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Abstract. In life-threatening emergency situations in which every second counts, the

timely arrival of an ambulance can make the difference between survival and death. In

practice, the response-time targets, defined as the maximum time between the moment an

incoming emergency call is received the moment when onsite medical aid is provided, are

often not met. A promising means to reduce late arrivals by ambulances is to proactively
relocate ambulances to ensure good coverage by the available ambulances in real time. This

paper evaluates two dynamic relocation policies that an ambulance service provider in

the Netherlands modified for operational use and implemented in a software tool for real-

time decision support. The policies were used in a pilot program within a dispatch center

for 12 weeks. Based on the success of this pilot, our policies were adopted for ongoing use

and permanent implementation. This paper describes the relocation methods, evaluates

the pilot, provides statistics for efficiency improvements, and discusses the experiences of

ambulance dispatchers and management.
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Ambulance service providers (ASPs) worldwide must

implement policies to improve efficiency, such as bud-

get cuts or performance improvement programs. They

can obtain efficiencies via changes to medical equip-

ment, staff training, and the logistic domain. In this

paper, we focus on the latter. The goal is to allo-

cate the “right resources at the right time at the

right place,” such that the probability of meeting their

response-time targets, within given budget constraints,

is optimized.

The ambulance service provisioning process has sev-

eral stages. When an emergency occurs, a dispatch

center receives an emergency call, typically a 911 or

112 call (Stage 1). During this stage, an agent at the

dispatch center performs triage (i.e., asks the caller

a set of questions to assess the severity of the emer-

gency). If the incident requires ambulance service, the

agent immediately dispatches an ambulance—usually

the closest available ambulance—to the scene of the

emergency (Stage 2). The target response time, defined

as the elapsed time between the moment that a

call comes in and the moment that the ambulance

arrives at the emergency scene, is country specific;

in the Netherlands, the response-time target for high-

emergency calls is 15 minutes. After performing onsite

medical treatment (Stage 3), the emergency personnel

on the ambulance may transfer the patient to a hos-

pital (Stage 4). Upon completion of the patient trans-

fer, the ambulance is available for handling the next

emergency.

The traditional ambulance service provisioning par-

adigm is static and reactive. That is, each ambulance

has a fixed base location (also referred to as a wait-

ing site) from which it is dispatched in response to

an incoming emergency call. When the ambulance be-

comes available again, it is sent back to either its base
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location or to service another emergency. This classic

static and reactive approach to ambulance service pro-

visioning is simple but often highly inefficient, partic-

ularly in situations where multiple emergencies occur

simultaneously, and potentially leads to coverage prob-

lems, the late arrival of ambulances, and ultimately to

loss of lives.

A promising and powerful means to boost efficiency

is enforcing proactive relocations (i.e., proactively relo-

cating ambulances to locations at which they can pro-

vide the “best” coverage to the geographical ambu-

lance region that each ambulance serves). In practice,

one has to carefully balance the trade-off between cov-

erage improvement and additional costs: over time, a

relocation leads to additional fuel costs and wear and

tear on the ambulances. Moreover, ambulance person-

nel are often reluctant to making relocations, unless

they believe the relocations are absolutely necessary.

That is, practitioners accept the enforcement of proac-

tive relocations only if they improve efficiency and

limit the number of relocations. Motivated by these

factors, we developed several algorithms to optimize

proactive relocations; that is, we developed methods

that generate suggestions to the agents (dispatchers)

in the ambulance dispatch centers about when to relo-

cate, which ambulance to relocate, and where to relo-

cate that ambulance. In practice, relocation suggestions

are made by simply displaying an arrow on the dis-

patcher’s monitor; the arrow indicates which ambu-

lance to relocate to which base location. We emphasize

that these arrows only give suggestions for relocations:
the dispatching agent makes the final decision on

whether to enforce a relocation.

To assess the practical usefulness and performance

of our algorithms, we ran a pilot for 12 weeks. In

doing so, we adapted these dynamic relocation poli-

cies so that they complywith local regulations and ease

integration to the dispatchers’ daily practice. In this

study, we partnered with GGD Flevoland, an ambu-

lance service provider (ASP), and CityGIS Homeland

Security, a company that provided us with real-time

data streams and navigation software. Based on the

success of this pilot, GGD Flevoland and other dis-

patch centers adopted our policies for ongoing use and

permanent implementation.

We organized the remainder of this paper as follows.

In the Literature Review section, we review relevant lit-

erature. In the Relocation Policies section, we outline

two relocation policies (and provide more details in

Appendix A). Subsequently, in the Adjustments for Use
section, we show how we adapt these two dynamic

relocation models for use in practice. In the Evalua-
tion section, we discuss the results of the pilot, which

we ran in a real EMS dispatch center to evaluate per-

formance statistics and practitioner experiences. In the

Conclusion section,we provide concluding remarks and

give recommendations.

Literature Review
In general, ambulance allocation and relocationmodels

are classified into two main categories: static location

models and dynamic relocation models; see Brotcorne

et al. (2003), Li et al. (2011), and Bélanger et al. (2015)

for overviews of both types of models.

Early proposed ambulance location models were

integer linear programming (ILP) formulations, such

as the set-covering location problem (SCLP), presented

in Toregas et al. (1971), and the maximum-covering

location problem (MCLP), which Church and ReVelle

(1974) proposed. The goal of the MCLP is to find an

allocation of ambulances to potential base locations to

maximize the demand coverage. However, this model

ignores the probabilistic aspects present in EMS sys-

tems, most notably that some demand points may no

longer be covered once an ambulance is dispatched.

This shortcoming was addressed by incorporating a

busy fraction (i.e., the fraction of time an ambulance

is unavailable) into the MCLP model. The result-

ing model, called the maximum expected covering-

location problem (MEXCLP) and proposed in Daskin

(1983), was one of the first probabilistic models for

ambulance location. Although the MEXCLPmodel has

some limitations, most notably the assumption that the

ambulances are independent, it is still widely used as

starting model, which can be extended. For example,

in Batta et al. (1989), the hypercube correction factors

proposed in Larson (1974) were incorporated in the

MEXCLP model to relax this independence assump-

tion. In Erkut et al. (2008), the MEXCLP model is

extended to a model that incorporates survival proba-

bilities and probabilistic response times.

Static location models do not explicitly consider the

state of the system following events, such as a change in

the availability of an ambulance (when an ambulance

has been dispatched or completed servicing a patient),
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the arrival of an ambulance at the scene of an emer-

gency, or the departure of an ambulance for a hospital.

In contrast, relocation executed in real time is the topic

of many papers in the literature on dynamic models.

In this literature, one can distinguish offline and

online models. Offline models, which can be solved a

priori, generate a look-up-table-like solution. Such a

table provides a redeployment strategy for each pos-

sible system state. If the system state is described

by the number of available ambulances (i.e., ambu-

lances not busy with patient-related matters), such a

table is called a compliance table. This table indicates

the ideal locations for each possible number of avail-

able ambulances. Examples can be found in Gendreau

et al. (2005), van Barneveld (2016), and Sudtachat

et al. (2016).

Other offline dynamic models, not related to com-

pliance tables, include the approximate dynamic pro-

gramming (ADP) approaches proposed in Maxwell

et al. (2009) and in Maxwell et al. (2010). In these

papers, an approximate policy iteration is run offline to

search for a good value function approximation. Once

such a value function is obtained, the computation of

a redeployment decision is fast and can be executed in

real time. The computation of relocation and dispatch-

ing decisions by ADP is also the subject in Schmid

(2012). Examples of other methods include stochastic

programming (Naoum-Sawaya and Elhedhli 2013) and

simulation-based optimization (Bjarnason et al. 2009).

In online models, no precomputation is executed.

Based on the system state, a relocation decision is com-

puted in real time, without using the results of an a

priori computation. The first online relocation model,

based on the double-standardmodel of Gendreau et al.

(1997), is proposed in Gendreau et al. (2001). A tabu

search heuristic and parallel computing are used to

solve the relocation problem. Andersson and Värbrand

(2006) use the notion of preparedness in the compu-

tation of redeployment decisions. Finally, our work is

based on two online relocation models in Jagtenberg

et al. (2015) and van Barneveld et al. (2016). These two

policies have in common that they consider all rede-

ployment options, compute a heuristic value for the

benefit of each movement, and eventually propose the

move with the best value. The policies differ, however,

in how they define the value for a specific movement

and handle the statuses of ambulances.

Few of the dynamic relocation policies described ear-

lier have been implemented in practice. To our knowl-

edge, only one company, Optima Corporation, had

implemented repositioning models prior to the study

we describe in this paper. It developed a commercial

software package, Optima Live; however, because this

package is commercial, all its details are not available to

us. One feature that has been published is that Optima

Live uses the real-time multiple-view generalized-

cover repositioning model from Mason (2013). Other

work that the Optima Corporation supports is pre-

sented in Richards (2006) and Zhang (2012); the latter

includes more details on the software.

Relocation Policies
In our pilot, we tested two relocation policies in prac-

tice: (1) the dynamic maximum expected coverage location
problem (DMEXCLP), and (2) the penalty heuristic (PH).

The DMEXCLP policy, which is proposed in

Jagtenberg et al. (2015), mandates that when a vehicle

becomes idle after completing service for a patient, that

vehicle goes to the base location of choice within the

region. This choice is made such that it maximizes

the number of emergencies that are addressed within

the response-time threshold, with an objective func-

tion and constraints similar to MEXCLP. We provide a

full description of the DMEXCLP relocation policy in

Appendix A.1.

The PH policy, which is proposed in van Barneveld

et al. (2016), consists of two steps performed in sequen-

tial order. In Step 1, it computes the desired ambulance

configuration (i.e., the distribution of the number of

idle ambulances over the base locations). In the com-

putation of this configuration, it uses the unprepared-

ness of each demand point (i.e., a reachability mea-

sure based on the response time of the closest available

ambulance)—that the ambulance that can arrive at the

emergency the quickest has the lowest unpreparedness

score. The objective function of the policy minimizes

the region-wide weighted unpreparedness. In Step 2, it

calculates the actual movements of ambulances needed

to reach the “desired configuration” (determined in

Step 1) in a minimal time, starting at the current con-

figuration. The set of movements may include the use

of chain relocations; that is, a limited number of simul-

taneous relocations are executed to achieve the desired

configuration in minimal time. Appendix A.2 shows a
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summary of the DMEXCLP relocation policy. In Ap-

pendix A.3, we compare the two relocation policies.

Adjustments for Use
The two relocation models previously described can-

not be used in practice without modifications. During

the implementation phase, we encountered a number

of practical constraints that required us to modify the

models to ensure they are applicable to an operational

dispatch center. This section describes the adaptations

we made. Appendix A.5 includes an in-depth descrip-

tion of these adjustments; however, prior to the imple-

mentation, we had to determine which input parame-

ters to select for the pilot study.

Input Parameters in the Original Models
We discussed the policy input parameters with ASP

management, including discretization of demand, and

which base locations and chain relocation settings to

select. These input parameters are the same for both

policies.

Discretization of the Area in Demand Nodes. Both the

DMEXCLP and the PHmodels assume that the service

area is discretized and partitioned into, for example,

N subareas (i.e., demand nodes). Thus, the next incident
will occur at exactly one of these demand nodes; the

probability that the next incident will occur at node i is
denoted by a vector of probabilities pi (i �1, . . . ,N) that
sum up to 1. Thus, the demand location is modeled by

a vector (p
1
, . . . , pN), which can be estimated or forecast

based on historical data. For both policies, we aggre-

gated to four-digit postal code numbers, each with an

average of 4,000 inhabitants, and used the normalized

number of inhabitants as the demand.

Base Locations and Travel Times. Both policies re-

quire information about the locations (i.e., the nodes)

of the existing base locations, and the expected driv-

ing time between each base location and each demand

node. Based on discussions with ASP management,

we decided to only use the base locations, and we

excluded relocation destinations that dispatchers used

only occasionally (e.g., parking lots). Driving times

between base locations and nodes were all precalcu-

lated and available in a database. We used navigation

software to calculate the driving times from ambu-

lances that were available but not located at a base

location.

Chain Relocations. In discussions with dispatchers

and management, we determined that a relocation

chain may contain at most two simultaneous ambu-

lance movements, and that we would use such a chain

only when we could ensure a relocation duration gain

of at least 10 minutes. When multiple relocation chains

are possible, we use the one with the minimal reloca-

tion duration; see Appendix A.4.

Adjustment Series 1
In the implementation and system integration stage of

the pilot, we had to make four adjustments to the orig-

inal models to simplify the dispatchers’ daily work.

First, we extended the DMEXCLP policy with chain

relocations similar to the PH policy, which is a fairly

straightforward process.

Second, we realized that the theoretical definition

of relocation and the definition used in practice were

different. In the theoretical policies, every ambulance

that finishes a call receives a relocation instruction back

to a base location. In practice, every ambulance has a

default location to which it returns when it becomes

available. Because entering a relocation requires dis-

patcher time and effort, and because the dispatcherwill

more willingly accept the relocation module’s recom-

mendation when it is in accord with the ASP’s histor-

ical procedure (i.e., the procedure the ASP has used

for many years), we changed the original policies to

respect that all ambulances have historically defined

default behaviors. Each shift has a default base location

assigned.We assume that all available ambulances that

are not actively performing a relocation must move to

their default base location. For example, the D1 shift

has as default base location, Dronten, and its hours are

defined as 07:30 am to 16:30 pm. When an ambulance

becomes available or when its shift starts, we assume

that the vehicle moves to this base location. After

16:30 pm, we label this ambulance “in overwork.” Only

when a dispatcher enters a relocation for an ambulance

with the D1 shift into the system, the destination of

that ambulance changes based on the information the

dispatcher has entered.

Third, if the ambulance region is in a rural area, some

shifts include a sleeping stage. During a night shift,

the emergency medical technicians (EMTs) are allowed

to sleep and may only be contacted when they are

assigned to an incident. Hence, EMTs who are sleeping
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cannot be relocated, and assigning another ambulance

to a base location at which they are sleeping is also pro-

hibited. Base locations that are located in cities include

some night shifts during which these emergency per-

sonnel must stay awake.

Fourth, we added decision moments at which a

new relocation could be proposed. The DMEXCLP pol-

icy had only one decision moment: when an ambu-

lance became available again, it should be optimally

included in the fleet (i.e., optimal with respect to the

objective function of the chosen policy). Discussions

with the ASPmanagement motivated us to include five

additional decision points, which we list later, to these

policies. These decision points are used in both poli-

cies, but only at the moments that relocation decisions

are made.

1. Start of shift: EMTs contact the dispatch center

when they start their shifts, and a dispatcher assigns

the employees to ambulances and also specifies shift

codes. In practice, ambulances, EMTs, and shifts are

coupled as units, and can therefore be considered as

interchangeable for the purposes of our work. When

the dispatcher has completed entering a new shift into

the system, the relocation module is activated. In the

DMEXCLPmodel, the ambulance to which a shift code

has just been assigned will be the origin of the reloca-

tion proposal.

2. End of shift: A shift can end in one of two ways.

The most common way is when the scheduled end

time of the shift is reached. In the case of overtime

(i.e., an EMT has exceeded his (her) scheduled num-

ber of working hours), the relocation module excludes

all vehicles on which the EMTs are working overtime,

because they cannot be dispatched to a new emergency.

Alternatively, a dispatcher can manually end a shift.

3. Ambulance dispatch: When an ambulance is cou-

pled to an incident, the relocation module proposes a

new relocation.

4. Ambulance availability: When an ambulance is cou-

pled to an incident, the relocation module updates its

relocation proposal.

5. Relocation entry into the system: If an ambulance

receives relocation instructions, the relocation module

is updated with the new instructions. If the dispatcher

follows the relocation proposal, as he (she) usually

does, the system assumes that the optimal configu-

ration has been achieved and does not provide any

additional recommendations. Therefore, the relocation

arrows on the dispatcher’s monitor disappear. If a dis-

patcher makes a different relocation decision, the relo-

cation module considers the relocation entered and

generates a counterproposal (i.e., another relocation).

6. Sleep interval beginning: When a sleep interval

starts, all EMTs who are allowed to sleep go to their

assigned night bases, and other EMTs who do not

have permission to sleep are requested to leave all base

locations where colleagues will go to bed. We model

this by sending all these ambulances back to their

default bases. Consequently, a new relocation recom-

mendation is calculated to optimally redistribute the

ambulances.

Adjustment Series 2
After the first six weeks of policy evaluation, we dis-

cussed updates that would improve the performance

and could be implemented within a week. One update

addressed ambulances that are outside the ambulance

region.

In some cases, EMTs on an ambulance must drive

a patient outside their ambulance region and for mul-

tiple hours; for example, a patient that needs basic

life support (BLS) might require transportation to a

hospital that has that medical specialization. When

the ambulance becomes available again, the previ-

ous adjustment includes the current destination of the

ambulance. Using coordinates to determine when the

ambulance reenters its own region is difficult. There-

fore, we use the navigation software to determine if

a base location is within a 20-minute drive from any

base location in its own region. If we do not find such

a base location, we label the ambulance as “outside the

region.” When the ambulance is within a 20-minute

drive from any base location within its region, the

ambulance is marked as “inside the region,” and the

relocation module is updated to show that this ambu-

lance is available.

Technical Details
We wrote the relocation module using the C++11-

framework, TIFAR, which is an interface designed for

ambulance research. CityGIS Homeland Security pro-

vided the navigation software and the communica-

tions interface for the system state we designed for

this paper, which includes the location and status of
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each ambulance. This navigation software is the stan-

dard for emergency services in the Netherlands and

includes all roads and travel speeds that EMS per-

sonnel use. The National Institute for Public Health

and the Environment (RIVM), which also uses this

navigational software, provided a look-up table for

travel times between each pair of postal codes. Statis-

tics Netherlands (CBS) provided demographic data

for each postal code during the year 2013. The ini-

tial start-up of the program takes between 10 and 20

seconds because of cache creation; the program usu-

ally computes run-time relocation recommendations

almost instantaneously—but sometimes may take up

to a few seconds if other systems also require process-

ing time from shared resources.

Evaluation
We evaluated both policies for six weeks in the dis-

patch center of Flevoland, a Netherlands’ ambulance

region. Table 1 lists the various stages. In the first stage,

we tested the adjusted DMEXCLP 1 policy for three

weeks, spent a week switching policies, and then eval-

uated the Adjusted Penalty Heuristic 1 (PH 1) for three

weeks. During the next week, we implemented and

tested the Adjustment Series 2 for both policies. Dur-

ing the second half of the pilot, we evaluated three

weeks of Adjusted DMEXCLP 2, one week of switch-

ing policies, and one week of Adjusted Penalty Heuris-

tic 2 (PH 2). In this paper, we omitted data for the

three weeks during which we switched policies (i.e.,

weeks 39, 43, and 47).

During the pilot, dispatchers were required to follow

our relocation proposals, unless they had information

not available to the system; examples include when an

Table 1. The Stages of the Pilot in 2015 Are Listed with

Their Corresponding Week Numbers

Stage Week no. Policy

1, . . . , 35 Implementation and system integration at

dispatch center

1 36, 37, 38 Evaluating Adjusted DMEXCLP 1

39 Changing the policy

2 40, 41, 42 Evaluating Adjusted PH 1

43 Fixed out of region ambulances

3 44, 45, 46 Evaluating Adjusted DMEXCLP 2

47 Changing the policy

4 48, 49, 50 Evaluating Adjusted PH 2

Table 2. The Performance and Volume That ASP

GGD Flevoland Achieved from 2010 Through 2015

Year 2015 2014 2013 2012 2011 2010

Call volume 24.136 23.337 22.459 22.427 21.521 20.884

Response time ≤ 15 95 94 94 93 93 92

minutes (%)

High-urgency volume 10.288 11.006 9.863 10.707 10.245 9.534

ambulance will be required for a BLS call in the near

future or when a shift will end. In 2015, no policy or

operational changes were made, other than the use of

the relocation decision support software.

The pilot evaluation of the dispatching policies

included both quantitative and qualitative aspects, as

we discuss below.

Quantitative Analysis
We start the quantitative analysis by analyzing long-

term patterns. Table 2 shows the results over 2015,

which GGD Flevoland provided, and the preceding

five years (see Boers 2015). As the table shows, the

total call volume increased by 3–4 percent per year,

which is approximately the national average; 2013 was

the only exception. The primary performance indica-

tor for Dutch ambulance care is the percentage of late

arrivals for high-urgency calls. Measured over the cal-

endar year, Dutch ambulance law requires that for

high-urgency calls each ASP must meet a response-

time requirement of 95 percent of the calls within

15 minutes; the timer starts when a representative at

the regional EMS dispatch center answers the tele-

phone and stopswhen an ambulance arrives at the inci-

dent. Various improvements by GGD Flevoland have

provided a steady increase of performance over the

past years.

In 2014, only 7 of 24 ambulance regions met this

requirement; thus, a national average of 93 percent

of high-urgency calls was met on time (Boers 2015).

In 2015, the year of this pilot, GGD Flevoland met the

95 percent on-time criterion for the first time in its

history.

GGD Flevoland provided us with a database that

includes details of call records; this enabled us to

calculate the performance indicators that we list in

Table 3. Analyzing the four stages yielded the follow-

ing insights.
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Table 3. Overview of the Three Key Performance Indicators

for Each of the Four Pilot Stages and the Three-Week

Average for 2015 Before the Pilot Began: The Fraction of

Late Arrivals at High-Urgency Calls, the Number of

High-Urgency Calls in Three Weeks, and the Number

of Relocations

Stage Before 1 2 3 4

Response time ≤ 15 minutes (%) 94.4 97.2 97.3 96.0 96.8

High-urgency volume 579.2 596 619 668 682

No. of relocations 422.3 480 353 360 328

First, in all stages, we met 96.0–97.3 percent of the

high-urgency calls on time, significantly exceeding the

95 percent requirement. Thus, the results we obtained

during the pilot period compensated for the lower

score of 94.4 percent achieved during the first months

of the year; as we previously state, this was the first

year that GGD Flevoland met the legal response-time

requirement.

Second, in the first stage, the dispatch center fol-

lowed all of our relocation proposals, which resulted

in 480 relocations in a three-week period; histori-

cally, approximately 420 relocations are normal for

this ambulance region. Based on feedback we received

and follow-up discussions with the EMS management,

we determined that we would have to assign a lower

bound on the contributed value of relocation (i.e., the

improvement on the objective function of the cho-

sen policy). We omitted relocations that provide a

lower contributed value. Because the EMTs went on

strike during the final three stages, thus causing a

data transfer delay of several months, we could only

directly adjust the bound after the first stage. The

results show that we significantly reduced the number

of relocations.

Third, we see that performance in the third and

fourth stages was worse than in the first two. We can

explain this by the increase in high-urgency call vol-

umes and the decrease in the number of relocations.

Finally, the number of ambulances remained almost

constant over the last six years. An additional ambu-

lance was provided in 2013 only, resulting in a total

of 14 ambulances during the day. With an increase in

call volume, a decrease in the number of relocations,

an equal number of ambulances, and an increased frac-

tion of on-time arrivals, we can conclude that our work

resulted in more efficient relocations.

Qualitative Analysis
We observed that the dispatchers adopted our reloca-

tion proposals as much as they could. To accommo-

date legislation limitations or an approaching end of

shift, or for another valid reason, they were allowed to

ignore our relocation proposals. If a dispatcher decided

to enforce relocation, it always matched our reloca-

tion proposal. In the feedback that dispatchers gave

us, they mentioned that the relocation proposals often

coincided with their own insights. In some instances,

our policies were counter to the dispatchers’ intuition;

however, when they applied our policies, they agreed

these policies were better than their former ways of

working (e.g., by intuition). Based on the new insights

from our work, they have changed their daily routines.

Other than the situations we discuss below, we are not

aware of instances in which dispatchers strongly dis-

agreed with our proposal.

At the start of the pilot, some dispatchers did not like

the concept of a relocation tool, which they believed

would tell them how to perform their work. Their opin-

ions changed during their weeks of use, and the dis-

patchers realized that the tool was supporting them—

not controlling their work. Dispatchers always had the

final say in each relocation decision. At the completion

of the pilot, they rated their overall user experiences as

very good.

In their previousmethod of working, the dispatchers

used a small offline relocation look-up table, which told

them where the first 5 ambulances, of the 13 available

during the day, had to be positioned. This left many

degrees of freedom for the dispatcher. Our relocation

tool put in place a uniform policy that depends less on

human decisions, ensures that the relocation decision

is not dispatcher dependent, provides good coverage,

and improves communications among the ambulance

teams. Although during the first stage of the pilot, the

EMTs told us that there were too many relocations, in

the later stages, because of the low number of relo-

cations, they sometimes asked if the pilot had been

terminated early and the system implemented in pro-

duction mode.

In situations with many concurrent incidents, dis-

patchers know that the priority is communicating

medical information to the healthcare professionals;

because of this necessity to communicate, relocations
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have a high added value in ensuring optimal cover-

age. Another advantage of a relocation tool is that it

reduces the time required to provide a relocation when

the dispatcher is time constrained and under stress.

Using our software, the dispatchers could see the

location of all available ambulances projected on one

map. They were not given unnecessary information,

which could cloud their ability to make decisions. It

gave them a good overview of ongoing incidents and

the status of the ambulances; in some situations, dis-

patchers were not able to determine the location and

status of an ambulance prior to looking at our screen.

Ambulance service is a field where the logistic

requirements change constantly. The causes include

demands from local governments, agreements be-

tween neighboring ambulance regions, and new ambu-

lance-management insights. Using a relocation tool

provides an opportunity for management to modify

the way that dispatchers work.

The dynamic ambulance management (DAM) poli-

cies mentioned in this paper leave room for improve-

ment. Working-hour legislation dictates that employ-

ees on 24- and 16-hour shifts may be working 13 hours

and 9 hours, respectively. During the remainder of the

time on these shifts, they must relax at their home base

locations. Our implementation does not address these

issues; hence, the dispatcher must ignore some reloca-

tion proposals. Only a few locations have shifts of this

length.

The implementation does not ensure that an ambu-

lance is back at its home location when its shift ends.

Dispatchers using our software must always keep this

in mind. A fairly straightforward solution that the dis-

patchers use is to instead send another ambulance that

has sufficient remaining shift time and is also avail-

able at the same base location as the ambulance that

the software suggests. We noticed that overtime by the

ambulance teams did not increase during the pilot.

Conclusion
In this study, we put two dynamic ambulance-man-

agement policies into practice at an EMS dispatch cen-

ter in Flevoland, an ambulance region in the Nether-

lands. We observed that the effectiveness of relocations

improved when using a dynamic relocation policy,

compared to previous years in which relocation algo-

rithms were not used. One advantage we perceived

is less latency, that is, the number of service calls for

which the response time exceeds the threshold set, for

a similar demand volume and number of relocations.

The EMS region met the response-time requirement of

95 percent within 15 minutes for the first time in its

history in 2015. The results indicate that both DAM

policies perform comparably.

Other advantages are: (1) all dispatchers work in a

consistent way, (2) relocation decisions can be made

faster during busy times at the dispatch center, (3) new

policies can be introducedmore rapidly, (4) dispatchers

have a better overview of the available ambulances,

and (5) the use of scientifically proven policies instead

of dispatcher intuition improves efficiency and enables

management to provide better oversight.

Overall, the advantages of our policies strongly out-

weigh the disadvantages. Our implementation does

not address the start and ends of shifts, or working-

hour legislation; each would be an appropriate topic

for further research. As a result of this study, however,

multiple ASPs have adopted our policies for ongoing

use and permanent implementation.
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Appendix A. Outline of the Original
Relocation Policies

This appendix describes the two relocation policies that we

tested in practice. In Appendix A.1, we discuss the DMEX-

CLP policy proposed in Jagtenberg et al. (2015), and in Ap-

pendix A.2, we discuss the PH policy proposed in van Barn-

eveld et al. (2016). We compare the two relocation methods

in Appendix A.3. Appendix A.5 provides details on how we

modified the two methods for use in a real environment.

A.1. DMEXCLP
The DMEXCLP policy moves an ambulance when it becomes

idle after having completed service for a patient, and directs

it to a base location of choice within the region. Its sole

objective is to maximize the number of incidents that are

addressed within the time threshold. We first describe which

www.ggdflevoland.nl
www.citygis.nl
www.rivm.nl
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Table A.1. Overview of the Variables Used Most Frequently

in This Paper and the Meaning of Each

V The set of demand points.

W The set of base locations, W ⊆ V .

T The time threshold.

di The fraction of demand in i, i ∈V .

τi j The expected driving time between i and j with siren

turned on, i , j ∈V .

ni The number of idle ambulances that have destination i,
i ∈W .

aspects of the current state of the ambulance system should

be used as input for the policy, and then we explain how to

make the relocation decision based on this input.

At a decision moment, the current state of the ambu-

lance system may be observed. The DMEXCLP policy disre-

gards all information about ambulances that are busy, and it

focuses purely on the set of idle ambulances. As we mention

above, it uses the destination of the ambulances, rather than

the actual location. For ambulances that are idle at a base,

the destination equals the current location. This information

is captured by the variables ni : the number of idle ambu-

lances that have destination i (i ∈W). Table A.1 provides an

overview of the notation.

We next describe how the DMEXCLP algorithm computes

the recommended relocation based on the previously de-

scribed information. In some sense, we can regard this policy

as a dynamic version of the maximum expected covering

location problem—hence, its name. MEXCLP was designed

to calculate an optimal static distribution of ambulances over

base locations, by calculating the coverage of the region using

an integer liner programming (ILP) formulation. The DMEX-

CLP policy reuses this definition of coverage, but it computes

it for relocation purposes (without resorting to ILP solvers).

The MEXCLP, as published in Daskin (1983), defines the

coverage of a region in terms of a busy fraction, which it

denotes as q. The busy fraction can be estimated by dividing

the expected load of the system by the total number of avail-

able ambulances. This busy fraction is predetermined and is

assumed to be the same for all vehicles. Furthermore, vehi-

cles are assumed to operate independently. Consider a node

i ∈ V , which is within the range of k ambulances. Using the

expected travel times τi j , i , j ∈ V , we can directly determine

this number k. The travel times should be taken as estimates

for movements, which are faster because ambulance sirens

are on. The probability that at least one of these k ambu-

lances is available at any point in time is then given by 1− qk
.

If we let di be the demand at node i, the expected covered

demand of this vertex is Ek � di(1− qk). The MEXCLP policy

positions the ambulances in such a way that the total max-

imal expected covered demand, summed over all demand

vertices, is reached.

The DMEXCLP policy proposes to send the ambulance

that just became idle to the base, such that this allocation

results in the greatest coverage according to the MEXCLP

model. This is equivalent to choosing the base that gives the

largestmarginal coverage over all demand. This marginal cov-

erage can be interpreted as the added value of having a kth
ambulance nearby and is given by Ek − Ek−1

� di(1 − q)qk−1
.

The base that gives the largest marginal coverage over the

entire region, and hence the destination that DMEXCLP pro-

poses, can be expressed as follows:

argmax

w∈W

∑
i∈V

di(1− q)qk(i ,w , n
1
,...,n |W | )−1 · �(τwi ≤ T), (A.1)

where

k(i ,w , n
1
, . . . , n |W |)�

|W |∑
j�1

n j · �(τ ji ≤ T)+ �(τwi ≤ T). (A.2)

Here, � denotes the indicator function. The expression for k in
Equation (A.2) simply counts the number of idle ambulances

that have a destination within the range of demand point i,
assuming that the ambulance that is up for relocation will be

sent to w. That is, it counts the number of ambulances that,

in the near future, may respond in a timely manner to an

incident in i. Because the number of base locations is typically

small, we compute the maximization in Equations (A.1) and

(A.2) by brute force (i.e., we iterate over all possible base

locations and select the best location).

A.2. Penalty Heuristic
In this section, we summarize the penalty heuristic proposed

in van Barneveld et al. (2016). The policy consists of two

sequential steps. First, we compute the desired ambulance

configuration (i.e., the number of idle ambulances per wait-

ing site). Next, we assign ambulances to the desired waiting

sites according to the computed ambulance configuration.

Based on the observed information, the destinations of

idle ambulances, and the location and elapsed service time

of ambulances at hospitals, an ambulance configuration min-

imizing the unpreparedness is suggested. Unpreparedness is

a measure of the (in)ability to quickly respond to incoming

emergency calls, based on the configuration of ambulances.

We refer to van Barneveld et al. (2016) for a formal defini-

tion of this concept. We prefer to talk about unprepared-

ness instead of coverage because of the objective criterion of

interest: we define a penalty function by assigning a specific

penalty to each realized response time. Note that this induces

a generalization of the coverage concept: one can incorpo-

rate the commonly used performance criterion of coverage

by defining a 0-1 function. Other performance criteria, such

as response time, lateness minimization, or maximization of

survival probabilities, can also be incorporated.

To compute the unpreparedness level of the region, we

consider for each demand point the ambulance ` ∈ Ahosp(s)
that can be onsite as quickly as possible. This ambulance

could be idle, but it is also possible that none of the ambu-

lances can respond to such an incident in a timely manner.
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In that case, an ambulance currently busy with the trans-

fer of a patient at the hospital may be asked to wrap up its

task and depart for the emergency scene as quickly as possi-

ble. We are only allowed to preempt if the hospital transfer

time has already lasted for a substantial amount of time (e.g.,

10 minutes).

Let ti denote the expected travel time to demand point i of
the ambulance that can arrive the fastest; this can be an idle

ambulance or an ambulance that is at a hospital. Note that

in the latter case, we must add the remainder of a 10-minute

allowed transfer time to the ambulance’s driving time: ti �

τ`i +max{0, 10 minutes −passed transfer time}. The unpre-
paredness is defined as the weighted sum of these ti , that is,∑

i∈V di f (ti), where di denotes the demand probability of

point i, and f (ti) denotes the penalty value that corresponds

to a minimal response time ti for demand point i.
There are two decision moments: (1) when an ambu-

lance has just been dispatched, and (2) when an ambu-

lance becomes available after servicing a patient. At deci-

sion moments of the first type, the ambulance configuration,

which is the resulting configuration if each idle ambulance

is at its destination, may be changed at at most one pair of

waiting sites. That is, one waiting site is selected as origin
and one as destination. An ambulance leaves the origin, and

one arrives at the destination. Using brute force, we compute

the unpreparedness among all allowed configurations. For a

decision moment of the second type, the origin is given. This

concludes the first part of the policy.

In the second step, we compute the optimal move to obtain

the desired ambulance configurations, which is based on

the current location of the ambulances, not the destinations.

Quickly attaining this configuration is important. Therefore,

we solve a linear bottleneck assignment problem. In this prob-

lem, one aims to find an assignment of ambulances towaiting

sites that minimizes the maximum travel time to attain the

desired configuration. Note that relocating multiple vehicles

is allowed if this reduces the time until compliance. We refer

to van Barneveld et al. (2016) for an illustration.

A.3. Comparison of the Relocation Methods
In this section, we compare the two relocation policies that

we discussed in the two preceding sections. From Table 3, we

see that these DAMpolicies perform comparably for the pilot

region. In Table A.2, we compare properties of the relocation

methods. Themain difference is that the PHprovides an opti-

mal spread of ambulances over the safety region, while the

DMEXCLP focuses on multiple coverage. As a result, rural

areas tend to get more ambulances with the PH, and large

cities get fewer ambulances. In contrast, DMEXCLP keeps

ambulances near the cities and only provides coverage to

rural areas when a sufficient number of idle ambulances is

available.

An additional difference is that the PH considers ambu-

lances that are in a hospital. This slightly favors rural areas,

because hospitals are often located in cities. An ambulance

can be sent out of a city when another becomes idle at a

hospital on short notice.

Table A.2. Summary of Properties for Each Relocation

Method and Whether the Property Is Included (X) or

Optional

DMEXCLP PH

Uses destinations of idle vehicles X X

Uses time until busy vehicle becomes

idle

— X

Focuses solely on one response-time

target

X Optional

Uses multiple coverage X —

Allows relocation when vehicle

becomes idle

X X

Allows relocation when vehicle

becomes busy

Optional addition X

Relocates multiple vehicles per

decision moment

— X

Computes solution in real time using

brute force

X X

The teleportation assumption. At a decision moment, both

policies use the locations of idle ambulances. Some of these

ambulances are typically waiting at a base location, while

others are driving toward a base location. Instead of keep-

ing track of their true locations, we only store their desti-

nations (also referred to as their teleportations). This choice

has two important advantages. First, in a real-time system,

keeping track of destinations is typically easier because they

change their current locations less frequently. Second, there

is a strategic advantage: for a moving ambulance, its current

location is only relevant for a very short time, while our relo-

cation decision should be beneficial to the system for a longer

time. Hence, using their destinations can, in some sense, be

regarded as taking a snapshot of the future.

A.4. Relocation Chains
We implemented a postprocessor for both models, such that

a long relocation distance is “cut” intomultiple simultaneous

ambulance movements, forming a relocation chain. Relocation
chains provide a means to quickly reach a desired configura-

tion of an ambulance, given the current ambulance configu-

ration. For example, consider the situationwhere a relocation

policy determines that an ambulance must be relocated from

A to C, which takes 30minutes. If base location B, located half

way through this route, also contains an ambulance, simul-

taneously relocating one ambulance from A to B and another

ambulance from B to C is a better option. Using this chain,

the relocation duration is decreased from 30 to 15 minutes.

A.5. Adjustments to the DMEXCLP and the
Penalty Heuristic

In this section, we provide an in-depth description of the

adjustments made to the algorithms we used in the pilot

to ensure that they are applicable in practice. Some of the

changes are similar in both methods.
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In the case in which an ambulance is redirected to its

own base location using a relocation algorithm, we say that

no relocation is necessary, because we view this as default

behavior. If no relocation is necessary, dispatchers are not

required to contact the EMTs on the ambulance team to tell

them that they can move to their own base location.

Ambulance teams that may sleep during a night shift are

always relocated to their home base; that is, when such an

ambulance becomes available, the program shows that no

relocation is required. We ensure that no other ambulance

can go to a base at which an ambulance team is asleep; we

provide details below.

When an ambulance that is out of the region becomes

available (i.e., it is more than 20minutes of driving time away

from any base location in the pilot region), no relocation rec-

ommendation is calculated. Instead, the program monitors

the ambulance and calculates a relocation proposal when it

enters the region in the same way it does when the ambu-

lance becomes available.

DMEXCLP-specific adjustments: We used the parameter

value q � 0.3 for the busy fraction, which was a realistic value

for the pilot region. Base locations that host sleeping shifts

are excluded from w ∈W in the argmax-argument of Equa-

tion (A.1), such that no relocation is recommended to a base

at which people are sleeping. Ambulances that are out of

region are not considered in calculating variable ni (i ∈W). At
other relocation moments, we remove an ambulance a from

the system state and calculate its relocation recommendation

to be when it would become available at its current location.

We repeat this procedure for each available ambulance, and

suggest to the dispatcher the one that provides the highest

contribution to the coverage. Relocation chains are formed

similar to the penalty heuristic.

PH-specific adjustments: An out-of-region ambulance is

never considered to be the closest ambulance to respond to

an incident. Furthermore, such an ambulance is not counted

as driving to a base location. Base locations with sleeping

ambulance teams are not included in the set of destinations.

In PH, bases that have at least one ambulance are not con-

sidered as destinations. We allowed a base to have a second

ambulance when all bases are filled. This is computed by first

teleporting ambulances to their destination, removing one

ambulance from each base, and computing the PH on the

resulting state space.
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Verification Letter
Duncan Blank, Head of the Ambulance Dispatch Center,

GGD Flevoland, writes:

“The ambulance service of the Gemeentelĳke Gezondhei-

dsdienst (GGD) Flevoland has extensively tested the soft-

ware implementation of the algorithms for proactive relo-

cations described in the paper “Ambulance Dispatch Center

Pilots Proactive Relocation Policies to Enhance Effective-

ness,” authored by Martin van Buuren et al. To this end, we

have set up a real-life pilot, in which our call center agents

used the suggestions for relocations of ambulance vehicles

made by the model as a Decision Support System (DSS).

“We strongly believe that the DSS provides a powerful

means to support crucial dispatching decisions by call center

agents in complex situations where prompt action is needed.

“During the course of the pilot, the call center agents have

gained confidence in using the DSS, which is a crucial step

towards the acceptance of the tool. Moreover, the results

are really good: despite a significant growth in call volume

compared to last year, the fraction timely arrivals for high-

emergency calls met the 95% target for the whole duration of

the pilot.

“On the basis of the results of the pilot, we have decided

to take the tool into production to support our services. We

firmly believe that the tooling will help us improve the qual-

ity of our services, now and in the future.”
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