
On modeling network congestion using
continuous-time bivariate Markov chains

Brian L. Mark and Yariv Ephraim
Dept. of Electrical and Computer Engineering

George Mason University, MS 1G5
4400 University Drive, Fairfax, VA

email: bmark@gmu.edu, yephraim@gmu.edu

Abstract—We consider a model of congestion for computer
networks based on a continuous-time finite-state homogeneous
bivariate Markov chain. The model can be used to evaluate,
via computer simulation, the performance of protocols and
applications in a network with random path delays and packet
losses due to traffic congestion. Only one of the processes of the
bivariate Markov chain is observable. In our application, that
process represents the dynamics of traffic congestion along a
network path in terms of packet delay or packet loss. The other
is an underlying process which affects statistical properties of the
observable process. Thus, for example, the interarrival time of
observed events is phase-type. The general form of the bivariate
process studied here makes no assumptions on the structure of the
generator of the chain, and hence, neither the underlying process
nor the observable process is necessarily Markov. We present an
expectation-maximization procedure for estimating the generator
of a bivariate Markov chain given a sample path of the observable
process. We compare the performance of the estimation algorithm
to an earlier approximate estimation procedure based on time-
sampling. 1

Index Terms—network models, parameter estimation, Markov
models

I. INTRODUCTION

Computer simulation is often used to evaluate the per-
formance of network protocols and applications. The valid-
ity of network performance evaluation depends heavily on
the accuracy to which the relevant network behaviors are
represented by the simulation model. Ideally, the simulation
model should abstract the salient features of the network that
impact the performance of the protocol or application to be
evaluated. Just as importantly, the simulation model should be
sufficiently simple so that performance results can be obtained
in a reasonable amount of time or even in real-time.

In [21], a continuous-time finite-state bivariate Markov
chain was proposed as a model to simulate packet delays
and losses in a computer network. One of the processes of
the bivariate Markov chain, the underlying process, is not
observable, while the other process, the observable process,
represents the degree of congestion observed along a network
path at any given time. More precisely, the observable state
represents either a delay value or a “packet loss” condition due
to severe congestion along the path. The observation samples

1This work was supported in part by the U.S. National Science Foundation
under Grant CCF-0916568.

can be obtained by employing a sequence of probes sent from
a source to a destination host in a live network. The training
data could also be obtained from a realistic network emulation
environment such as Dummynet [6] or NIST Net [7] or a
relatively detailed network simulator environment such as ns-
2 [11] or OPNET [9]. The probes measure round-trip delays
between the source and destination, which are then quantized
and mapped to the set of observable states of the bivariate
Markov chain. Packet loss may be viewed as “infinite” delay
and represented by a specially designated observable state.

The parameter of the continuous-time bivariate Markov
chain is estimated from the observation samples and then
incorporated into a simulator to drive the simulation of a
network protocol or application by providing delays to pack-
ets transmitted into the network at arbitrary time instances.
Compared to the more conventional hidden Markov model, the
bivariate Markov chain can capture a higher degree of correla-
tion in the observable delay values and provide a more general
distribution of the time between jumps of the observable
process. A discrete-time hidden Markov model was proposed
by [19] to model packet losses in network communication
channels. However, a discrete-time model cannot assign losses
or delay values to packets transmitted at arbitrary time points
in an event-driven simulation [21].

The estimation scheme proposed in [21] involves time-
discretization of the bivariate Markov chain and inference of
its generator from an estimate of the transition probability
matrix of the resultant discrete-time bivariate Markov chain.
As discussed in [16], this approach may lead to ambiguous
estimates and in some cases will not lead to any valid estimates
for the generator of the continuous-time bivariate Markov
chain.

In this paper, we present an expectation-maximization (EM)
algorithm for maximum-likelihood (ML) estimation of the
generator of a continuous-time bivariate Markov chain from a
given sample path of the observable process. Properties of the
bivariate Markov chain and the EM algorithm are presented
in greater detail in [14]. To our knowledge, no EM algorithm
has previously been developed to estimate the parameter of
a general continuous-time bivariate chain in the maximum
likelihood sense. EM algorithms have been developed for the
BMAP [5], [13], MMMP [10], and MMPP [17], [18], which

978-1-4244-9848-2/11$26.00©2011 IEEE

are particular bivariate Markov chains [14]. Similar to [5],
[10], [13], [17], the EM algorithm described in this paper is
based on the approach of Rydén [18], originally developed
for parameter estimation of an MMPP. The EM algorithm
for the BMAP developed in [13] employs a randomization
technique for numerical computation. By contrast, the EM
algorithm developed in the present paper consists of closed-
form, stable recursions employing scaling and Van Loan’s
result for computation of matrix exponentials, along the lines
of [10], [17]. In Section IV, we provide a numerical example
to compare our EM algorithm with the parameter estimation
approach proposed in [21].

The remainder of this paper is organized as follows. Sec-
tion II presents the likelihood of the continuous-time bivariate
Markov chain. Section III presents the EM algorithm. In Sec-
tion IV, we discuss the implementation of the EM algorithm
and provide a numerical example. Concluding remarks are
given in Section V. Due to space limitations, proofs for the
propositions stated in this paper are omitted but may be found
in [14].

II. CONTINUOUS-TIME BIVARIATE MARKOV CHAIN

We consider a continuous-time finite-state homogeneous
bivariate Markov chain Z = (X,S) = {(X(t), S(t)), t ≥ 0}
and assume that it is separable and irreducible. The process
S = {S(t), t ≥ 0} is the underlying process with state space
{a1, . . . , ar} and X = {X(t), t ≥ 0} is the observable process
with state space {b1, . . . , bd}. The state space of Z is given
by {b1, . . . , bd}×{a1, . . . , ar}. To simplify notation, we will,
without loss of generality, frequently refer to X(t) = bl or
S(t) = ai as X(t) = l or S(t) = i, respectively. Neither X
nor S need be Markov. Conditions for either process to be
Markov were given in [3]. With probability one, all sample
paths of Z are right-continuous step functions with a finite
number of jumps in each finite interval [1, Theorem 2.1].

The bivariate chain is parameterized by a generator ma-
trix H = {hln(ij), l, n = 1, . . . d; i, j = 1, . . . r}, where
the joint states (l, i) are ordered lexicographically and for
(l, i) 6= (n, j),

hln(ij) = lim
h→0

1

h
P (Z(t+ h) = (n, j) | Z(t) = (l, i)). (1)

The generator matrix can be expressed as a block matrix
H = {Hln, l, n = 1, . . . , d}, where Hln = {hln(ij), i, j =
1, . . . , r} are r×r matrices. The number of independent scalar
values that constitute the generator H is at most rd(rd− 1).

A. Density of observed sample path

Assume that the observable process X of a bivariate Markov
chain Z = (X,S) starts from some state X0 at time T0 = 0
and jumps N times in [0, T] at 0 < T1 < T2 < · · · < TN ≤
T . Let Xk = X(Tk), such that Xk denotes the state of X
in the interval [Tk, Tk+1) for k = 0, 1, . . . , N − 1, and XN

denotes the state of X in the interval [TN , T]. We remark that
this convention differs slightly from that used in [10], where
Xk , X(Tk−1), k = 1, . . . , N + 1. Let ∆Tk = Tk − Tk−1,

k = 1, 2, . . . , N . We denote realizations of Xk, Tk, and ∆Tk
by xk, tk, and ∆tk, respectively. The observed sample path
can be represented as

X = {(X0,∆T1), (X1,∆T2), . . . , (XN , T − TN)}. (2)

Let Zk = Z(Tk) = (X(Tk), S(Tk)) = (Xk, Sk). Consider the
sample path defined by

Z = {(Z0,∆T1), (Z1,∆T2), . . . , (ZN , T − TN)}. (3)

The density of X may be obtained from the density of Z
as shown below in Proposition 1. Furthemore, the process
{(Zk, Tk)} obtained by sampling the process Z at the jump
times of the observable process X is a Markov renewal process
{(Zk, Tk)} [8].

Consider the conditional probability

P (T1 ∈ [t, t+ dt), Z(t)=(n, j) | Z(0)=(l, i)), l 6= n, (4)

and denote the corresponding density by f lnij (t). Let f ln(t) =
{f lnij (t), i, j = 1, . . . , r} denote the transition density matrix
of {(Zk, Tk)}. To obtain the density of the observable process,
we also need to consider the transition probability of the
underlying process S from state i at time 0 to state j at time t
while the observable process X remains in state l for at least
time t, denoted as follows:

f̄ lij(t) = P (T1 > t, S(t) = j | X(0) = l, S(0) = i). (5)

Let f̄ l(t) = {f̄ lij(t), i, j = 1, . . . , r} denote the corresponding
transition matrix.

Proposition 1. For t ≥ 0 we have

f ln(t) = eHlltHln, l 6= n, (6)

and

f̄ l(t) = eHllt. (7)

Proof: See [14].
Let x denote a realization of X (cf. (2)):

x = {(x0,∆t1), (x1,∆t2), . . . , (xN , T − tN)}.

Define µx0
(i) = P (X0 = x0, S0 = i), i = 1, . . . , r and let

µx0 = [µx0(1), µx0(2), . . . , µx0(r)].

Let 1 denote a column vector of all ones. Using the Markov
renewal property of {(Zk, Tk)}, the density of the observable
process X in [0, T], given that it jumped N times, can then
be expressed as

PX (x) = µx0

{
N∏
k=1

fxk−1xk(∆tk)

}
f̄xN (T − tN)1. (8)

978-1-4244-9848-2/11$26.00©2011 IEEE

B. Forward-backward recursions

The density PX (x) can be evaluated using forward and
backward recursions. For convenience, we shall assume that
tN = T , i.e., the last jump of the observable process occurs
at time T . In this case, (8) becomes

PX (x) = µx0

{
N∏
k=1

fxk−1xk(∆tk)

}
1. (9)

Let X γη denote the observed sample path in [Tη, Tγ], where
0 ≤ η ≤ γ ≤ N :

X γη = {X(t), t ∈ [Tη, Tγ]}
= {(Xη,∆Tη+1), . . . , (Xγ−1,∆Tγ), Xγ}.

We define the forward row vector

L(k) = {P (X k0 = xk0 , Sk = i), i = 1, . . . , r}, (10)

for k = 0, 1, . . . , N . The forward recursion implements the
product of µx0

and the bracketed term in (9), i.e.,

L(0) = µx0
,

L(k) = L(k − 1)fxk−1xk(∆tk), k = 1, . . . , N. (11)

We define the backward column vector

R(k) = {P (XNk =xNk | Xk−1 =xk−1, Sk−1 = i), i = 1, . . . , r}′,
(12)

where ′ denotes matrix transpose, for k = N,N−1, . . . , 1. The
backward recursion implements the product of the bracketed
term and the column vector 1 in (9):

R(N + 1) = 1,

R(k) = fxk−1xk(∆tk)R(k + 1), k = N, . . . , 1. (13)

Using the above forward and backward recursions, the ob-
servable path density is given by PX (x) = L(N)1 and also
by

PX (x) = L(k)R(k + 1), k = 0, . . . , N. (14)

To ensure numerical stability, it is necessary to scale the
above recursions. Using an approach similar to that developed
in [17], the scaled forward recursion is given by

L̃(0) = µx0 ,

L̃(k) =
L̃(k − 1)fxk−1xk(∆tk)

ck
, k = 1, . . . , N, (15)

where

ck , L̃(k − 1)fxk−1xk(∆tk)1, k = 1, . . . , N. (16)

The scaled backward recursion is given by

R̃(N + 1) = 1,

R̃(k) =
fxk−1xk(∆tk)R(k + 1)

ck
, k = 1, . . . , N. (17)

One can show straightforwardly that the scaled and unscaled
iterates of the forward and backward recursions are related by

L̃(k) =
L(k)∏k
m=1 cm

and R̃(k) =
R(k)∏N
m=k cm

, (18)

respectively. The density of PX (x) can be expressed as the
product of the scaling constants ck as follows:

PX (x) =
N∏
m=1

cm. (19)

From (18) and (10), we see that for k = 1, . . . , N , the scaled
forward vector L̃(k) can be interpreted as the probability
distribution of the underlying process S at time Tk conditioned
on the observable sample path up to and including time Tk:

L̃(k) = {P (Sk = i | xk0), i = 1, . . . , r}. (20)

III. EM ALGORITHM

In this section, we describe an EM algorithm for maximum
likelihood estimation of the true parameter of a bivariate
chain, denoted by φ0, given the sample path of the observable
process, X = {X(t), 0 ≤ t ≤ T}. In the EM approach, a
new parameter estimate, say φι+1 is obtained from a given
parameter estimate, say φι as follows:

φι+1 = arg max
φ

E{logP (Z;φ) | X ;φι)}, (21)

where Z denotes the sample path of the bivariate process given
in (3). The maximization is over φ, which consists of the off-
diagonal elements of the bivariate generator H .

The reestimation formula is obtained by considering the
dwell time Dl

i in each state (l, i) and the number of jumps mln
ij

from each state (l, i) to another state (n, j). Let ϕ(l,i)(t) =
I(Z(t) = (l, i)), where I(·) denotes the indicator function and
let # denote set cardinality. Then the dwell time and number
of jumps can be expressed, respectively, as follows:

Dl
i =

∫ T

0

ϕ(l,i)(t)dt, (22)

mln
ij = #{t : 0 < t ≤ T, Z(t−) = (l, i), Z(t) = (n, j)}.

(23)

Let D̂l
i and m̂ln

ij denote the conditional mean estimates given
X of Dl

i and mln
ij , respectively:

D̂l
i = E[Dl

i | X], m̂ln
ij = E[mln

ij | X],

where we have suppressed the dependency on φι to simplify
the notation. We have

D̂l
i =

∫ T

0

P (Z(t) = (l, i) | X)dt, (24)

where P (Z(t) = (l, i) | X) denotes the conditional probability
of Z at time t, and (see [14]):

m̂ln
ij =

∫ T

0

P (Z(t−) = (l, i), Z(t) = (n, j) | X)dt, (25)

978-1-4244-9848-2/11$26.00©2011 IEEE

where P (Z(t−) = (l, i), Z(t) = (n, j) | X) denotes the
conditional density of a jump of Z at time t. A result similar
to (25) was originally stated in [1], [2], [18]. The proof given
in [2] in the context of estimating phase-type distributions was
adapted in [10] for estimating MMMPs.

Maximization of E{logP (Z;φ) | X ;φι} over φ, which
consists of the off-diagonal elements of H = {hln(ij)}, yields
the following intuitive estimate in the ι + 1st iteration of the
EM algorithm [1]:

ĥln(ij) =
m̂ln
ij

D̂l
i

, (l, i) 6= (n, j). (26)

A. Number of jumps estimate

We shall present closed-form expressions for the estimates
given by (24) and (25). To estimate the number of jumps, two
cases are considered:

1) l = n, i 6= j, for which

m̂ll
ij =

∫ T

0

P (Z(t−) = (l, i), Z(t) = (l, j) | X)dt.

(27)

and
2) l 6= n, for which the number of jumps can be written as

mln
ij = #{t : 0 ≤ t ≤ T,Z(t−) = (l, i), Z(t) = (n, j)}

=
∑

k:xk=l,
xk+1=n

I(Z(tk−) = (l, i), Z(tk) = (n, j)).

(28)

We begin with the first case. For convenience, we shall
assume that T = tN , such that the density PX (x) of the
observable sample path is given by (19).

Proposition 2 (Number of jumps, l = n, i 6= j). Assume that
T = tN . Then,

m̂ll
ij =

[
Hll �

∑
k:xk=l

I ′k
ck+1

]
(i,j)

, (29)

where � denotes element-by-element matrix multiplication and

Ik=

∫ ∆tk+1

0

eHxkxk
(∆tk+1−y)Hxkxk+1

R̃(k+2)L̃(k)eHxkxk
ydy,

(30)

for k = 0, . . . , N − 1.

Proof: See [14].
Following the approach of [10], [17], we apply Van Loan’s

result [20] to evaluate the integral in (30). Define the 2r× 2r
matrix

Ck =

[
Hxkxk

Hxkxk+1
R̃(k + 2)L̃(k)

0 Hxkxk

]
. (31)

Then Ik is given by the r× r upper right block of the matrix
exponential eCk∆tk+1 , denoted as follows:

Ik =
[
eCk∆tk+1

]
(1,2)

. (32)

Next, we consider the second case in (28). The following
result holds in general for T ≥ tN .

Proposition 3 (Number of jumps, l 6= n).

m̂ln
ij =

Hln �
∑

k:xk=l,
xk+1=n

J ′k
ck+1

(i,j)

, (33)

where

Jk = R̃(k+2)L̃(k)eHxkxk
∆tk , k = 0, . . . , N−1. (34)

Proof: See [14].

B. Dwell time estimate

Next, we provide an expression for the dwell time estimate
in (25). For convenience, we shall again assume that T = tN .

Proposition 4. Assume that T = tN . Then,

D̂l
i =

[∑
k:xk=l

I ′k
ck+1

]
(i,i)

, (35)

where Ik is given in (32).

Proof: See [14].

IV. IMPLEMENTATION AND NUMERICAL EXAMPLE

The EM algorithm for continuous-time bivariate chains
developed in Section III was implemented in Python using the
SciPy and NumPy libraries. The matrix exponential function
from the SciPy library is based on a Padé approximation,
which has a computational complexity of O(r3) for an r × r
matrix (see [15]). For comparison purposes, the approximate
parameter estimation algorithm based on time-sampling pro-
posed in [21] was also implemented in Python. We refer to
this algorithm as the Baum-based algorithm for estimating the
parameter of continuous-time bivariate Markov chains.

A. Baum-based algorithm

In the Baum-based algorithm described in [21], the
continuous-time bivariate chain Z is time-sampled to obtain a
discrete-time bivariate Markov chain Z̃ = (X̃, S̃) = {Z̃k =
(X̃k, S̃k)}, where

Z̃k = Z(k∆), k = 0, 1, 2, . . . ,

and ∆ is the sampling interval. Let P denote the transition
probability matrix of Z̃. A variant of the Baum algorithm [4]
is then employed to obtain a maximum likelihood estimate,
P̂ , of P . An estimate of the generator of the continuous-time
bivariate chain is then obtained from

Ĥ =
1

∆
ln(P̂), (36)

978-1-4244-9848-2/11$26.00©2011 IEEE

where ln(P̂) denotes the matrix logarithm of P̂ , which has
the Taylor series expansion

ln(P̂) =
∞∑
n=1

(−1)n−1 (P̂ − I)n

n
. (37)

However, existence and uniqueness of a generator Ĥ corre-
sponding to a transition matrix P̂ is not guaranteed.

As pointed out in [16], Israel, Rosenthal, and Wei [12]
show that a sufficient condition for the matrix logarithm in
(37) to provide a unique generator Ĥ is that the eigenvalues
of P̂ must be distinct positive. Furthermore, if any of the
distinct eigenvalues of P̂ is negative, then no generator exists.
When P̂ has multiple corresponding generators, each provides
a different transition matrix. Moreover, if a generator matrix Ĥ
of a certain structure is desired (e.g., an MMPP), it is generally
not possible to estimate a transition matrix P̂ that yields the
required structure. In practice, the uniqueness and existence
of Ĥ for a given P̂ depends on the sampling interval ∆ [16].

B. Computational and storage requirements

The computational requirement of the EM algorithm de-
veloped in Section III depends linearly on the number of
jumps, N , of the observable process. On the order of N matrix
exponentials for the transition density matrix fxk−1xk(∆tk)
in (11) and (13) and for the matrix Ik in (32) are computed.
Computation of the matrix exponential of an r × r matrix
requires O(r3) arithmetic operations [15]. Thus, the computa-
tional requirement due to the matrix exponentials is O(Nr3).
The element-by-element matrix multiplications in (29) and
(33) contribute a computational requirement of O(N(r2d2)).
Therefore, the overall computational complexity of the EM
algorithm can be stated as O(N(r3 + r2d2)). The storage
requirement of the EM algorithm is dominated by the (scaled)
forward and backward variables L̃(k) and R̃(k). Hence, the
overall storage required is O(Nr).

For comparison, the computational requirement of the
Baum-based algorithm is O(Ñr2d2), where Ñ = T/∆ is
the number of discrete-time samples. The storage requirement
of the Baum-based algorithm is O(Ñrd). Clearly, both the
computational and storage requirement of this algorithm are
highly dependent on the choice of the sampling interval ∆.

C. Numerical example

A numerical example demonstrating parameter estimation of
a bivariate Markov chain using the EM procedure presented in
Section III is given in Table I. For this example, the number of
underlying states is r = 2 and the number of observable states
is d = 2. The generator matrix H is displayed in terms of its
block matrix components Hln, which are 2 × 2 matrices for
l, n ∈ {1, 2}. The column labelled φ0 shows the true parameter
value for the bivariate Markov chain. Similarly, the columns
labelled φ0 and φ̂em show, respectively, the initial parameter
and the EM-based estimate rounded to two decimal places. The
observed data, generated using the true parameter φ0, consisted
of 10,000 observable jumps. The EM algorithm was terminated

when the relative difference of successive log-likelihood values
fell below 10−7.

The bivariate Markov chain parameterized by φ0 in Table I
is neither a BMAP nor an MMMP (see [14]). The estimate
φ̂em was obtained after 63 iterations of the EM procedure.
An important property of the EM algorithm is that whenever
an off-diagonal element of the generator H is zero in the
initial parameter, the corresponding element in any EM iterate
remains zero. This can be easily seen from Propositions 2
and 3. Thus, if structural information about H is known, that
structure is maintained by the EM estimate provided that the
initial parameter estimate possesses this structure.

For comparison purposes, we implemented the Baum-based
approach proposed in [21] and applied it to the example of
Table I for the sampling intervals ∆ = 10−2, 0.5 × 10−2,
0.25×10−2. The Baum algorithm, applied after time-sampling
to obtain an estimate of the transition matrix of a discrete-
time bivariate Markov chain, was terminated when the relative
difference of successive log-likelihood values fell below 10−7.
The number of iterations required for the three sampling
intervals were 446, 105, and 123, respectively, while the
number of discrete-time samples were 106, 2 × 106, and
4 × 106, respectively. For this example, a generator matrix
could always be obtained from each transition matrix estimate
using (36) for all three sampling intervals.

The results are shown in Table II. For all three sampling
intervals, the estimate of H21 is not a diagonal matrix, but the
accuracy of this estimate appears to improve as ∆ is decreased.
The Baum-based estimates of the other block matrices Hln

also appear to become closer in value to the EM-based
estimate φ̂em shown in Table I when ∆ decreases. On the other
hand, as ∆ decreases, the computational requirement of the
Baum-based approach increases proportionally, as discussed
in Section IV-B.

φ0 φ0 φ̂em

H11 -70 10 -120 30 -77.03 -14.76
20 -55 2 -8 8.46 -47.95

H12 50 10 70 20 51.80 10.46
25 10 5 1 32.66 6.83

H21 50 0 70 0 49.50 0
0 10 0 1 0 9.54

H22 -60 10 -100 30 -59.51 10.01
20 -30 2 -3 19.61 -29.15

TABLE I
BIVARIATE MARKOV CHAIN PARAMETER ESTIMATION: φ0 = true;

φ0 = initial; φ̂em = EM-based estimate.

V. CONCLUSION

We considered a model of network congestion based on a
finite-state continuous-time bivariate Markov chain and devel-
oped explicit forward-backward recursions for estimating its
parameter in the maximum likelihood sense from observation
samples obtained from a real network. The observation or
training data consists of packet delay values or packet loss
indications obtained by sending probe packets along a network

978-1-4244-9848-2/11$26.00©2011 IEEE

φ̂baum
∆ 10−2 0.5 × 10−2 0.25 × 10−3

H11 -77.54 10.40 -78.18 15.40 -80.43 15.98
11.30 -49.21 6.16 -48.20 8.73 -48.53

H12 57.34 9.81 49.29 13.48 52.13 12.32
20.63 17.29 33.49 8.55 31.44 8.36

H21 47.10 2.91 52.04 1.18 51.92 0.45
2.19 15.36 2.11 9.74 0.97 10.63

H22 -56.29 6.28 -64.22 11.01 -64.51 12.13
4.21 -21.77 16.09 -27.93 17.72 -29.31

TABLE II
BAUM-BASED BIVARIATE MARKOV CHAIN PARAMETER ESTIMATION WITH

DIFFERENT SAMPLING INTERVALS ∆.

path. The parameter of the bivariate Markov chain model can
be used to drive an efficient event-driven simulation for eval-
uating the performance of network protocols and applications.

We developed an EM algorithm for estimating the parameter
of a bivariate Markov chain directly from the continuous
time sample path of the observations. The algorithm does not
require any sampling scheme or numerical integration, and it
preserves the structure of a generator attributed to the process.
None of these desirable properties is guaranteed by an earlier
approach proposed in [21]. In ongoing work, we are studying
the performance of the proposed estimation algorithm using
training data obtained from realistic network scenarios.

REFERENCES

[1] A. Albert. Estimating the infinitesimal generator of a continuous
time, finite state Markov process. Annals of Mathematical Statistics,
23(2):727–753, Jun. 1962.

[2] S. Asmussen, O. Nerman, and M. Olsson. Fitting phase-type distribu-
tions via the EM algorithm. Scand. J. Stat., 23(4):419–441, 1996.

[3] F. G. Ball, R. K. Milne, and G. F. Yeo. Continuous-time Markov chains
in a random environment, with applications to ion channel modelling.
Adv. in Appl. Prob., 26(4):919–946, Dec. 1994.

[4] L. E. Baum, T. Petrie, G. Solues, and N. Weiss. A maximization
technique occurring in the statistical analysis of probabilistic functions
of markov chains. Ann. Math. Statist., 41:164–171, 1970.

[5] L. Breuer. An EM algorithm for batch Markovian arrival processes and
its comparison to a simpler estimation procedure. Annals of Operations
Research, 112:123–138, 2002.

[6] M. Carbone and L. Rizzo. Dummynet revisited. ACM Computer
Communication Review, 40(2), April 2010.

[7] M. Carson and D. Santay. NIST Net – A Linux-based Network
Emulation Tool. ACM Computer Communication Review, June 2003.

[8] E. Çinlar. Markov Renewal Theory: A Survey. Management Science,
21(7):727–752, Dec. 1975.

[9] X. Chang. Network Simulations with OPNET. In P. A. Farrington,
H. B. Nembhard, D. T. Sturrock, and G. W. Evans, editors, Proc. Winter
Simulation Conference, pages 307–314, 1999.

[10] Y. Ephraim and W. J. J. Roberts. An EM algorithm for Markov
modulated Markov processes. IEEE Trans. Sig. Proc., 57(2), Feb. 2009.

[11] K. Fall and K. Varadhan, editors. The ns Manual. The VINT Project,
May 2010.

[12] R. B. Israel, J. S. Rosenthal, and J. Z. Wei. Finding generators for
Markov chains via empirical transition matrices with applications to
credit ratings. Math. Finance, 11(2):245–265, Apr. 2001.

[13] A. Klemm, C. Lindemann, and M. Lohmann. Modeling IP traffic using
the batch Markovian arrival process. Performance Evaluation, 54:149–
173, 2003.

[14] B. L. Mark and Y. Ephraim. Parameter estimation for continuous-time
bivariate Markov chains. Feb. 2011 (to be submitted for publication).

[15] C. Moler and C. Van Loan. Nineteen dubious ways to compute the
exponential of a matrix, twenty-five years later. SIAM Review, 45(1):3–
49, 2003.

[16] W. J. J. Roberts and Y. Ephraim. An EM algorithm for ion-channel
current estimation. IEEE Trans. Sig. Proc., 56:26–33, Jan. 2008.

[17] W. J. J. Roberts, Y. Ephraim, and E. Dieguez. On Rydén’s EM algorithm
for estimating MMPPs. IEEE Sig. Proc. Let., 13(6):373–377, June 2006.

[18] T. Rydén. An EM algorithm for estimation in Markov-modulated Pois-
son processess. Computational Statistics and Data Analysis, 21:431–
447, 1996.

[19] K. Salamatian and S. Vaton. Hidden Markov modelling for network
communication channels. In Proc. ACM Sigmetrics, June 2001.

[20] C. F. Van Loan. Computing integrals involving the matrix exponential.
IEEE Trans. on Automatic Control, 23(3), June 1978.

[21] W. Wei, B. Wang, and D. Towsley. Continuous-time hidden Markov
models for network performance evaluation. Performance Evaluation,
49:129–146, Sept. 2002.

978-1-4244-9848-2/11$26.00©2011 IEEE

