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Abstract. The existing Scientific Data Management Systems (SDMSs)
usually focus on a single domain and the interaction pattern of each sub-
system is complex. What’s more, the heterogeneity and multi-source of
Scientific Big Data (SBD), resulting in a wide variety of databases, scien-
tific devices and functional areas, make the incompatibility and conflict
between system modules inevitable. In this context, the paper focuses on
the design and technology requirements of a multi-domain and sub-role
oriented software architecture. Through integrating multiple databases,
third-party systems and related tools, this architecture realizes both the
storage and the sharing of multi-domain and multi-type SBD. Particu-
larly, this architecture is divided into four independent functional areas
and corresponding roles are designed, which enhances the decoupling
and extensibility of the architecture. In addition, this paper has a for-
mal description of the partition design from the perspective of role.
On this basis, this paper also shows the typical application scenarios
under different roles. The rationality and comprehensiveness of the pro-
posed architecture are proved by describing the architectures design and
technology.
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1 Introduction

The development of instruments and computing facilities leads to the geometric
increase of scientific data, for example, the Large Synoptic Survey Telescope
(LSST) in the field of astronomy generates 15–30 TB raw data every night [9]; the
Large Hadron Collider (LHC) in the field of high energy physics generates 40PB
of experimental data each year [1]. Similar trends have also been observed in life
sciences [3], earth sciences [11], biology [2], and so on. At the same time, due to
the complexity of scientific experiments, SBD often presents the characteristics
of high dimension and complex structure.

In recent years, many institutions have developed varied SDMS for managing
SBD. Sequoia 2000 is a system for studying global change information such as
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environmental pollution and global warming [5], its large capacity, fast storage
engine and visualization tools meet the practical needs of Geoscience; NASA and
IBM have developed Paradise for managing large-scale geographic information
data [4,15], focusing on data storage and processing technologies rather than
data modeling or query; Gray developed SkyServer, a SDMS for SDSS data, to
manage TB scale astronomical images and process data [8]. StoneBraker et al
developed a data management and analysis software system, SciDB, which focus
on the analysis and processing of SBD [12]. Aiming at the complexity of SBD
computation, Apach presents a big data high-performance computing frame-
work, Hama [13], which provides a global synchronous parallel computing model
and a graph model for scientific computing. In China, especially during the 12th
Five-Year Plan, the application of SBD has also made a lot of achievements,
such as the neutrino experimental database and the animal subject database.
In addition, there are a series of big data benchmarks for data testing to better
understand the nature of scientific big data [6,7,10,16].

These SDMSs have played a great role in the management of SBD, but most
of them are oriented to a single field and do not have access to third-party
management systems, which means that there is no common management of
multi-domain data and cross-domain data sharing. In addition, most of these
systems are based on certain types of databases, such as relational databases,
which are easy to use and maintain but cannot satisfy the requirement of stor-
age and analysis, while non-relational databases are easy to extend, however,
when storing and processing SBD, the natural model structure of the data is
often changed, which makes subsequent data management and the development
of corresponding analysis software too complicated. Finally, because of the com-
plexity of the SBD, the interaction pattern of each module is very intricate,
which results in the poor decoupling and expansibility of system, and the mod-
ification of one module may leads to the modification of several corresponding
modules. These deficiencies create obstacles to the wider and more efficient use
of SBD [14].

Therefore, the paper presents a multi-domain and sub-role oriented architec-
ture, and analyses the architecture framework and technology selection from the
technical perspective. In the second section of this paper, the design scheme of
architecture will be put forward. Third section will formalize the role division of
architecture, and describe the communication between roles in the architecture.
The deployment of architecture and the selection of its technical requirements
will be presented in section four. The fifth section will show the typical applica-
tion scenarios of the architecture under different roles. The conclusion and future
work will be given in seventh six.

2 Architecture of Scientific Big Data Management
System

The architecture is consisted of four independent areas (see Fig. 1): Storage and
Access Function Area (SAA), Analysis Function Area (AFA), Query Function
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Area (QFA), and Basic Service Function Area (BSFA). The design and function
of the four areas are independent of each other, and the decoupling of architecture
is achieved by using RESTFul interfaces to integrate these areas.

Fig. 1. Four areas of the architecture

Each areas has its own sub-modules and corresponding components. Figure 2
is the software architecture diagram, showing the internal composition of each
area and interaction with other areas through interfaces. SAA is responsible for
storing various types of SBD to solve the heterogeneous problem. AFA is com-
posed of different scientific experimental tools, which are responsible for carrying
out scientific experiments in various fields. The data in SAA and experiments in
AFA can be queried and visualized in QFA. BSFA provides related functions to
the above areas to maintain the operation of the entire architecture.

SAA is built on various types of databases and distributed file systems to
store assets, including relational and non-relational SBD, algorithms such as data
mining and domain methods, as well as External Asset Management System
(EAMS). In addition, metadata and user information are stored here.

QFA plays a “bridge” role in the whole architecture. In this area, user can
query and visualize the assets. It should be noted that QFA is composed of two
sub-modules: an Asset Manager (AM) and a Visualizer. AM can be viewed as the
“front face” of architecture, it supports a range of asset management operations,
such as asset upload and download, quality testing and sharing setting, etc. The
Visualizer supports the further display of assets through related devices.

Integration between these two sub-modules is accomplished in the following
ways: in order to display asset information, the Visualizer requests the service
“AM-Visualizer” through an interface, which is provided by AM, to get the
assets and import them into chart generator.

AFA focuses on the scientific experimental analysis of assets by using the
integrated methods in the system. The methods here include the special methods
in various fields as well as the general machine learning algorithms. Scientists
should choose the corresponding methods according to their needs to construct
unique scientific experiments.

The fourth area is BSFA. As the base area of the whole architecture, BSFA
provides system basic services and resource management functions to the other
three areas, and maintains the operation of the architecture.
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In the proposed architecture, the interoperability between all four areas is
achieved by using RESTFul Interfaces and related services. AM is the requester
of SAA service “SAA-AM”, which can transfer assets stored in SAA to AM, while
AM integrates operations related to asset management. The assets received by
using service “SAA-AM” can be sent to AFA via the service “AM-AFA”. AFA
is not directly connected to SAA because all necessary assets from SAA needed
for AFA are provided by AM. AFA can also use this service to transfer exper-
imental results to QFA’s Visualizer for visualization. On the other hand, SAA
can obtain assets from EAMS through the service “EAMS”, and these assets
can also be transferred to AM and AFA through the corresponding services. It
should be noted that only users with the same account number in this architec-
ture and EAMS can share assets between EAMS and SAA. BSFA uses “BSFA-
SAA”,“BSFA-QFA” and “BSFA-AFA” services to provide system services and
resource management capabilities to the other three areas.

Fig. 2. Software architecture diagram shows the internal composition of each area and
interaction with other areas through interfaces.

3 Formal Description of Architecture

The description of existing software architecture design is usually non-formal.
In order to have a deeper understanding of architecture, this chapter formalizes
the proposed architecture design from the perspective of role.

3.1 Asset

In the discussion of the architecture design, we will refer to scientific data, algo-
rithm and external system collectively as assets and define them in the form of
triples.
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Definition 1. Asset

A = (data, algorithm, system) (1)

3.2 Component

The concept of a component is defined on top of asset. Component is the basic
unit of the architecture, the system developers usually don’t need to under-
stand the internal structure of the component, but only focus on the interaction
between components. Through components, the architecture can be divided into
multiple interactive subsystems, which enhance the independence, scalability
and decoupling of the system.

Definition 2. Component

C = (A1, · · · , An, S(Ai)) (2)

where i ∈ [1, n], and S(Ai) represents the structures or combinations of assets.

3.3 Interface

The interaction between components is achieved through interface that define
the input and output rules of the component and treat the component as a blank
box, so that users don’t have to care about internal structure of the component.

Definition 3. Interface

Icp,cq = (cp, cq), cq, cq ∈ C (3)

where cp represents the request input component, cq represents the object com-
ponent.

3.4 Role

For the four areas in the architecture described above, each area contains several
components that are functionally similar or grouped together to accomplish a
business logic, and the components within the area can interact with each other.
The interface of a component which is open to outside is called the interface of
that area. This chapter abstracts these areas into four roles, as shown in Table 1.

Definition 4. Role

R = (c1, · · · , cn, S(cj), iin, iout), j ∈ [1, n] (4)

where iin are the interfaces between components within the area, iout are the
interfaces for area interaction outside, also known as the interfaces for that role.
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Table 1. Correspondence of areas and roles

Area Role Function

SAA, QFA Asset owner Uploading and managing assets

AFA, QFA Scientist Conducting scientific experiments

BSFA System operators Providing system basic services

ALL System development Providing development services

3.5 Architecture

Following the design of the architecture in Sect. 2 and the correspondence of
areas and roles, the architecture’s formal description is as follows.

Definition 5. Asset Owner

R(AssetOwner) = (cR, cNR, cF , S(cR, cNR, cF ), iin, iout) (5)

where cR, cNR, cF represent relational databases, non-relational databases and
file systems, which cover most forms of SBD, and

iout = (Request : EAMS,Service : SAA − AM,Request : BSFA − SAA) (6)

represents externally displayed interfaces.

Definition 6. Scientist

R(Scientist) = (Cs, S(Cs), iin, iout) (7)

where
iout = (Request : AM − AFA,Request : BSFA − AFA) (8)

contains all requested services of AFA.

Definition 7. System Operator

R(SystemOperator) = (cBS , cRM , S(cBS , cRM ), iin, iout) (9)

where cBS , cRM are the related components of system basic services and resource
management, and

iout = (Service : (BSFA − SAA,BSFA − QFA,BSFA − AFA)) (10)

represents its externally displayed interfaces.

Definition 8. System Developer

R(SystemDeveloper) = (R(AssetOwner, Scientist, SystemOperator)) (11)
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it shows that the System Developer is a union of three other roles.
Figure 3 shows the interaction between the various roles in this architecture:

asset owners are responsible for providing data, algorithms, and other assets in
various fields, then assets can be scientifically experimented by scientists and
saved in the databases owned by the asset owners; the system operators are
responsible for providing resource management functions, monitoring and secu-
rity measures during this process; the above behaviours are implemented by
system developers using a series of tools, and they could perform activities of
the other three roles.

Fig. 3. Assets and information exchange are achieved through communication among
various roles. This interactive form promotes the operation of the system.

4 Deployment Architecture as an Implementation
of Design

This section describes the integration architecture for the previously defined
architecture. The UML deployment diagram is shown in Fig. 4, which presents
the main components and communication channels between four areas, along
with elements that are used to facilitate communication between these areas.

SAA consists of three different types of databases and one file management
system, all run in Linux OS: Mysql as a storage of structured data, MongoDB
as a storage of unstructured data, gStore as a storage of RDF graph data and
HDFS as a distributed file system. These four components cover almost all kinds
of SBD. Since different types of data are stored in different databases or file
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systems, an adapter named “SAA-QFA Adapter” is required to aggregate the
data so that only one unified access interface is displayed externally, reducing
the inconsistency caused by accessing different types of data.

SAA is also responsible for connecting with EAMS, in this architecture,
EAMS is defined as a material machine learning platform, which uses machine
learning methods to analysis material data. The platform is also connected to
the SAA-QFA Adapter through an interface, so that the assets of EAMS are
consistent with assets in SAA.

Similarly, QFA also consists of two subsystems: Bootstrap as AM, and “Chi-
nese VisCloud” as Visualizer. Bootstrap use a series tools in its framework to
operate assets; “Chinese VisCloud”, a visual cloud platform of Shanghai Uni-
versity, consists of 48 screens on which multiple browser windows can be opened
for cross-screen presentations. Because the data formats between the two com-
ponents are not consistent, it is necessary to configure an adapter “Visualization
Adapter” to exchange data over their respective interfaces.

AFA mainly uses Spark for SBD analysis. As a new generation of distributed
processing framework, Spark’s memory-based computing can speed up the exe-
cution of the algorithms, and it has an excellent machine learning library MLlib,
which can be used as an auxiliary tool for data analysis. In addition, “QFA-
AFA Adapter” can convert data passed from QFA to RDD format for Spark.
Of course, scientists could also use the system integration algorithm to perform
scientific experiments without using Spark.

From the deployment diagram, we can see that QFA connects to the “SAA-
QFA adapter” in SAA through the interface“SAA-QFA Adapter API”, which
eliminates the differences between various types of databases when accessing
assets. On the other hand, AFA connects to Bootstrap through “QFA-AFA
Adapter” and interface“asset provider”, so that AFA can get the asset stored
in SAA. The visualization function of experiments can be directly implemented
through the interface and adapter to show the experimental results to the “Chi-
nese VisCloud” or Bootstrap.

Besides the above three areas, BSFA consists of three components: a Java
security framework, Apache Shiro, which provides security features such as iden-
tity privilege verification and single sign-on for the architecture; a common
resource management system, Apache YARN, which can provide unified resource
management and scheduling for upper-layer applications, its introduction brings
huge benefits to clusters in terms of utilization, unified resource management,
and data sharing; a web-based tool, Apache Ambari, which supports cluster pro-
visioning, management, and monitoring. These functions and services are sup-
ported through the “BSFA Adapter” and“Basic service provider” for other areas.

5 Architecture Application Scenario

This section will demonstrate and illustrate the typical application scenario of
the above architecture under different roles.
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Fig. 4. The UML deployment diagram presents the main components, communication
channels and technological requirements of four areas.

5.1 Conducting Scientific Experiments by Scientists

The main goal of scientists conducting scientific experiments is to make a good
decision by constantly changing the combination of data and algorithms and
observing the experimental results. Scientists often run different script files on
the local machine to combine data and algorithms to form different scientific
experiments. They may also be necessary to obtain corresponding data from
different databases, and it will make the preparation of scientific experiments
very tedious. The architecture integrates various types of data and algorithms in
different fields. From the scientists’ point of view, these assets are the same, and
there is no difference due to storage in different databases. At the same time, the
scientists only need to select the data and algorithms, and fill in the necessary
parameters. It is not necessary to modify and debug the script as before, which
greatly enhances the efficiency and user experience of scientists in conducting
scientific experiments.

Scientists’ process of conducting scientific experiments in the architecture is
as follows: first of all, scientists should register the experimental information,
including experiment name, type, number of steps, running environment, and so
on; afterwards, scientists could freely select the required data and algorithms on
the page, no matter what domains of these assets, and no matter whether stored
in a relational or non-relational database, scientists just need to click the select
and search box; finally, the experiment is started by clicking the “Start Analysis”
button; the results of the experiment will be displayed on the page, scientists
can choose to view and save it. Figure 5 shows scientists’ activity model and the
steps that AFA take in the above process.
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Fig. 5. Scientists’ activity model related to conducting scientific experiments, and the
steps that each area takes in the model.

5.2 Data Quality Detection by Asset Owner

Data is the carrier of information, and the quality of data is of great signifi-
cance to correctly reflect the scientific significance of it and to effectively sup-
port decision-making. On the basis of the above research, this paper adopts the
following data quality detection methods for scientific data: field incompleteness
detection, numerical field detection and data set sampling survey.

The first on is field incomplete detection. The incompleteness of a field is
divided into two cases: unassigned and undefined. Unassigned corresponding
field content is empty, and undefined indicates that the field value is unknown
(NULL). In fact, an empty field is a valid character, and NULL is a special kind
of value, unlike a zero-length string. In this architecture, the above two cases are
treated as incomplete fields.

The second one is numeric field detection. Because most of the scientific
data are numerical, a series of statistical methods are used to check whether the
data are within a reasonable range and the distribution of the data, etc. These
methods include average, inter-quartile, standard deviation, skewness, and upper
and low limit method.

The last one is data set sampling survey. A sample survey takes a small
number of samples, conducts an actual investigation of them, and verifies the
authenticity of the data. Sampling includes simple random sampling, strati-
fied random sampling, cluster sampling, system sampling, etc. Considering the
differences between SBD, simple random sampling is chosen as the sampling
method.



Multi-domain and Sub-role Oriented Software Architecture 121

5.3 Providing System Services by System Operators

While the system operators are responsible for system basic services and resource
management functions, they can view various information during the current sys-
tem runtime, such as system environment variable information, system configu-
ration attributes, operating system information, and file system information. The
system performance information, like CPU utilization (user utilization, system
utilization, and total utilization), memory and swap usage, and network situa-
tion can also be observed. Through the above information, the system operators
could clearly understand the operation of the current system, and could timely
capture the abnormal information for processing.

5.4 Super Administrator for System Developers

In this architecture, the system developers are similar to a super administrator
and have all rights of scientists, asset owners, and system operators. They have
all functions and can perform user management, rights configuration, and other
activities.

6 Conclusion

This paper proposes a software architecture model to manage multi-domain
and heterogeneous SBD. Asset storage, analysis, visualization, and external sys-
tems access are integrated into one architecture through different services which
are implemented by RESTFul interfaces. In addition, this paper formalizes the
design of the architecture from the perspective of role to have a deeper under-
standing of the architecture in the future.

The highlights of the proposed architecture are: (1) Integration of multiple
types of databases and provision of external system access capabilities to manage
and share multi-source heterogeneous scientific data; (2) the role division of the
architecture is proposed to describe the formal definition of each element in the
architecture design; (3) this paper shows the architecture’s typical application
scenarios form the perspective of role, and solves the problems of management
and utilization of SBD to some extent.

In future research, we will use formal, systematic, and standardized evalu-
ation methods to evaluate the proposed architecture. The process of scientific
experiment will be focused to further design and improve the four areas. In addi-
tion, based on the evolution of SBD, the origin and development of data will be
further reflected in the architecture.
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