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a b s t r a c t 

Brain tumor segmentation from Magnetic Resonance Imaging scans is vital for both the diagnosis and 

treatment of brain cancers. It is widely accepted that accurate segmentation depends on multi-level in- 

formation. However, exiting deep architectures for brain tumor segmentation fail to explicitly encourage 

the models to learn high-quality hierarchical features. In this paper, we propose a series of approaches to 

enhance the quality of the learnt hierarchical features. Our contributions incorporate four aspects. First, 

we extend the popular DeepMedic model to Multi-Level DeepMedic to make use of multi-level informa- 

tion for more accurate segmentation. Second, we propose a novel dual-force training scheme to promote 

the quality of multi-level features learnt from deep models. It is a general training scheme and can be 

applied to many exiting architectures, e.g., DeepMedic and U-Net. Third, we design a label distribution- 

based loss function as an auxiliary classifier to encourage the high-level layers of deep models to learn 

more abstract information. Finally, we propose a novel Multi-Layer Perceptron-based post-processing ap- 

proach to refine the prediction results of deep models. Extensive experiments are conducted on two most 

recent brain tumor segmentation datasets, i.e., BRATS 2017 and BRATS 2015 datasets. Results on the two 

databases indicate that the proposed approaches consistently promote the segmentation performance of 

the two popular deep models. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Gliomas refer to tumors developed from glial cells, and they

are the most common primary tumors in adult human brains [1,2] .

They can be roughly classified into two groups according to their

grade: High-Grade Gliomas (HGG) and Low-Grade Gliomas (LGG).

Gliomas are huge threats to human’s health due to both the high

incidence and lethality rates. For example, the Median Survival

Time (MST) of HGG patients is less than 2 years [2,3] and the

MST of patients with glioblastoma, the most aggressive tumors, is

only 4.9 months [4] . Nowadays, Magnetic Resonance Imaging (MRI)

is widely used for diagnosis and treatment of brain tumors. MRI

can provide doctors with multi-modality 3D scans of the brain.

Segmentation of brain tumors and surrounding abnormal tissues

based on MRI images can provide doctors with direct understand-

ing of tumors and assistance for analysis and treatment. Therefore,

brain tumor segmentation is regarded as an important step in MRI

analysis. 
∗ Corresponding author. 
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MRIs are multi-modality and large-volume 3D scans; thus man-

al segmentation is time-consuming and tedious. Additionally,

anual segmentation is likely to be affected by raters’ personal ex-

erience; thus it is error-prone. Therefore, fully automatic and ac-

urate systems for brain tumor segmentation are highly desired in

ractice. However, designing an accurate brain tumor segmentation

ystem still remains a challenging problem. This is for a number of

easons. First, the shape and internal structures of tumors are var-

ed and complicated. Second, surrounding normal tissues are also

n a wide variety of appearance due to variable locations of tumors

nd the so-called tumor mass effect [5] . Third, the boundaries be-

ween normal tissues and tumor tissues tend to be obscure and

herefore they are difficult to differentiate. 

Various convolutional neural networks (CNNs) have been de-

igned for brain tumor segmentation and other medical im-

ge segmentation tasks. These networks have quickly devel-

ped from single-label prediction schemes to dense predic-

ion schemes. State-of-the-art dense prediction networks include

eepMedic [6] and U-Net [7] , etc. Kamnitsas et al. [6] proposed a

lain 3D network, named DeepMedic, which utilizes feature maps

xtracted from the final convolutional layer to predict the labels

f voxels within the central regions of input patches efficiently.

https://doi.org/10.1016/j.patcog.2018.11.009
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owever, the final convolutional layer in CNN usually focuses on

xtracting high-level semantic information. The lack of low- and

iddle-level information restricts the performance of DeepMedic.

ariharan et al. [8] proposed the popular Hypercolumn architec-

ure that extracts multi-level information from a plain CNN model

or segmentation. This architecture has been widely adopted in

arious computer vision tasks [9,10] . However, the quality of the

xtracted multi-level features may not be optimal as they are

mployed jointly and there is only one single loss function for

enalty; therefore the explicit guarantee of feature hierarchy is re-

uired [11] . Besides, U-Net and its variants [7,12] are an important

eries of networks in medical image segmentation. They consist of

n encoding network with down-sampling operations and a de-

oding network with up-sampling or deconvolutional operations.

-Nets introduce feature maps in the encoding network to the de-

oding network through successive concatenation operations in or-

er to introduce multi-level information gradually and finally pro-

ote the prediction accuracy. Similar to the Hypercolumn network,

he quality of the multi-level features may not be optimal as there

s only one loss function for penalty. 

To solve the above problems, we propose a novel dual-force

raining strategy to explicitly encourage CNNs to learn high-quality

ierarchical features. This training strategy is general and can

e applied to many popular networks, e.g., DeepMedic and U-

et. CNNs adopting this training strategy are named Dual-Force

etworks (DFNs) in this paper. Our contributions include four

spects: 

1) We extend DeepMedic to Multi-Level DeepMedic

(MLDeepMedic) to utilize multi-level information jointly 

for more accurate segmentation. 

2) We propose the dual-force training strategy and apply it to

both MLDeepMedic and U-Net. This training strategy is realized

by attaching an auxiliary classifier to both MLDeepMedic and

U-Net, and encourages their high-level convolutional layers to

learn more abstract semantic information. 

3) We propose a label distribution-based loss function for the aux-

iliary classifier. Compared with existing popular loss functions

for brain tumor segmentation, e.g., softmax loss function, the

proposed loss function can describe high-level semantic infor-

mation more accurately. 

4) We propose an Multi-Layer Perceptron (MLP) based method for

post-processing, which can refine the prediction results of CNNs

and further promote the segmentation performance. Compared

with existing post-processing methods, e.g., Conditional Ran-

dom Field (CRF), the proposed method is light and easy to use

in practice. 

We conduct extensive experiments on two most recent brain

umor segmentation datasets, i.e., BRATS 2017 and BRATS 2015.

xperimentation results show that the proposed dual-force train-

ng strategy consistently improves the Dice scores of the segmen-

ation results by both MLDeepMedic and U-Net. Besides, the pro-

osed MLP-based post-processing method can further improve the

egmentation performance with very limited computational cost.

oreever, to further verify the effectiveness of the proposed meth-

ds on ensemble systems, we also apply the proposed methods to

odel-Cascade Networks (MC-Net for short) [13] . 

The remainder of this paper is organized as follows:

ection 2 reviews recent related works in brain tumor seg-

entation. Section 3 first briefly introduces the baseline networks,

.e., DeepMedic and U-Net. Then we propose the dual-force

raining strategy, including network architecture and the label

istribution-based loss function. Section 4 presents and analyzes

he experimental results, leading to conclusions in Section 5 . 
. Related works 

We review the literature in two parts: (1) CNN architectures for

rain tumor segmentation, and (2) post-processing methods that

efine the prediction results of CNNs. 

.1. CNN architectures 

Recent automatic and semi-automatic methods for medical im-

ge segmentation can be roughly classified into generative and dis-

riminative methods. Generative methods estimate the joint prob-

bility distribution of labels and features of voxels [14–19] , and

ost of them are designed based on atlas [15,17] . The others are

iscriminative methods, which rely less on prior knowledge and

ake predictions based on the intensity of voxels. Classic machine

earning algorithms make use of hand-crafted features, and then

he extracted features are fed into classification algorithms such

s Support Vector Machines (SVM) [20] , Random Forest [21,22] ,

uzzy C-Means algorithm [23] , Level Set [24] or Particle Swarm

ptimization [25] . Among the wide range of classic methods, Ran-

om Forest is one of the most commonly adopted methods be-

ause of its efficiency and its capability of handling high dimen-

ional features. For example, Pinto et al. [22] proposed a hierar-

hical Extremely-Randomized-Forest-based method for glioma seg- 

entation and achieved competitive performance on BRATS 2013

eaderboard dataset. As the rise of deep learning [26–34] , recent

orks applied CNNs of various structures for medical image seg-

entation, and achieved state-of-the-art performance. In the fol-

owing, we only review CNN-based methods for the brain tumor

egmentation task. 

According to the dimension of input data for CNNs, existing ap-

roaches can be classified into 2D [12,35–37] , 2.5D [38] , and 3D

etworks [6,7,39–43] . Most early approaches [12,35,36] are based

n 2D networks as they are advantageous in efficiency. However,

hey fail to make full use of 3D contextual information from 3D

RI scans. To relieve this problem, Zhu et al., utilize recursive neu-

al networks [44] to treat different slices as a data sequence. In

ddition, 2.5D networks are proposed [38] , which take a set of

D slices extracted from planes perpendicular to the axial, coro-

al, and sagittal axis as input together. However, most 3D con-

extual information is still ignored. Therefore, to take full advan-

age of 3D information in MRI scans, 3D networks with 3D con-

olutional filters are proposed. 3D networks can process 3D MRI

ata directly. However, the produced 3D feature maps require dra-

atically more GPU memory and computational cost, which limits

he depth of 3D networks and usually requires elaborate design.

espite their limitations, 3D networks are becoming increasingly

opular due to their outstanding performance in medical image

egmentation. 

According to the size of predictions, CNNs for brain tumor

egmentation can be roughly grouped into single-label prediction

nd dense prediction architectures. Single-label prediction archi-

ectures take cropped patches as input and only predict the la-

el of the central voxel in the patch [35–37,45,46] . For instance,

ereira et al. [36] proposed a 2D convolutional neural network

hat makes single-label prediction and achieves the best perfor-

ance in the BRATS 2015 challenge. In order to introduce more

ontextual information for the central voxel, Havaei et al. [37] pro-

osed a two-pathway architecture and integrated features of two-

cales. In addition, a two-phase training scheme was proposed

n [37] to deal with the class-imbalance problem. Since only the

abel of the central voxel is predicted each time, the single-

abel prediction networks are very slow during the inference

tage. 

Compared with single-label prediction networks, dense predic-

ion networks [6,7,22,39,43,47] are more efficient, as they predict
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the labels of voxels within the input patch simultaneously. Fully

Convolutional Network (FCN) [47] is a typical instance of dense

prediction networks. FCN replaces the fully connected layers in

common CNNs with convolutional layers to generate full-resolution

prediction maps. In order to better utilize multi-level features, U-

Net [12] gradually introduces feature maps by concatenation from

its encoding layers to its decoding layers of the same resolution.

Due to the excellent performance, U-Nets are also widely adopted

in other computer vision tasks. For example, a U-Net-style archi-

tecture is adopted for feature extraction in [48] . To fully utilize 3D

contextual information, 3D variants of FCN and U-Net are also pro-

posed for medical image segmentation [7,49] . Another important

dense prediction network is named DeepMedic [6] that predicts

the labels of voxels lying in the central region of the input patch.

In DeepMedic, there is no pooling operations and the reduction of

feature map size is realized by cancelling padding operations in

convolutional layers. 

Moreover, recent works propose various strategies to im-

prove the performance of CNN models for medical image seg-

mentation. For example, different from the above networks that

are constructed by simply stacking convolutional layers, Chen

et al. [39] proposed VoxResNet that is inspired by the idea of

residual learning [31] . Besides, most existing methods stack multi-

modality MRI data together as input, while [42] argued that the

correlations between different modalities should be explicitly con-

sidered before concatenation, and proposed a novel cross-modality

network to aggregate information from different modalities. Ad-

ditionally, to fill the gap between training data and testing data,

Kamnitsas et al. [50] built an adversarial network for unsupervised

domain adaptation based on DeepMedic [6] . 

In this paper, our proposed dual-force training strategy is

mainly based on DeepMedic [6] and U-Net [7] , which are two

most popular baselines for brain tumor segmentation. Networks

adopting the dual-force training strategy are named Dual-Force

Networks (DFNs). Different from the existing works, e.g., Deeply

Supervised Network (DSN) [51] , GoogleNet [29] , and VoxRes-

Net [39] that introduce auxiliary classifiers to solve the van-

ishing gradient problem, our proposed DFN apply an auxil-

iary loss function to promote the quality of hierarchical fea-

tures. Besides, instead of using the common softmax loss func-

tions as Lee and co-workers [29,39,51] , we introduce the label

distribution-based loss function for the auxiliary loss. Label dis-

tribution loss is usually adopted in age estimation task [52] to

describe the correlation between nearby ages. In this paper, it

is employed to describe high-level semantic information more

accurately. 

2.2. Post-processing methods 

In addition to network architectures, various post-processing

methods have also been proposed to refine the prediction results

of CNNs. For example, Kamnitsas et al. [6] adopted 3D-CRF for

post-processing, which refines segmentation results through iter-

atively minimizing the Gibbs energy of each voxel. Besides, Havaei

et al. [37] proposed to remove the abnormal predictions in regions

close to the skull according to the intensities of voxels, and the vol-

ume of the tumor area. Moreover, Zhao et al. [53] proposed a more

complicated post-processing pipeline including empirically deter-

mined rules, which are also based on the voxel intensity, volume

of predicted area, etc. One shortage of this method is that the rules

rely on prior knowledge summarized by humans and they may not

be readily transformed to other segmentation tasks. Our proposed

post-processing method is more related to Zhao et al. [53] . Com-

pared with the original method in [53] , we propose an MLP-based

method to automatically learn the set of rules. Therefore, it can be

easily applied to many segmentation tasks. 
. Dual-force networks 

In this section, we first briefly review two popular baselines for

rain tumor segmentation. Then, we introduce our contributions

n detail. First, we extend DeepMedic model by utilizing multi-

evel features for more accurate segmentation. Second, we intro-

uce the dual-force training strategy to help CNNs to learn high

uality multi-level features. This strategy can be applied to many

xisting networks, e.g., DeepMedic and U-Net. Third, we propose

 light, simple but effective post-processing method to refine the

rediction results of CNNs. 

.1. Brief review of the baselines 

The proposed dual-force training strategy is based on

eepMedic and U-Net. Therefore, we first briefly review their

rchitectures in the following. We also illustrate their structure in

ig. 1 . Each ‘Conv’ block in Fig. 1 refers to the combination of one

onvolutional layer, one batch normalization layer, and one ReLU

ayer. Important parameters for the two models adopted in this

aper are tabulated in Tables 1 and 2 , respectively. 

DeepMedic [6] achieved the best performance in BRATS 2016

hallenge. It consists of two pathways, separately designed for ex-

racting features of two scales. Each of the two pathways includes

ight 3 × 3 × 3 convolutional layers and there is no pooling layer.

he reduction of feature map size is realized through omitting

he marginal voxels in feature maps during convolution. After con-

atenating feature maps extracted from the two pathways, three

 × 1 × 1 convolutional layers are applied to fuse their information

nd make final predictions. For simplicity, only the full-resolution

athway of DeepMedic is shown in Fig. 1 (a). The two-pathway

cheme is illustrated in Fig. 2 . 

U-Net [7,12] is another popular architecture for brain tumor

egmentation. Model structure of U-net is illustrated in Fig. 1 (b).

nspired by FCN [47] , U-Net efficiently predicts the full-resolution

abel maps for the input patch in one pass. U-Net comprises an en-

oding network and a decoding network. In the encoding network,

tacked convolutional layers are followed by pooling layers to com-

ress the size of feature maps and extract high-level semantic in-

ormation. The decoding network incorporates a set of deconvolu-

ional layers for resolution recovery. Moreover, feature maps gen-

rated by deconvolutional layers are concatenated with those pro-

uced by convolutional layers of the encoding network with the

ame resolution. The combination of feature maps enables U-Net

o gradually fuse multi-level information for accurate brain tumor

egmentation. 

.2. Multi-level deepmedic 

It is widely accepted that multi-level information is vital for

egmentation tasks. In particular, they are helpful to discriminate

emantically obscure voxels that are usually lies in the boundary

rea between tumor and normal tissues. However, the DeepMedic

odel only utilizes high-level features extracted from the last con-

olutional layer for prediction, ignoring low- and middle-level fea-

ures. In this subsection, we extend the DeepMedic model to in-

lude multi-level information for more accurate segmentation, and

ame the new model as Multi-Level DeepMedic (MLDeepMedic).

onsidering that the low-resolution pathway of DeepMedic is de-

igned for extracting contextual information in larger scales, we

emain the structure of the low-resolution pathway and only in-

roduce multi-level information to the full-resolution pathway of

eepMedic. 

As illustrated in Fig. 3 , we equip DeepMedic with several crop

ayers to extract multi-level features of the same size, i.e., 9 × 9 × 9,

rom five selected layers of DeepMedic. Each crop layer crops a
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Fig. 1. Model architectures for DeepMedic and U-Net. (a) DeepMedic. (b) U-Net. For simplicity, only the full-resolution pathway of DeepMedic is shown in (a). Each Conv 

block in the figure refers to the combination of one convolutional layer, one batch normalization layer and one ReLU layer. 

Table 1 

Important model parameters of DeepMedic and MLDeepMedic adopted in this paper. Filter number in the last 

convolutional layer depends on the number of normal and tumor classes, i.e., 4 (BRATS 2017) or 5 (BRATS 2015) 

in this paper. 

Layer Type Kernel size Filter number Padding Stride Pathway 

conv1,2 convolution + BN+relu 3 × 3 × 3 30 0 1 L,F 

conv3,4,5,6 convolution + BN+relu 3 × 3 × 3 40 0 1 L,F 

conv7,8 convolution + BN+relu 3 × 3 × 3 50 0 1 L,F 

deconv deconvolution + BN+relu 2 × 2 × 3 50 0 2 L 

concat concat – – – – –

conv9 convolution + BN+relu 1 × 1 × 1 150 0 1 –

dropout dropout (P = 0.5) – – – – –

conv10 convolution + BN+relu 1 × 1 × 1 150 0 1 –

dropout dropout (P = 0.5) – – – – –

conv11 convolution 1 × 1 × 1 4(5) 0 1 –

softmax softmax – – – –

Table 2 

Important model parameters of 3D U-Net adopted in this paper. Filter number in the last convolu- 

tional layer depends on the number of normal and tumor classes, i.e., 4 (BRATS 2017) or 5 (BRATS 

2015) in this paper. 

Layer Type Kernel size Filter number Padding Stride 

conv1,2 convolution + BN+relu 3 × 3 × 3 32 1 1 × 1 × 1 

pool1 max pooling 2 × 2 × 2 – 0 2 × 2 × 2 

conv3,4 convolution + BN+relu 3 × 3 × 3 64 1 1 × 1 × 1 

pool2 max pooling 2 × 2 × 2 – 0 2 × 2 × 2 

conv5,6 convolution + BN+relu 3 × 3 × 3 128 1 1 × 1 × 1 

pool3 max pooling 2 × 2 × 1 – 0 2 × 2 × 1 

conv7,8 convolution + BN+relu 3 × 3 × 3 256 1 1 × 1 × 1 

deconv1 deconvolution + BN+relu 2 × 2 × 2 128 0 2 × 2 × 1 

conv9,10 convolution + BN+relu 3 × 3 × 3 128 1 1 × 1 × 1 

deconv2 deconvolution + BN+relu 2 × 2 × 2 64 0 2 × 2 × 1 

conv11,12 convolution + BN+relu 3 × 3 × 3 64 1 1 × 1 × 1 

deconv3 deconvolution + BN+relu 2 × 2 × 2 32 0 2 × 2 × 1 

conv13,14 convolution + BN+relu 3 × 3 × 3 32 1 1 × 1 × 1 

conv15 convolution 1 × 1 × 1 4(5) 0 1 × 1 × 1 

softmax softmax – – – –
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Fig. 2. Model architecture of two-pathway DeepMedic [6] . Feature maps generated from the low-resolution pathway are upsampled to the same size as that in the full- 

resolution pathway. In this paper, we replace the up-pooling layer adopted in [6] with a deconvolutional layer. 

Fig. 3. Model architecture of MLDeepMedic. Only the full-resolution pathway of DeepMedic is shown in this figure. Feature map patches are cropped from five selected 

layers and then concatenated to compose multi-level features. 
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3D patch from the center region of the feature map. Since there

is no pooling operation in DeepMedic, elements in the cropped

3D patches maintain spatial correspondence. Consequently, we ob-

tain multi-level information for the voxels within the cropped 3D

patches. To fuse these multi-level information, the cropped feature

map patches are first concatenated and then fed into three succes-

sive 1 × 1 × 1 convolutional layers for final prediction. 

3.3. Dual-force networks 

Both MLDeepMedic and U-Net employ multi-level features for

accurate segmentation. However, there is only one loss function to

train MLDeepMedic and U-Net, respectively; therefore, they may

not learn high-quality multi-level features without explicit guaran-

tee in loss functions. In this subsection, we propose a dual-force

(DF) training strategy that attach an auxiliary loss function to the

network to explicitly encourage the network to learn high-quality

multi-level features. Networks using the DF training strategy are

named Dual-Forced networks (DFN) in this paper. In the follow-

ing, we take MLDeepMedic and U-Net as examples to describe the

idea of DFN. However, it is worth noting that the DF training strat-

egy is general and can be applied to more advanced architectures

that utilize multi-level features for dense prediction, e.g., Fusion-

Net [13] . 

As illustrated in Fig. 4 , we attach a complementary loss func-

tion to the original networks to describe the high-level seman-

tic information contained in the input patch. The two loss func-

tions work together to explicitly encourage MLDeepMedic and U-

Net to learn high-quality multi-level features. The two networks

using this training strategy are denoted as DF-MLDeepMedic and

DF-U-Net, respectively. In testing, the auxiliary classifiers can be

omitted. 

Model structures of both DF-MLDeepMedic and DF-U-Net are

presented in Fig. 4 . Similar to Fig. 1 , only the full-resolution path-
ay of DF-MLDeepMedic is illustrated. For DF-MLDeepMedic, two

uxiliary classifiers are introduced for the two pathways, respec-

ively, as illustrated in Fig. 4 (a). One of them is attached to the

Conv8’ layer in the full-resolution pathway and the other is at-

ached to the deconvolutional layer in the low-resolution pathway.

or DF-U-Net, the new loss function is attached after the last con-

olutional layer of the encoding network, as illustrated in Fig. 4 (b).

his is because feature maps from this layer have the minimum

patial size and therefore are expected to contain the most abstract

emantic information. 

.4. Label distribution-based loss function 

The inputs for the original loss function in DeepMedic and U-

et are voxel-wise classification probability; therefore, the pop-

lar softmax loss function is adopted. However, elements of the

nputs for the newly introduced loss function in DFN stand for

igh-level semantic information, which cannot be described by

iscrete labels. Therefore, we propose label distribution-based

oss function and present different solutions for DFN variants

n the following. Compared with discrete labels, label distribu-

ion vectors can describe high-level semantic information more

ccurately. 

In MLDeepMedic, spatial correspondence is maintained as there

s no pooling layer, which means elements in the ‘Conv11’ layer

eep the spatial relationship as the voxels in the input patch.

herefore, we construct the ground-truth label distribution vec-

ors using the 3D Gaussian model to highlight the contribution of

ach focal voxel in the ‘Conv11’ layer. In detail, the ground-truth

abel map is first transformed into a series of hard-coding binary

robability maps, denoted as B , whose channel number is depen-

ent on the number of classes. Then, each of the binary hard-

oding maps is convolved with one 3D Gaussian filter, which is
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Fig. 4. Model structure of DFNs. (a) DF-MLDeepMedic. For simplicity, only the full-resolution pathway is presented. The auxiliary loss function is attached to the ‘Conv8’ layer 

of the full-resolution pathway. For the two-pathway DF-MLDeepMedic, there is another auxiliary loss function attached to the deconvolutional layer of the low-resolution 

pathway. (b) DF-U-Net. A new convolutional classification layer and the auxiliary loss function is attached to the ‘Conv8’ layer. 

f

D

w  

S  

c  

k  

t  

c  

v

 

t  

e  

s  

b  

8  

f  

b  

d  

c  

b

D

w

t

 

p  

v

L

w  

b  

g  

a  

l  

s  

l

3

 

m  

m  

p  

o  

o  

t  

t  

f  
ormulated as 

 k ( x, y, z ) = 

1 (√ 

2 πσ
)3 

∑ 

( x l ,y l ,z l ) ∈ S x,y,z 

B k ( x l , y l , z l ) e 
− ( x l −x ) 

2 + ( y l −y ) 
2 + ( z l −z ) 

2 

2 σ2 , 

(1) 

here S x,y,z stands for the neighborhood of the target voxel ( x, y, z ).

ize of the neighborhood is 17 × 17 × 17 in our experiments. k indi-

ates the k th class and σ is the standard deviation of the Gaussian

ernel. The value of σ can control the ratio of contextual informa-

ion in the label distribution vector. Obviously, hard-coding labels

an be also considered as a special form of the label distribution

ector which has zero stand deviation. 

For U-Net, voxels in different convolutional layers do not main-

ain spatial correspondence due to the pooling operations in the

ncoding network; therefore, we adopt average pooling to con-

truct label distribution vectors. Specifically, the ground-truth la-

el map is divided to 4 × 4 × 4 non-overlapped regions with size of

 × 8 × 4. Similar to DF-MLDeepMedic, the ground-truth label map

or each region is first transformed into a series of hard-coding

inary probability maps, denoted as B , whose channel number is

ependent on the number of classes. The binary labels in the k th

hannel of B are fused by average pooling to construct label distri-

ution maps: 

 k ( x, y, z ) = 

1 

n 

∑ 

( x l ,y l ,z l ) ∈ S x,y,z 

B k ( x l , y l , z l ) , (2) 
here n denotes the number of voxels involved in the region S x,y,z 

hat is, 8 × 8 × 4 in this paper. 

We take KL divergence as the loss function to measure the dis-

arity between the ground-truth and predicted label distribution

ectors: 

 = −1 

n 

∑ 

i 

∑ 

k 

d i k log 

(
ˆ p i 
k 

)
, (3) 

here n denotes the number of label distribution vectors in a

atch. For the i th training sample, d i 
k 

is the probability value in the

round truth distribution of class k , and 

ˆ p i 
k 

is the predicted prob-

bility value. It is worth noting that the label distribution-based

oss function aims to encourage the network to learn high-quality

emantic information in the training stage. In the testing stage, this

oss function can be omitted. 

.5. Post-processing 

Post-processing is an indispensable step for brain tumor seg-

entation as it refines the prediction results of CNNs and pro-

otes segmentation performance. Recently, Zhao et al. [53] pro-

osed a high-performance post-processing pipeline including a set

f empirically summarized rules and manually determined thresh-

lds, which are based on the probability values predicted by CNNs,

he voxel intensity, and the volume of predicted tumors, etc. Since

his approach is highly handcrafted, it may not be readily trans-

ered to other related segmentation tasks. In this subsection, we
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1 Dice score is the overall evaluation criterion. For clarity, only the best results of 

Dice score are highlighted in all tables. 
propose a learning-based approach to automatically learn the post-

processing rules from data; therefore, it is easier to be utilized for

the other segmentation task as well. 

The proposed post-processing method is based on MLP. The in-

put of MLP is a feature vector for each voxel in the predicted tumor

area by CNNs, denoted as f ∈ R 

257 ×1 in BRATS 2015 or f ∈ R 

229 ×1

in BRATS 2017. Similar to Zhao et al. [53] , the feature vector in-

cludes three groups of information, i.e., the probability values pre-

dicted by CNNs for voxels, the voxel intensity, and the volume of

predicted tumors: 

f = [ p ; i ; v ] , (4)

where p ∈ R 

140 ×1 in BRATS 2015 or p ∈ R 

112 ×1 in BRATS 2017 de-

notes the probability values predicted by CNNs for voxels. It con-

sists of the predicted probability values of all classes for the tar-

get voxel and its 3 × 3 × 3 neighbors, as well as the label distribu-

tion vector of the target voxel constructed via (1) with σ set to be

5. i ∈ R 

116 ×1 denotes the intensity feature vector, composed of the

intensity values of the target voxel and its 3 × 3 × 3 neighbors, as

well as the mean value and standard deviation of the connected

tumor area where the target voxel locates in. Finally, v is a scaler

that stands for the ratio between the volume of the tumor region

that the target voxel locates in and the volume of the maximum

connected tumor area in the MRI image. p, i and v are concate-

nated together, constructing the input feature vector of MLP. 

The employed MLP model is composed of three fully connected

layers, with filter numbers of 128, 128, and c respectively, where

c denotes the number of classes. In testing, a feature vector f is

constructed for each voxel in the predicted tumor area by CNNs.

The feature vector is fed into MLP and obtains the final prediction

result for the voxel. 

4. Experiments 

4.1. Datasets 

We evaluate the proposed methods on two most recent pub-

licly available brain tumor datasets, i.e., BRATS 2017 and BRATS

2015. The BRATS 2017 database includes 285 3D MRI scans, which

are composed of 210 HGG scans and 75 LGG scans. The BRATS

2015 database includes 220 HGG scans and 54 LGG scans. For

each scan, there are 4 available modalities, i.e., T1, T1C, T2, and

Flair. Image Size for each modality is 240 × 240 × 155. In the BRATS

2015 database, the tumor tissues are divided into four classes, i.e.,

necrotic, edema, non-enhancing tumor, and enhancing tumor. In

the BRATS 2017 database, the necrotic and non-enhancing tumors

are grouped into one category; therefore, there are only three tu-

mor classes in this database. To quickly justify the effectiveness of

the proposed methods, we randomly select 30 scans from all the

285 cases in the BRATS 2017 database to construct a local valida-

tion subset. The remaining 255 scans are utilized as the training

set. At the end of this section, we compare the performance of the

proposed approaches with state-of-the-art methods on the online

validation sets of the two databases. 

4.2. Implementation details 

For pre-processing, intensities of voxels inside the brain are nor-

malized to have zero mean and unit variance for each modality im-

age. To compensate for the class imbalance problem, we adopt the

same patch sampling strategy as proposed in [6] . Training patches

are uniformly sampled (50% vs 50%) from the normalized images

according to the label of central voxels for tumor and normal tis-

sues, respectively. 

The open-source deep learning package C3D [54–56] is utilized

to train the deep models. We adopt the Stochastic Gradient De-

scent (SGD) scheme to optimize all networks. Batch size is set to
e 64 and the initial learning rate is set as 0.001, decreasing by

ne half after each 5 epochs. The maximum number of iterations

s 40 epochs. For fair comparison, we test all saved snapshots and

eport the best performance for each model on the local validation

ubset. 

Besides, the size of input patches for DeepMedic and U-Net is

5 × 25 × 25 and 32 × 32 × 16, respectively. Due to the lack of con-

extual information, the labels predicted by U-Net for the marginal

oxels in the patch may not be reliable. Therefore, we only keep

he predicted labels of voxels within the central 20 × 20 × 10 re-

ion in each patch in testing stage. 

.3. Evaluation criteria 

According to the protocols in the two BRATS datasets, differ-

nt tumor classes are grouped into three tumor regions, i.e., whole

umor, core tumor and enhancing tumor. The whole tumor re-

ion comprises all tumor classes. The core tumor region comprises

ll tumor classes but edema. The enhancing tumor region com-

rises the enhancing tumor class only. To quantitatively evaluate

he segmentation results, three indices are usually adopted, i.e.,

ice Score, Positive Predictive Value (PPV), and Sensitivity. Each of

hem is formulated as bellow: 

ice = 

2 T P 

2 T P + F P + F N 

(5)

 P V = 

T P 

T P + F P 
(6)

ensit i v it y = 

T P 

T P + F N 

, (7)

here TP represents the number of true positive voxels, FP repre-

ents the number of false positive voxels, and FN represents the

umber of false negative voxels. It is worth noting that Dice score

an be considered as an overall evaluation criterion of PPV and

ensitivity. Therefore, we will mainly compare the Dice scores of

ifferent methods in the following. 

.4. Performance comparison between DeepMedic and MLDeepMedic 

We first compare the performance of DeepMedic and the pro-

osed MLDeepMedic. Experiments are conducted on both the

ingle-pathway and two-pathway variants of DeepMedic. Exper-

mentation results are tabulated in Table 3 . 1 It is shown that

he two-pathway architecture indeed improves the performance of

eepMedic, which is consistent with the conclusion in [6] . It is

lso shown that the two-pathway architecture also improves the

erformance of MLDeepMedic with considerable margin. 

It is clear that MLDeepMedic consistently outperforms

eepMedic, indicating that multi-level feature is helpful for

he segmentation task. However, the improvement is not sig-

ificant and there is even subtle decline in Dice score for the

nhancing tumor. We argue that this is because the quality of

he learnt multi-level features is not optimal. In MLDeepMedic,

here is only one loss function for classification and the quality of

ulti-level features is not explicit guaranteed. 

.5. Effectiveness of DFN and MLP-based post-processing method 

The proposed dual-force training scheme is evaluated on both

LDeepMedic and U-Net. Since two-pathway MLDeepMedic out-

erforms its single-pathway counterpart, we consistently em-

loy the two-pathway architecture in the following. Experimen-

ation results on MLDeepMedic are tabulated in Table 4 . DF-
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Table 3 

Performance comparison between DeepMedic and MLDeepMedic on the local validation subset of BRATS 2017 (%). 

Method Dice PPV Sensitivity 

Com. Core Enh. Com. Core Enh. Com. Core Enh. 

Single-Path DeepMedic 78.26 69.76 68.82 73.00 68.54 68.94 88.42 79.04 75.58 

Single-Path MLDeepMedic 79.73 71.59 68.14 76.07 72.14 68.58 87.30 0.7854 75.94 

Double-Path DeepMedic 83.34 72.24 69.34 82.50 73.33 70.38 85.65 75.89 75.49 

Double-Path MLDeepMedic 83.25 73.25 69.96 82.53 77.23 69.24 85.72 74.67 76.96 

Table 4 

Performance comparison between DeepMedic, MLDeepMedic, and DF-MLDeepMedic on the local validation 

subet of BRATS 2017 (%). 

Method Dice PPV Sensitivity 

Com. Core Enh. Com. Core Enh. Com. Core Enh. 

DeepMedic 83.34 72.24 69.34 82.50 73.33 70.38 85.65 75.89 75.49 

MLDeepMedic 83.25 73.25 69.96 82.53 77.23 69.24 85.72 74.67 76.96 

DF-MLDeepMedic (S) 83.51 76.05 70.85 83.03 77.83 74.89 85.59 79.43 7399 

DF-MLDeepMedic (L) 83.98 76.81 70.27 80.98 83.45 77.38 88.76 78.67 74.20 

DF-MLDeepMedic (L) p 85.03 77.46 70.77 84.74 84.11 77.39 86.29 79.11 74.91 

Table 5 

Performance of DF-MLDeepMedic (L) with different σ values on the local validation subset of 

BRATS 2017 (%). 

σ Dice PPV Sensitivity 

Com. Core Enh. Com. Core Enh. Com. Core Enh. 

(2, 1) 83.66 75.90 71.10 81.48 73.99 70.40 87.59 80.15 77.99 

(5, 1) 83.95 75.70 69.23 80.96 76.15 72.30 88.62 78.96 73.91 

(10, 1) 83.98 76.81 70.27 80.98 83.45 77.38 88.76 78.67 74.20 

(5, 2) 83.93 74.57 69.87 83.05 75.49 73.40 86.34 79.21 73.42 

(10, 2) 84.44 74.96 69.00 80.99 76.64 72.14 89.33 78.67 74.05 
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LDeepMedic (S) stands for the DF-MLDeepMedic model using

oftmax loss as the auxiliary loss function, while DF-MLDeepMedic

L) utilizes the designed label distribution-based loss function. DF-

LDeepMedic (L) p denotes the performance of DF-MLDeepMedic

L) after the MLP-based post-processing step. 

It is shown that DF-MLDeepMedic consistently outperforms

LDeepMedic, regardless of the detailed form of the auxiliary

oss function. In particular, DF-MLDeepMedic (L) outperforms

LDeepMedic by as much as 3.56% on Dice score of the core tu-

or. These experimentation results indicate that higher-quality of

ulti-level features are learnt with the help of the auxiliary loss

unction. 

The performance of DF-MLDeepMedic (L) is affected by the pa-

ameter σ of the two pathways. In Table 5 , we evaluate differ-

nt combinations of σ values, and select the best set of param-

ters according to the average Dice score on the three tumor re-

ions. Finally, we set σ for the low-resolution pathway to be 10

nd that for the full-resolution pathway to be 1. We then compare

he performance of DF-MLDeepMedic (L) and DF-MLDeepMedic (S)

n Table 4 . On the one hand, it is clear that the label distribution-

ased loss function improves the performance of DF-MLDeepMedic

n the complete tumor and tumor core regions. This is because

he label distribution-based loss function encourages the network

o learn more contextual information, which is important for the

etection of complete tumor and tumor core regions. On the other

and, there is slight performance degradation of Dice score on the

nhancing tumor region. We infer that the enhancing tumor re-

ion is usually very small in volume; therefore, introducing con-

extual information may weaken the original features for the en-

ancing tumor detection. This phenomenon can also be reflected

y the performance of DF-MLDeepMedic (L) with different σ val-

es, as shown in Table 5 . In general, the label distribution-based

oss function can improve the performance of DF-MLDeepMedic. 
To further illustrate the advantage and mechanism of DFNs, we

elect several examples from the local validation subset and com-

are the prediction results by the above models in Fig. 5 . As shown

n Fig. 5 , both DF-MLDeepMedic (S) and DF-MLDeepMedic (L) can

ake less false positive predictions. We owe this advantage to the

mprovement in robustness of features. Moreover, introducing the

abel distribution-based loss function can further improve the seg-

entation accuracy by taking more contextual information into ac-

ount. 

We also compare the performance between DF-U-Net and U-

et. Results are tabulated in Table 6 . It is clear that DF-U-Net con-

istently outperforms U-Net for all three Dice scores. The above

xperimentation results justify the effectiveness of the dual-force

raining scheme. 

Besides, as indicated in Tables 4 and 6 , the MLP-based post-

rocessing method can consistently improve the segmentation per-

ormance for both DF-MLDeepMedic and DF-U-Net by about 1%

or the Dice scores of the three regions. In order to clearly show

he advantage of the MLP-based post-processing method, we com-

are it with the RF-based (Random Forest-based) and 3D CRF-

ased (Conditional Random Fields) post-processing methods, and

how their performance based on DF-U-Net in Table 7 . For fair

omparison, the feature vectors used by the RF-based method

re exactly the same as those for our MLP-based method. For

D CRF, we directly employ the method in [6,57] , where the

our normalized modalities of MRI scans and the prediction re-

ults are used as the input. Overall, the MLP-based post-processing

ethod achieves the best performance among the three meth-

ds. Additionally, tt is worth noting that MLP can be computed

ery fast and therefore it is advantageous in efficiency. Further-

ore, it can be readily applied to many other related segmentation

asks since it learns the post-processing rules automatically from

ata. 
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Fig. 5. Segmentation examples that demonstrate the effectiveness of DFN. The first column shows the original MRI slices. For simplicity, only the Flair modality is plotted. 

The second column presents the ground-truth segmentation results. The third to sixth columns illustrate the predictions of the DeepMedic, MLDeepMedic, DF-MLDeepMedic 

(S), and DF-MLDeepMedic (L), respectively. Colors in the figure represent different tumor classes, i.e., Edema (green), enhancing tumor (red), and necrosis and non-enhancing 

tumor (blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 6 

Performance comparison between U-Net and DF-U-Net on the local validation subset of BRATS 

2017 (%). 

Method Dice PPV Sensitivity 

Com. Core Enh. Com. Core Enh. Com. Core Enh. 

U-Net 84.11 73.80 69.15 84.32 73.03 71.66 85.15 79.88 74.30 

DF-U-Net 84.14 75.32 70.72 84.85 76.27 69.93 84.74 78.73 78.05 

DF-U-Net p 85.30 76.28 71.54 86.54 78.09 74.08 84.98 78.78 75.58 

Table 7 

Performance Comparison of Different Post-Processing Methods on Local Validation Dataset of 

BRATS 2017 (%). 

Method Dice PPV Sensitivity 

Com. Core Enh. Com. Core Enh. Com. Core Enh. 

None 84.14 75.32 70.72 84.85 76.27 69.93 84.74 78.73 78.05 

3D CRF 84.93 77.33 70.85 89.69 81.45 73.23 81.65 76.68 75.67 

RF 85.06 75.88 70.26 86.35 77.74 74.11 84.81 78.65 73.94 

MLP 85.30 76.28 71.54 86.54 78.09 74.08 84.98 78.78 75.58 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8 

Comparison of Dice scores between DFNs and the 

state-of-the-art methods on BRATS 2017 Online Vali- 

dation Dataset (%). 

Method Com. Core Enh. 

DeepMedic 87.07 73.92 69.76 

DF-MLDeepMedic (L) p 89.30 73.88 73.46 

U-Net 88.06 76.39 69.65 

DF-U-Net p 89.08 78.22 70.29 

MC-Net 88.93 78.59 71.04 

DF-MC-Net p 89.68 79.84 72.05 

Zhou et al. [13] 89 80 75 

Jesson et al. [58] 89.9 75.1 71.3 

Islam et al. [59] 87.6 76.1 68.9 
4.6. Comparison with state-of-the-art methods 

We compare the performance between DFNs and state-of-the-

art methods on both BRATS 2017 online validation dataset and

BRATS 2015 online test dataset. Comparison results are shown in

Tables 8 and 9 , respectively. In Table 8 , it is shown that DFNs

consistently outperform their baselines, further justifying the ef-

fectiveness of the proposed approaches. We cite the performance

of the other approaches from their respective papers, including

the state-of-the-art ones. DFNs outperform [58,59] , but its per-

formance is lower than Zhou et al. [13] . This is because ap-

proaches in [13] are complex cascade systems. For example, Zhou

et al. [13] utilize as many as three models to promote the perfor-

mance of their system. In comparison, the main purpose of this
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Table 9 

Comparison of Dice scores between DFNs and the 

state-of-the-art methods on the BRATS 2015 online 

test dataset (%). 

Method Com. Core Enh. 

DeepMedic 83 67 63 

DF-MLDeepMedic (L) p 85 70 63 

3D U-Net 83 68 63 

DF-U-Net p 84 69 64 

Kamnitsas et al. [6] 85 67 63 

Zhao et al. [53] 84 73 62 

Isensee et al. [60] 85 74 64 

Table 10 

Complexity analysis. 

Method Average time cost (per MRI scan) #Params 

DeepMedic 168.84s 84K 

MLDeepMedic 186.93s 91K 

DF-MLDeepMedic 186.93s 100K 

U-Net 15.25s 6.3M 

DF-U-Net 15.25s 6.3M 
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aper is to justify the effectiveness of the proposed approaches,

ather than beating the performance of complex segmentation sys-

ems. It is also worth noting that the proposed dual-force training

trategy can be applied to many existing models and therefore it

an be employed to further improve the performance of existing

omplex systems. e.g., [13] . In order to verify the effectiveness of

he proposed methods on cascade or ensemble systems, we choose

odel-Cascade Networks (MC-Net for short) as a stronger base-

ine. MC-Net is a network-cascade system, that employs separate

usionNets [13] for each kind of tumor region. We apply the pro-

osed methods to MC-Net, and report the results in Table 8 . The

mprovement of applying the proposed methods to MC-Net clearly

erifies that the proposed methods are applicable to ensemble or

ascade systems. 

We conduct similar comparison on the BRATS 2015 online test

atabase in Table 9 . It is also shown that the proposed methods

onsistently improve the segmentation performance of the base-

ines. We directly cite the performance of the state-of-the-art ap-

roaches [53,60] from their respective papers. DFNs achieve bet-

er performance than Kamnitsas et al. [6] and get comparable Dice

cores on the complete tumor and enhancing tumor with [53,60] .

he superior performance achieved in [53] partly depends on a se-

ies of handcrafted post-processing rules and manually determined

arameters. In comparison, the proposed approach can automati-

ally learn the post-processing rules and thus is easier to use in

ractice. Besides, the approach designed by Isensee et al. [60] is

lso based on U-Net and its contribution is parallel to DFN, which

eans that they can be combined together to further promote the

erformance of U-Net. 

.7. Complexity analysis 

In Table 10 , we list the average running time cost for segment-

ng one MRI scan for time complexity comparison and the number

f learnable parameters in different networks for space complexity

omparison. The running time costs of different networks are com-

ared on an NVIDIA GTX Titan Xp GPU. It is worth noting that the

roposed DF-Nets only predict label distributions in the training

tage; therefore, they don’t increase the time cost in the testing

tage. It is clear that MLDeepMedic only increases the time and

pace complexity of DeepMedic by about 10%. Therefore, we can

onclude that the complexity of the proposed models is acceptable.
. Conclusion 

Accurate brain tumor segmentation depends on multi-level in-

ormation. However, existing deep models do not explicitly guar-

ntee the quality of the learnt hierarchical features. In this paper,

e propose a dual-force training strategy to explicitly encourage

eep models to learn high-quality multi-level features. This is re-

lized by a label distribution-based loss function to learn the ab-

tract semantic information and a softmax loss function for seg-

entation using multi-level features. The dual-force training strat-

gy can be applied to many popular networks, e.g., DeepMedic

nd U-Net. Applying the proposed strategy to deep models only

lightly increases the time and space complexity while training.

esides, we also propose an MLP-based post-processing method

hat can automatically learn post-processing rules from data rather

han manual summarization. Extensive experiments on two most

ecent brain tumor segmentation databases justify the efficiency

nd effectiveness of the proposed approaches. One shortage of the

LP-based post processing method is that its training process is

eparated from that of DFN; therefore, the entire framework is not

ompletely end-to-end. In the future, we will further enhance the

egmentation capability of the deep architecture, so that a separate

ost-processing stage can be skipped. 
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