for
all St 2 S. When using ADP however, we do make decisions by
stepping forward in time – in an iterative fashion – by using an
approximate value function. Hence instead of solving Eq. (3) we
would (in iteration n) make decisions by optimizing

v̂n
t ¼min

xt
C Sn

t ; xt
� �

þ cE Vn�1
tþ1 Sn

t ; xt ;Wtþ1
� �� �� �

ð13Þ

throughout a given number of iterations, where v̂n
t is the sample

estimate of the value of currently being in state Sn
t in iteration n

and Vn
tþ1 is the approximation obtained from from all previous iter-

ations (up to iteration n � 1). The sample estimate v̂n
t obtained will

then be used to update the estimate of the value function of being in
state Sn

t using an updating formula such as

Vn
t Sn

t

� �
¼ ð1� an�1ÞVn�1

t Sn
t

� �
þ an�1v̂n

t ; ð14Þ

where 0 6 an�1 6 1 is the corresponding step size.
As stated in Powell (2007) we encounter three curses of dimen-

sionality. First of all the size of our state space grows very quickly,
as the state vector St comes with dimension jAj þ jBj. This issue is
typically addressed as the first curse of dimensionality. The second
curse of dimensionality refers to the size of the outcome space for
the random variable Wt, which is a vector of the same dimensions.
Finally our decision vector xt is dimensioned jAj � jDj. The prob-
lems arising from these three curses of dimensionality however
can be overcome by using aggregation and a slightly different for-
mulation of Bellmanns’ equation around the post-decision state
variable, two approaches that will be described in more detail
below.

Aggregation. In order to handle large state spaces we will use a
concept based on aggregation in order to reduce the size of the
state space. The original problem itself will be aggregated in order
to compute estimates for different states and then disaggregated
back in order to obtain an approximate solution for the original
problem at hand. Aggregation will be used for approximating the
value function only. For modeling the dynamic evolution of the
system the transition functions based on the original state vector
will be used. For the problem at hand we decided to use a spatial
and temporal aggregation. A spatial grid will be used for the geo-
graphic area under consideration, which will be partitioned into
/2

s equal (square) sub-areas. The planning horizon in terms of time
is aggregated in a similar fashion. The length of the entire planning
horizon (i.e. 24 hours) is split into /t sub-intervals. In terms of the
state of the resources only the number of idle ambulances as well
as the number of pending requests in the corresponding sub-areas
within the corresponding time-interval will be considered. Tempo-
ral information, such as the time since those vehicles have been
waiting, will be omitted. The size of the underlying spatial and
temporal grid of course directly impacts the level of aggregation
and the number of the resulting aggregated states. See Section 5.6.3
for a more detailed discussion on the level of aggregation involved
and the resulting consequences.

Post-decision state. Due to the exogenous information process
Wt, which captures the arrival of new requests and their location
respectively as well as the random outcome of the observed service
times, computing the expectation in Eq. (12) or (13) becomes com-
putationally intractable. Rather than computing the expectation
EfVtþ1ðStþ1Þg around the pre-decision state variable St+1, one can
approximate the value function around the post-decision state var-
iable Sx

t . Let Sx
t be the state at time t immediately after we made a

decision (i.e. to dispatch a vehicle, relocate an ambulance or just do
nothing at all), but before any new information becomes known.
By using this post-decision state variable one can reformulate the
transition from St to St+1 using SM,x and SM,W. SM,x captures the tran-
sition triggered by decision xt from state St to Sx

t , the post decision
state, which describes the state of the system immediately after
making the decision but before any new information arrives. The
arrival of new information Wt+1 between t and t + 1 is modeled
by means of the transition function SM,W.

Sx
t ¼ SM;xðSt; xtÞ; ð15Þ

Stþ1 ¼ SM;W Sx
t ;Wtþ1

� �
: ð16Þ

Similarly RM,W and RM,x (DM,W and DM,x) are used to represent the
transition function of the resource (demand) state variables Rt(Dt).

Rather then estimating the value around the next pre-decision
state variable St+1 we try to estimate the value V Sx

t

� �
for the post-

decision state Sx
t . From now on let Vt Sx

t

� �
be the value of being

the post-decision state Sx
t immediately after making a decision in

t, but before any new information arises. Hence, from now on deci-
sions would be made by optimizing

v̂n
t ¼min

xt
C Sn

t ; xt
� �

þ cVn�1
t SM;x Sn

t ; xt
� �� �� �

; ð17Þ

instead of using Eq. (13). Unlike in Eq. (14) the obtained sample
estimate will then be used to update the value around the post-
decision state variable Sx;n

t�1 using equation

Vn
t�1 Sx;n

t�1

� �
¼ ð1� an�1ÞVn�1

t�1 Sx;n
t�1

� �
þ an�1v̂n

t : ð18Þ

By using forward dynamic programming in combination with
the post-decision state variable we can avoid to estimate the
expectation of getting into state St+1 during the stage of optimiza-
tion. By approximating the value function around the post-decision
state we will be able to capture the consequences of decisions ta-
ken now on the future. And most importantly the optimization
problem itself reduces itself to a deterministic problem. See
Ruszczyński (2010) for a more detailed discussion of post-decision
states as a powerful tool in the context of ADP. There are in fact
similarities between Q-learning (see Sutton and Barto, 1998) and
ADP using a post-decision representation of the state variable
(see Powell, 2010).

The strategy outlined before needs to initialize the estimates for
the value function approximation V0 for all states St. By default we
initialize all value function approximations with 0. Computational
tests however have shown that, especially during the first itera-
tions, the performance of the policy induced by ADP starts to dete-
riorate and the systems’ performance is even worse than the one
obtained from myopic or naïve strategies. After further iterations
however the performance finally starts to improve. Myopic strate-
gies, although their decisions are made myopically and their appli-
cability with respect to provide good solutions on a global
perspective is highly limited, tend to produce fairly acceptable solu-
tion. Hence in order to overcome this initial deterioration we
decided to bias the decision process. In iteration n the decision will
be made based in a purely myopic way according to Eq. (1) with
probability e�dn, where d P 0. Otherwise decisions will be made
by optimizing Eq. (17). As a consequence the probability for making
decisions according to the myopic rule decreases according to an
exponential decay as the training phase progresses and finally ap-
proaches 0. See Section 5.6.2 for a detailed discussion of the expo-
nential decay parameter d, biasing the decision making process.

5. Results

In this section we are going to present the results and the per-
formance of the tested algorithm based on ADP. The algorithm has
been tested using real data, which will be presented in more detail
in Section 5.1. The design of the experiments themselves, as well as
the training phase of the algorithm will be described in Section 5.2.
First we are going to compare the results obtained to some bench-
mark policies currently in use (see Section 5.3). In Austria, because
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of regulatory rules, in case of an emergency always the closest
ambulance will be dispatched. After having served a patient and in
case of any other requests to be served, the ambulance is supposed
to drive back to its home base. Moving ambulances around empty
is not allowed. We are going to relax two of these assumptions
and show the consequences in Section 5.4. The presented algorithm
will then be tested given real data (see Section 5.5). A justification for
algorithmic choices such as the step size a and the level of spatial
(temporal) aggregation /s(/t) will be given in Section 5.6. We finally
conclude by providing additional results for potential what-if sce-
nario for a changing fleet size and demand volume in Section 5.7.
Fig. 3. Distribution of requests and hospitals.
5.1. Data

The proposed algorithm was tested using real-world data from
the city of Vienna, the capital of Austria, which is located in the
north-east corner of Austria. Its population amounts to a total of
1.7 million inhabitants, which corresponds to approximately 20%
of Austria’s population. It extends circularly over a total area of
41.5 hectare, with a business district in the very core of the city
and rather residential areas in the outskirt areas.

Real data concerning requests have been collected by Wiener
Rotes Kreuz (WRK), the Viennese division of the Austrian Red Cross,
during a period of two months from October to November 2009
respectively. During 42 working days (data collected on weekends
and during public holidays have been omitted, because the request
volume differs significantly when compared to data from working
days) a total number of 3748 requests had to be answered by an
ambulance, resulting in an average of 89.24 calls per day. Please note
that this request volume does not reflect all emergencies in Vienna.
There are several ambulance service providers, only calls having
been assigned to the WRK will be taken into account. Calls them-
selves were generated from a spatial Poisson process. The probabil-
ity distribution of interarrival times was estimated to come from an
exponential distribution with parameter kt, which depends on the
current time of the day t, with a global mean of 16.14 minutes, reach-
ing its peak – in terms of the resulting request volume – between 10
am and 12 pm. See Fig. 2 for the development of kt over time.

The location of requests was sampled from an estimated distri-
bution function inferred from real data. All requests are supposed
to be of the same priority type and will be served on a first-come
first-serve basis. See Fig. 3 for a graphical representation of the dis-
tribution of requests’ location, where darker shaded areas corre-
spond to areas with a higher volume of emergency calls. It also
shows the location of hospitals and the probability distribution
for the hospital to be chosen, which was also inferred from histor-
ical data. The higher the number of patients that have been hospi-
talized the larger the corresponding symbol. In practice in the city
of Vienna the choice of hospital is not left as a decision to the dis-
patcher, but is rather determined deterministically due to several
Fig. 2. Average interarrival time over course of day (in minutes).
attributes such as the location and type of the emergency request,
the availability of resources at the hospitals and contractual alloca-
tion strategies.

The probability distribution for the time stp
r sth

r

� �
necessary for

serving a patient at the call’s (hospital’s) site was inferred from his-
torical data and was estimated to come from a gamma distribution
with parameters h = 3.57 and k = 6.2 (h = 5.02 and k = 3), with an
average of 22.12 (15.05) minutes respectively. The ambulance ser-
vice provider currently operates 14 ambulance vehicles which can
be located at 16 different waiting locations. A real-world road net-
work from Teleatlas using all streets accessible by car has been
used. The location of hospitals and patients have been geocoded
using their address and have been mapped to the closest junction
on the network. Floating car data was used in order to estimate
time dependent variations in travel time on each link over the
course of time. See Fig. 4 for a graphical representation of the road
network and the location of waiting sites. Due to capacity restric-
tions prevailing at waiting sites at most two ambulances can be
located there at any point in time. This is due to limited space
for accommodating both vehicles and staff members.
5.2. Experiment setup

In order to test the performance of the algorithm based on ADP
the following experiment was conducted. Within a first training
Fig. 4. Road network and waiting locations.



1 According to the independent t-test for unequal variances the difference is
significant for t(39972) = �11.097, p < 0.001.
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phase the algorithm was run for 105 iterations, where any iteration
n corresponds to one single day. Random information (such as the
arrival of new requests, their timing and location respectively as
well as duration of service times) were sampled from the corre-
sponding estimated distribution functions. The step size a was
set to 0.2. The exponential decay parameter d was set to 0.001.
The discounting factor c has been set to 1. The approximated value
functions V0

t ðStÞ were initialized to 0 for all states St. The spatial
and temporal aggregation parameters /s and /t were set to 4
respectively. The initial location of ambulances was determined
by solving a static ambulance location problem (taking into ac-
count average travel times) metaheuristically by means of Variable
Neighborhood Search (see Schmid and Doerner, 2010 for more
details).

In order to show the potential when deviating from traditional
dispatching and relocation rules – and the consequences in terms
of the resulting situation – we have chosen a two-step procedure.
First we are going to evaluate the effects of different relocation
rules. Currently vehicles once empty and idle again are sent back
to their home location. For our algorithm based on ADP however
we are going to relax this assumption. Section 5.3 provides an
overview on the results obtained. Next we will relax the dispatch-
ing rule in addition and also consider other vehicles (such as the
second or more closest idle vehicle) for dispatching. The results ob-
tained can be found in Section 5.4. We can show that relaxing both
assumptions dramatically allows to improve the performance of
the underlying system.

Upon completion of the training phase in the subsequent testing
phase the obtained estimates for the value functions were applied.
The location and timing of requests were taken from real data
(rather than sampled from a distribution) and fed into the algo-
rithm and the performance of the algorithm was evaluated accord-
ingly. The results obtained are reported in Section 5.5.

5.3. Comparison with baseline and random policies

Dispatching is typically done by hand by experienced dispatch-
ers. They have access to a graphical user interface that indicates the
position and status of all ambulances available. Requests are sup-
posed to be served on a first-come-first-served basis. Due to regu-
latory rules, in case of an emergency, always the closest ambulance
available will be dispatched. For now also for the ADP we stick to
this convention and focus on the relocation strategy only. We com-
pare the performance of our ADP algorithm to three myopic poli-
cies. The question at hand now is, in case there is no further
request that could be served immediately afterwards, where (i.e.
to which waiting location) the ambulance should be sent in order
to wait for subsequent requests. According to a highly naïve strat-
egy one could relocate the ambulance to the closest feasible wait-
ing location once it has finished serving a request. According to the
policy currently applied at the emergency service provider, ambu-
lances are supposed to return to their home location. Furthermore
– just for comparison reason – we have also implemented a random
strategy, where the next waiting location for idle vehicles will be
determined randomly. The results obtained are depicted in Fig. 5,
where we show the outcome when sampling 105 days. If not stated
otherwise the presented results are average response times ob-
served within the previous min{n,4000} iterations. Due to the ran-
dom component of the underlying algorithm the results have been
averaged over five independent test runs. According to the current
policy (dashed line in black) the average response time observed is
4.60 minutes. Following the naïve strategy (dashed line in grey) the
resulting average response time amounts to 4.61 minutes. That is
to say that the impact of relocating vehicles to the closest waiting
location (capable of accepting the ambulance in terms of capacity
considerations) around vs. sending them back to their home loca-
tion is negligible. When selecting the waiting locations randomly
(dotted line) the resulting average response time amounts to
5.12 minutes. These variations are due to two facts. First when
selecting the next waiting location in a poor way, the systems
capability to serve future requests is badly impacted. Secondly,
when selecting waiting locations that tend to be far away, ambu-
lances spend a comparatively high fraction of their driving around
empty, while they cannot be dispatched to any incoming requests.
Please note that we assume that only vehicles currently idle and
standing still are available for dispatching. According the policy in-
duced by our ADP algorithm (solid black line) the resulting average
response time however can be decreased to 4.05 minutes, which
corresponds to a decrease of 12.08% on average with respect to
the current policy in use. When taking into account the state of
the system (i.e. the situation from the waiting locations’ point of
view and the number of ambulances currently located there, as
well as time dependent fluctuations in demand, travel time and
the resulting changes in coverage) one can improve the systems
performance dramatically.

Run times however are not an issue. During training phase it
took on average 0.015 seconds per iteration to train the algorithm
based on ADP. The algorithms were implemented in C++. All exper-
iments were conducted on a computer using a Pentium D proces-
sor with 3.2 GHz.
5.4. Always dispatch closest vehicle?

Due to regulatory reasons always the closest vehicle is dis-
patched. For various reasons in case of urgent and life-threatening
calls the closest vehicle should be sent to the patient. For requests
that are not life-threatening by nature however one should defi-
nitely take into consideration to go off this rule, as the resulting
global solution obtained can be improved considerably. The second
or more closest idle vehicle may also be sent without compromis-
ing the patients’ safety and medical situation. Sending another
than the closest idle vehicle obviously leads to a deterioration of
the response time observed by the current patient under consider-
ation. It allows however to improve the situation for potential fu-
ture calls. In order to evaluate the consequences of the choice of
vehicle that should be dispatched we have also allowed our ADP
algorithm to learn which ambulance should be sent to the emer-
gency’s site, rather than just sending the closest one available.
The new results obtained are shown by the thick solid lines in
Fig. 6. By allowing any idle ambulance to be dispatched, obviously
the response time experienced by an individual request could dete-
riorate. On a global perspective however the average response time
decreases from 4.05 (r = 0.34) to 4.01 (r = 0.33) minutes.1 This cor-
responds to a decrease of 12.89% on average with respect to the cur-
rent policy in use.

Especially in the first stage of the training phase (n < 5000), the
performance obtained using a more flexible dispatching rule is
worse. This is due to the fact the algorithm needs additional train-
ing effort when deviating from the traditional dispatching strategy.
Afterwards however (5000 < n < 20000) the learning process
speeds up and in the long run better results can be obtained by
deviating from the traditional dispatching rule and allowing any
vehicle to be dispatched.
5.5. Results on real-data

After training the ADP algorithm the policy (i.e. the approxi-
mated value functions) will be applied to real data. Again the



Fig. 5. Average response time (in minutes) when dispatching closest vehicle.

Fig. 6. Average response time (in minutes) when allowing to dispatch any vehicle.

Table 1
Comparison of different policies on real data w.r.t resulting response time.

Policy Response time (in min)

Average Minimum Maximum r

current 4.35 3.73 5.21 0.52
random 5.04 4.44 5.65 0.32
adp 4.04 3.07 5.02 0.42
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results obtained by our ADP algorithm (as described in Section 5.4,
relaxing both assumptions concerning dispatching and relocations)
are benchmarked against two policies (current, random). Table 1
shows the average response times obtained for these policies
under consideration. The presented values are averages obtained
for all 42 instances, coming from five independent test runs. The
best results are highlighted in bold. The average response time
observed when applying ADP amounts to 4.04 minutes, compared
to 4.35 minutes when applying the current dispatching policy,
which corresponds to an improvement of 7%. Please note that these
figures slightly deviate from the numbers reported in Sections 5.3
and 5.4. The difference however is statistically insignificant.2 This
shows once more that it is crucial to deviate from standard dispatch-
ing and relocation rules. By introducing more flexibility and the
guidance of ADP when it comes to make dispatching and relocation
decision one can dramatically improve the systems’ performance.
This is due to the fact that decisions are made in a proactive fashion,
taking into account the downstream impact on future emergency
calls.

Fig. 7 shows a more detailed representation of the situation dur-
ing the course of the day. Due to time-dependent variations in tra-
vel times and the request volume in term of incoming calls, the
resulting response times vary dramatically. The performance of
the ADP algorithm and the policy currently in use are comparable
during peak hours. It can be seen easily however that especially
during non-peak hours the proposed method improves the solu-
tion obtained. The resulting average response times considered
on an hourly basis can be decreased by up to 0.7 minutes.
2 The average response times observed by our version of ADP for real data are
slightly worse (4.04 vs. 4.01). This difference however is not significant according to
an independent t-test for unequal variances, t(211) = �1.070, p > 0.10.
5.6. Discussion of algorithmic choices

In order to justify the algorithmic choices we have executed
additional test runs to support the parameter settings, such as
the step size and the level of aggregation chosen.
5.6.1. Stepsize
The stepsize a is basically a smoothing parameter used for

updating the approximation of the value functions accordingly
using Eq. (18). We decided to use a constant step size a. After
extensive computational testing setting a to 0.2 has been found
to be a reasonable choice. The stepsize has been varied between
0.01 and 0.95. The results obtained when using various step sizes
are depicted in Fig. 8. The presented results are average response
times obtained within the last 103 iterations after 104 and 105 iter-
ations respectively. The results have been averaged over five inde-
pendent test runs. Choosing a step size a which is too high impacts
the (rate of) convergence. If set inappropriately the algorithm
might not converge at all. After 104 iterations the choice of a still
has an impact on the quality of the solution obtained. After 105

iterations however the algorithm provides more or less stable re-
sults for values of alpha set between 0.01 and 0.5.

Please note that the step size has a significant influence on the
rate of the convergence of the algorithm and the solutions pro-
duced thereafter. Alternatively one could also consider taking into
account deterministic step sizes that decrease as the search pro-
cess progresses or stochastic rules, where the step size would also
depend on the history of the search process itself. We are planning
to investigate the choice of step size in more detail in the future.
5.6.2. Policy’s exponential decay parameter
As stated in Section 4 there are different ways how decisions

can be made dynamically. Our ADP algorithm needs some training
before it is capable of providing satisfying results. We observed
that during the first iterations the strategy proposed by ADP per-
forms even worse than the one obtained from the current strategy.
Hence we decided to bias the decision process itself. Rather than
relying on the value function approximations only, decisions will
also be made by applying the policy which is currently applied
by our manual dispatchers (i.e. dispatch the closest vehicle and
redeploy them to their home base once available again). This al-
lows improving the learning progress. The probability for applying
the current dispatching strategy is exponentially decreasing as the



Fig. 7. Average response time (in minutes) for real data (testing phase).

Fig. 8. Solution quality depending on step size a.

Fig. 9. Solution Quality depending on ADP policy’s exponential decay parameter d.

Fig. 10a. Average response time depending on chosen level of temporal aggrega-
tion /t.

Fig. 10b. Average response time depending on chosen level of spatial aggregation
/s.
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training phase progresses and will be applied with probability e�dn,
where d P 0 and n denotes the current iteration counter.

Fig. 9 shows the results obtained when varying the level of d. The
higher the value of d the lower the probability that decisions will be
taken according to the strategy currently in use. The probability de-
creases exponentially as the training phase progresses, but still pro-
portionally less weight will be put on the current strategy during
the first phase. If d is set to 0 the underlying policy resembles the
strategy currently in use.
5.6.3. Effect of level of aggregation
As outlined in Section 4 the state space is going to be aggregated

accordingly. Value function approximations are estimated for
states on an aggregated level only. This is done by means of both
a spatial and temporal aggregation. Please note that aggregation
will be used for estimating the value function only. For modeling
the dynamic evolution of the system states will be considered at
its original level of detail. The geographic area under consideration
will be partitioned into /2

s quadratic sub-areas of equal size. Empir-
ical tests have shown that the algorithm based on ADP performs
best at a level of /s = 4. Temporal aggregation is done in a similar
fashion, where the planning horizon is split into /t subintervals
of equal length. Computational pre-tests indicate that setting /t

to 4 provides the best results.
More details on the consequences concerning the choice of

these aggregation parameters can be found in Figs. 10a and 10b
respectively. The presented results are average response times ob-
served after 104 training iterations.

5.7. Potential scenarios

In order to test the proposed algorithm and check the feasibil-
ity of the underlying model we conducted several additional
experiments for several what-if scenarios. In particular we altered
the request volume and the fleet size (i.e. the number of ambu-
lances available).

In the investigated time period on average 89 calls requiring
emergency assistance were received per day. In order to evaluate
the systems behavior under a varying request volume, we altered
– ceteris paribus – the average number of calls per day between
50 and 300. Any change in the call volume was assumed to have
a homogeneous impact on the corresponding time-dependent
rates (i.e. a x% increase with respect to the average number of calls
per day was supposed to augment all underlying time-dependent
rates by x% as well). A slight increase in the request volume to
100 results in an increase of the observed average response time



Fig. 11a. Average response time depending on number of requests per day.

Fig. 11b. Average response time depending on available fleet size.
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of 0.6%. An increase to 200 (300) requests per day would – given
the current infrastructure and resources – involve an increase of
the observed average response time of 20.0% and 285.4%
respectively.

With respect to the fleet size in use the following marginal con-
tributions could be observed. The marginal effect of adding two
more vehicles to the fleet of 14 vehicles currently in use results
in a decrease of the average response time observed of 8.99%. If
the fleet size is decreased by two ambulances the average response
time increases by 2.23% accordingly. Once there are only 8 or less
ambulances available the average response reaches a level of 6
minutes or higher.

See Figs. 11a and 11b for additional details.
6. Conclusion and outlook

In this paper we formulate a dynamic version of the ambulance
dispatching and relocation problem, which has been solved using
ADP. Extensive testing and comparison with real-world data have
shown that ADP can provide high-quality solutions and is able to
outperform policies that are currently in use in practice. The aver-
age response time can be decreased by 12.89%. This improvement
is due to two main sources for improvement: the dispatching and
relocation decisions involved. By deviating from the traditional
rule of dispatching the closest ambulance available and relocating
them to their home base after having finished serving a request we
are able to make high-quality dispatching decisions in an anticipa-
tory manner. By explicitly taking into account the current state of
the system we are able to improve the performance thereafter. Due
to regulatory reasons ambulances are not allowed to travel around
empty and to be relocated from one waiting location to another
one in order to response to potentially undercovered areas. But
we are able to compensate for that by locating ambulances after
becoming available again in a reasonable way.

In the future we are planning to include more realistic features,
such as different call priorities, more flexible and realistic dispatch-
ing rules into our model. Different priority levels shall be considered
explicitly with different dispatching rules depending on the severity
of the emergency. Furthermore so far we assumed only ambulances
currently idle and standing still are available for dispatching. We
would like to relax this assumption and also consider ambulances
currently being relocated. By law ambulances are not allowed to
be repositioned from one waiting site to another one. Hence in our
model up to now only vehicles just becoming available after having
served a patient were eligible for being relocated. We are planning to
relax this assumption and allow all idle vehicles located at (or cur-
rently on their way to) a waiting site to be relocated to a (different)
waiting location.

For the algorithm based on ADP we are planning to test other
solution approaches based on bases functions and gradient meth-
ods, besides the pure aggregation approach we have currently
chosen.
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Ruszczyński, A., 2010. Post-decision states and separable approximations are
powerful tools of approximate dynamic programming. INFORMS Journal on
Computing 22 (1), 20–22.

Schmid, V., Doerner, K.F., 2010. Ambulance location and relocation problems with
time-dependent travel times. European Journal Of Operational Research 207
(3), 1293–1303.

Simão, H.P., Day, J., George, A.P., Gifford, T., Nienow, J., Powell, W.B., 2009. An
approximate dynamic programming algorithm for large-scale fleet
management: A case application. Transportation Science 43 (2), 178–197.
Sutton, R.S., Barto, A.G., 1998. Reinforcement Learning: An Introduction. MIT Press.
Thirion, A., 2006. ModFles de localisation et de rTallocation d’ambulances:

Application aux communes en provinces de Namur et Brabant Wallon. Ph.D.
thesis, FacultTs Universitaires Notre-Dame de la Paix, Namur, Belgium.

Toregas, C., Swain, R., ReVelle, C., Bergman, L., 1971. The location of emergency
service facilities. Operations Research 19 (6), 1363–1373.


	Solving the dynamic ambulance relocation and dispatching problem  using approximate dynamic programming
	1 Introduction and related work
	2 Problem description
	3 Mathematical formulation
	4 Solution procedure
	5 Results
	5.1 Data
	5.2 Experiment setup
	5.3 Comparison with baseline and random policies
	5.4 Always dispatch closest vehicle?
	5.5 Results on real-data
	5.6 Discussion of algorithmic choices
	5.6.1 Stepsize
	5.6.2 Policy’s exponential decay parameter
	5.6.3 Effect of level of aggregation

	5.7 Potential scenarios

	6 Conclusion and outlook
	Acknowledgements
	References


