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Abstract

Conventional analysis methods for building structures with added viscoelastic dampers, such as direct integration, complex mode
superposition, and modal strain energy method, were compared, and a procedure based on rigid diaphragm assumption and matrix
condensation technique was proposed for application in the preliminary analysis and design stages. The results from the various
analysis methods with and without the matrix condensation were compared, in view of both accuracy and efficiency. According to
the eigenvalue analysis the major vibration modes were mostly preserved after the matrix condensation. It was also found that the
matrix condensation technique applied to dynamic analysis of a structure with added viscoelastic dampers provided quite accurate
results in significantly reduced time, regardless of the plan shape and the location of the viscoelastic dampers. 2002 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

For years viscoelastic dampers have been widely used
not only to improve residential comfort in strong winds
but also to enhance structural safety against large earth-
quake ground motion. There are many examples, such
as World Trade Center in New York and Columbia
Center in Seattle, USA, where viscoelastic dampers were
applied successfully to enhance the structural perform-
ance against dynamic loads [1,2].

Generally, in practice, the behavior of viscoelastic
dampers is represented by a spring and a dashpot con-
nected in parallel [3,4]. Although more rigorous methods
of analytical modeling exist taking into account the non-
linear behavior of the viscoelastic material, such as based
on Boltzmann’s superposition principle [5] or on frac-
tional derivative constitutive relationship [6], they may
not be applicable for the analysis of large scale structures
because of their huge computational demands. With this
spring-damper idealization, the dynamic system matrices
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can be constructed by superimposing the contribution
from the dampers onto the system matrices of the struc-
ture.

In the dynamic analysis of a building structure sub-
jected to a horizontal earthquake excitation, the damping
matrix is generally constructed from a linear combi-
nation of the mass and stiffness matrices so that the
dynamic equation of motion can be transformed into a
set of independent modal equations using the real-valued
eigenvectors and eigenvalues of the undamped system.
The assumption of proportional damping, however, may
not be valid when the viscoelastic dampers are added to
the structure. In this case the damping matrix may no
longer be proportional to the mass or stiffness matrix,
due to the installation of the discrete damping devices.
Such a non-proportionally damped structure, with
spring-dashpot type added dampers, can accurately be
analyzed by the direct integration method or the complex
mode superposition method. However the applicability
of the methods are limited by inherent shortcomings; the
former requires too much computation time and memory
space to be applied in practice, and the latter is theoreti-
cally complicated because the analysis should be carried
out in a complex domain. Also as the number of degrees
of freedom (DOFs) increases, the computational time
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required for the eigenvalue analysis increases signifi-
cantly.

As an alternative the modal strain energy method has
been applied for the analysis of a structure installed with
viscoelastic dampers [7]. The modal strain energy
method derives the equivalent damping ratios based on
the assumption of a proportional damping system. How-
ever, in the non-proportionally damped system, the
responses obtained using the modal strain energy method
are essentially approximate, and need to be verified. This
approach may not produce accurate results, especially
when the added damping is highly localized along the
building height.

In this study an efficient analytical procedure is
developed for the seismic analysis of structures with
added viscoelastic dampers, which are modeled by the
linear spring-dashpot connected in parallel. Special
attention has been paid to the formation of the system
stiffness and damping matrices contributed both from the
structure and the added dampers. The results computed
from the proposed method are compared with those from
the modal strain energy method, direct integration with-
out matrix condensation, and the complex mode super-
position method, to check the accuracy and efficiency of
the proposed method.

2. Analysis methods for structures with viscoelastic
dampers

2.1. Modal strain energy method

The modal strain energy method is a procedure to
determine a set of real-valued mode shapes, natural fre-
quencies and damping ratios for a linear structure with
frequency-dependent stiffness and damping. In this
approach the mode shapes and natural frequencies of the
approximate system are obtained by solving an eigen-
value problem that neglects the damping of the structure.
Then the modal damping ratios can be estimated by the
following equation [7]:

xi �
hi

2�1��fT
i Kefi

fT
i Ksfi

�� (1)

where xi=equivalent damping ratio for the ith vibration
mode, hi=loss factor of the viscoelastic material, Ke

=stiffness matrix of the structure without added dam-
pers, Ks=stiffness matrix of the structure with dampers,
and fi=ith vibration mode shape of the viscoelastically
damped structure. If the change of vibration mode
shapes due to the addition of dampers can be neglected,
the above equation can be further reduced to:

xi �
hi

2�1��w2
i

w2
si
�� (2)

where wi and wsi are the ith natural frequencies of the
structure without and with added dampers, respectively.

The modal strain energy method can be a valuable
tool for analysis of structures with a moderate amount
of evenly distributed viscoelastic dampers, as shown by
Shen et al. [5]. However the method may not be suitable
for a structure with a large damping system or unevenly
distributed viscoelastic dampers, as will be shown later
in the study.

2.2. Complex mode superposition method

The analysis of a structure with spring-damper type
viscoelastic dampers can be carried out using the com-
plex mode superposition method, which provides the
exact solution for the nonproportionally damped struc-
ture [8,9]. As the complex-valued mode vectors satisfy
the orthogonality condition, the equation of motion can
be uncoupled to modal equations. This method provides
accurate solutions regardless of the location of the visco-
elastic dampers. Also compared with the direct inte-
gration method, the complex mode superposition has the
advantage in that the modal characteristics of the non-
proportionally damped structure can be identified. How-
ever, as the scale of the structure increases the compu-
tation time increases rapidly, mainly because the size of
the dynamic matrices in eigenvalue analysis is increased
to 2n × 2n for n-degrees-of-freedom system. Therefore,
a lot of computational time and computer memory is
required in the stage of eigenvalue analysis. Further-
more, the procedure is not preferred in practice because
it needs complicated numerical procedure in a com-
plex domain.

2.3. Direct integration method

The direct integration method, which computes the
responses of a structure by integrating the equation of
motion, is commonly used in dynamic analysis of both
proportional and non-proportional damping systems. If
the direct integration method is based on reasonable
numerical operations, precise responses would be
obtained regardless of the location of the dampers. How-
ever, for structures with a large number of degrees of
freedom, a lot of computational time is required because
of the iterative nature of the numerical procedure.

3. Development of an efficient analysis method

3.1. Simplified modeling of multistorey structures

Generally floor slabs in a building have very large in-
plane stiffness, and the assumption of a rigid diaphragm
greatly increases the efficiency of analysis without sig-
nificant loss of accuracy in estimation of the responses
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resulting from ground excitations. The rigid floor dia-
phragm assumption may be most effective for seismic
analysis of multistorey buildings.

In addition to the rigid floor diaphragm assumption,
the efficiency of computation can be further increased
by applying the matrix condensation technique. In this
study the in-plane DOFs of all the nodal points located
on the floors are concentrated to the three DOFs, rep-
resenting two translational and one rotational degree of
freedom, as described in Fig. 1 (a) and (b). In this way
the 3-dimensional model structure is reduced to the stick
model, as shown in Fig. 1 (c), which has only three
degrees of freedom per floor. In Fig. 1 (a), the original
framed structure, the mass of the columns, beams, and
slabs are lumped to each nodal point, and the same mass
is used, both for the lateral and the rotational degrees-
of-freedom. For the structure with floor rigid dia-
phragms, shown in Fig. 1 (b), the mass moment inertia
about the vertical axis passing through the center is util-
ized for rotational mass.

3.2. Condensation of mass and stiffness matrices

To condense the equation of motion, the degrees of
freedom are divided into two parts; the primary ones
describing the x and y displacements and the z rotation
that will be retained (denoted by the subscript F), and
the secondary ones representing the remaining degrees
of freedoms to be reduced (denoted by A). Correspond-
ing to the division of the degrees of freedom, the system
mass matrix M and the stiffness matrix K are divided
into four parts, and the equations of motion are
expressed as follows:

�MAA MAF

MFA MFF
��ÜA

ÜF
� � �KAA KAF

KFA KFF
��UA

UF
� � �AA

AF
� (3)

where U and Ü are the displacement and acceleration
vectors, respectively, and A represents the load vector.

According to the Guyan’s matrix reduction technique
[10], the condensed stiffness and the mass matrices can
be written as follows:

Fig. 1. Description of the rigid diaphragm assumption and the matrix condensation technique.

K*
S � KFF�KFAK�1

AAKAF (4)

M*
FF � MFF � TT

AFMAF � MFATAF (5)

� TAFMAATAF

where TAF is

TAF � �K�1
AAKAF (6)

The load vector is condensed to the following form:

A*
F � AF�KFAK�1

AAAA. (7)

3.3. Formation of the condensed system damping
matrix

Construction of the damping matrix for a multi-
degree-of-freedom system is somewhat arbitrary, since
damping in a building structure is contributed from
diverse sources and may not be evaluated precisely.
Most commonly recognized methods are Rayleigh
damping, constant damping, and modal damping [10].
The Rayleigh damping assumes that the damping is pro-
portional to stiffness and/or mass. The constant damping
treats all modal damping ratios as equal, and the modal
damping presumes each modal damping ratio.

In the case of Rayleigh damping, the damping matrix
is constructed from a linear combination of the mass and
the stiffness matrices. Once the damping matrix is ready,
it can be condensed the same way as the mass matrix
was condensed (Eq. (5)). In this study, however, the con-
densed structural damping matrix C*

S was obtained by
the linear combination of the condensed structural stiff-
ness matrix, K*

S, and mass matrix, M*
S:

C*
S � aM*

S � bK*
S (8)

where the constant a and b are determined from the two
desired modal damping ratios. In this way the compu-
tation time and the memory space required in the con-
densing process can be reduced significantly. This sim-
plified process turned out to be appropriate through the
numerical analysis which will be presented later in
this study.
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In the other cases, the modal damping and the constant
damping, damping coefficient CNi in the ith modal equ-
ation, which is uncoupled by orthogonal relationship,
can be written with the frequency wi and the assumed
damping ratio zi [10]:

CNi � 2ziwi (9)

Therefore, the condensed damping matrix C*
S is

obtained by:

C*
S � (��1)TCN��1 (10)

where � is the mass-normalized mode shape matrix
obtained from the eigenvalue analysis with condensed
mass and stiffness matrices.

3.4. Condensation of the matrices contributed from
the dampers

In the case where the dynamic behavior of viscoelastic
dampers is described by an elastic spring and a linear
dashpot connected in parallel, as shown in Fig. 2 (a),
and when the damper is placed on x–z plane, two degrees
of freedom per node are allocated to represent its
behavior in the global coordinates. With this idealization
the damping and stiffness properties can be added separ-
ately to those of the structure. However, for compati-
bility, the rigid diaphragm assumption and the matrix
condensation technique also have to be applied to the
viscoelastic dampers before they are added to the con-
densed system matrices of the structure. Fig. 2 (b) illus-
trates that with rigid diaphragm assumption, the lateral
degrees of freedom are transferred to the mass center of
the structure. Then the matrix condensation is applied
with the lateral and rotational DOFs as primary ones to
be retained and the vertical DOF as a secondary one to
be condensed.

The equation of motion associated with the added vis-
coelastic dampers can be formed as follows:

�MDAAi MDAFi

MDFAi MDFFi
��ÜDAi

ÜDFi
�

Fig. 2. Rigid diaphragm assumption and matrix condensation technique applied for a viscoelastic damper.

� �CDAAi CDAFi

CDFAi CDFFi
��U̇DAi

U̇DFi
� (11)

� �KDAAi KDAFi

KDFAi KDFFi
��UDAi

UDFi
� � �ADAi

ADFi
�

where the quantities with the subscript A are related to
the secondary DOFs to be condensed, while those with
the subscript B to the primary DOFs to be retained. The
subscript D is used to represent that the quantities are
associated with the added dampers. To derive the con-
densed damping matrix for the ith damper, it is assumed
that the displacement vectors representing the secondary
and primary DOFs are related as follows:

UDAi � TDAFiUDFi (12)

where TDAFi � �K�1
DAAiKDAFi (Eq. (6)). The validity of

the assumption can be confirmed by referring to the gen-
eral procedure of the Guyan’s reduction [10]. The
derivative of Eq. (12) with respect to time leads to

U̇DAi � TDAFiU̇DFi (13a)

ÜDAi � TDAFiÜDFi (13b)

Substituting Eqs. (12) and (13) into Eq. (11) leads to the
following condensed equation of motion:

M*
DiÜDFi � C*

DiU̇DFi � K*
DiUDFi � A*

DFi (14)

where,

K*
Di � KDFFi�KDFAiK�1

DAAiKDAFi (15)

C*
Di � CDFFi � TT

DAFiCDAFi � CDFAiTDAFi (16)

� TDAFiCDAAiTDAFi

M*
Di � MDFFi � TT

DAFiMDAFi � MDFAiTDAFi (17)

� TDAFiMDAAiTDAFi

A*
DFi � ADFi�KDFAiK�1

DAAiADAi (18)

The condensed mass matrix M*
Di contributed from the
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dampers can be neglected because the mass of the dam-
pers is very small compared to the structural mass. Com-
parison of Eqs. (15) and (16) with Eqs. (4) and (5) con-
firms that the condensed stiffness and damping matrices
of the added dampers can be obtained in the same way
as the structure stiffness and mass matrices are con-
densed, respectively.

3.5. Assembly of system matrices

In the previous section, the viscoelastic dampers were
condensed separately from the structure. Then the con-
densed mass, stiffness, and damping matrices of the
combined system can be obtained by assembling the
condensed matrices of the two different parts. Fig. 3
shows the procedure that combines the condensed stiff-
ness matrix K*

Di and damping matrix C*
Di of the ith visco-

elastic damper to the condensed structural stiffness
matrix K*

S and the damping matrix C*
S, respectively. The

K*
FF and C*

FF denote the condensed stiffness and damp-
ing matrices of the combined system. In Eqs. (8) and
(10), the condensed damping matrix of the structure,
C*

S, is generally a proportional damping matrix. However
the condensed damping matrix of the combined system,
C*

FF, becomes non-proportional, due to the contribution
from the viscoelastic dampers, and therefore the mode
superposition using the real-valued mode vectors cannot
be applied.

As mentioned previously, the mass of the added visco-
elastic dampers is neglected and the condensed mass of
the structure M*

S is regarded as the mass of the com-
bined system:

M*
FF � M*

S (19)

Finally the equation of motion of the combined system
can be written as follows:

M*
FFÜF � C*

FFU̇F � K*
FFUF � A*

F (20)

The above equations of motion can be solved by the
direct integration method or mode superposition using
the complex mode vectors obtained from the eigenvalue
analysis, including the non-proportional damping matrix.
For the complex mode superposition method, the follow-
ing dummy equations are generally introduced to make
the number of equations of motion compatible with the

Fig. 3. Assembly of condensed matrices.

number of eigenvalues and eigenvectors, which is 2n for
an n DOF system:

M*
FFU̇F�M*

FFU̇F � 0 (21)

The eigenvalues and the eigenvectors of the combined
non-proportional damping system can be obtained from
the equation of motion expressed in the following state-
space form:

�0 M*
FF

M*
FF C*

FF
��ÜF

U̇F
� � ��M*

FF 0

0 K*
FF
��U̇F

UF
� (22)

� �0

A*
F
�

4. Application of the proposed method

4.1. Model structures for analysis

To verify the efficiency and accuracy of the proposed
method, four types of structures shown in Fig. 4 were
analyzed. The Model-A, a 3×1 bay and 10-storey framed
structure with a rectangular floor plan, were designed to
represent a regular structure. In this case the same
amount of viscoelastic dampers is mounted on every
floor. The Model-B is the same structure with the dam-
pers placed only on the third, fourth, seventh, and eighth
inter storey. It was used for confirming that accuracy
of the proposed method was assured, regardless of the
location of the dampers. The locations of the devices
were chosen by sequentially installing a viscoelastic
damper at the floor of maximum storey drifts. The
Model-C with irregular floor plan, which may have
strong participation of the torsional modes in the
dynamic motion, was used to check the accuracy of the
matrix condensation technique dealing with the localized
placement of dampers in an irregular structure. The
Model-D, a framed structure with 20-storeys and 3×3
bays, was prepared, to investigate the efficiency of the
proposed method. In normal analysis procedures the
analysis time required for the structure will be large
compared to those for the other model structures. How-
ever, the condensed stick model has only twice as many
DOFs as those for the 10-storey structures.
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Fig. 4. Model structures for analysis.

Table 1
Lists of the cases for modeling technique and analysis method

Cases Case-OI Case-OM Case-RI Case-RM Case-MSE

Matrix condensation × × � � ×
Analysis method Direct integration � × � × �

Complex mode superposition × � × � ×

Table 2(a)
Change of modal characteristics due to matrix condensation. (a) Model-A

Mode Case-OM Case-RM Case-MSE
Damping ratio Frequency (Hz) Damping ratio Frequency (Hz) Damping ratio Frequency (Hz)

1 0.02 1.06 0.02 1.06 0.21 1.07
2 0.65 1.26 0.62 1.18 0.32 1.45
3 0.74 1.30 0.69 1.22 0.33 1.65
4 0.04 3.24 0.04 3.24 0.15 3.29
5 0.06 5.61 0.06 5.62 0.31 4.58
6 0.09 8.25 0.09 8.25 0.33 5.10
7 0.64 8.60 0.13 11.14 0.04 5.74
8 0.12 11.15 0.16 14.25 0.29 8.16
9 0.66 9.57 0.20 17.45 0.30 8.47
10 0.16 14.26 0.23 20.50 0.05 8.84
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Table 2(b)
Model-B

Mode Case-OM Case-RM Case-MSE
Damping ratio Frequency (Hz) Damping ratio Frequency (Hz) Damping ratio Frequency (Hz)

1 0.02 1.06 0.02 1.06 0.20 1.06
2 0.27 1.26 0.29 1.23 0.17 1.16
3 0.24 1.43 0.25 1.42 0.17 1.28
4 0.04 3.24 0.04 3.24 0.15 3.29
5 0.18 4.76 0.21 4.88 0.15 3.60
6 0.15 4.98 0.17 5.06 0.17 3.94
7 0.06 5.62 0.06 5.62 0.04 5.74
8 0.15 6.72 0.17 6.84 0.03 5.87
9 0.13 7.09 0.14 7.14 0.08 6.23
10 0.09 8.25 0.09 8.25 0.00 8.47

Table 2(c)
Model-C

Mode Case-OM Case-RM Case-MSE
Damping ratio Frequency (Hz) Damping ratio Frequency (Hz) Damping ratio Frequency (Hz)

1 0.02 1.07 0.02 1.07 0.00 1.08
2 0.19 1.63 0.22 1.57 0.16 1.47
3 0.18 1.69 0.20 1.63 0.13 1.60
4 0.03 3.30 0.03 3.30 0.00 3.35
5 0.13 5.70 0.05 5.81 0.15 4.62
6 0.05 5.81 0.17 5.89 0.11 4.94
7 0.16 6.08 0.23 6.24 0.00 5.92
8 0.08 8.63 0.08 8.64 0.06 7.72
9 0.12 8.79 0.14 8.94 0.04 8.42
10 0.15 9.55 1.16 9.72 0.00 8.85

Table 2(d)
Model-D

Mode Case-OM Case-RM
Damping ratio Frequency (Hz) Damping ratio Frequency (Hz)

1 0.02 0.66 0.02 0.66
2 0.06 0.85 0.06 0.84
3 0.07 0.86 0.08 0.86
4 0.03 1.99 0.03 1.99
5 0.10 2.58 0.10 2.57
6 0.10 2.60 0.11 2.59
7 0.05 3.40 0.05 3.40
8 0.16 4.74 0.20 4.68
9 0.16 4.75 0.20 4.76
10 0.07 4.87 0.07 4.87

The columns and girders of all model structures are
composed of H-400×400×13×12 and H-300×300×10×13
(unit: mm), respectively. The masses of structural mem-
bers were lumped to each node, and then were concen-
trated to the mass center on each floor by rigid dia-
phragm assumption. Rayleigh damping was utilized to
represent the damping of the structure so that the first
and the second modal damping ratios be 2%. The

material properties of viscoelastic material used in this
study were taken from Zhang and Soong [1]; the esti-
mated stiffness and equivalent damping coefficients are
kd=19.0 tonf/cm, cd=4.0 tonf sec/cm. The 1940 El Centro
earthquake NS component was used as an input
ground excitation.

Each model structure was analyzed in five different
ways differing in modeling technique and analysis
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method as shown Table 1. The letter ‘ I’ represents direct
integration method, and ‘M’ means the complex mode
superposition method. The letter ‘O’ denotes the case
without the matrix condensation, and the letter ‘R’ rep-
resents the case with condensation. Finally Case-MSE
represents the analysis using the modal strain energy
method. The matrix condensation technique was not
applied for this case.

4.2. Comparison of modal characteristics

The natural frequencies and modal damping ratios for
the model structures with and without matrix conden-
sation are presented in Table 2. Since the direct inte-
gration method does not need eigenvalue analysis, only
the Case-OM, Case-RM, and Case-MSE were compared.
The modal strain energy method was not applied to the
model D.

It can be observed that the number of natural modes,
which represent the vibration characteristics of a struc-
ture, is reduced as a result of the matrix condensation.
However, most of the natural frequencies and damping
ratios of the major vibration modes in the condensed
model, Case-RM, remains quite similar to those of Case-
OM in all cases, regardless of the plan shape and the
installation of the dampers. Based on these observations,
it can be concluded that even if the matrix condensation
technique is applied, the principle modes that dominate
the dynamic responses are mostly preserved. However
the modal characteristics predicted by the modal strain
energy method turned out to be very different from those
of other cases. This is due to the fact that the modal
strain energy method failed to take into account accu-
rately the change in modal characteristics resulting from
the addition of the large damping.

4.3. Comparison of time history analysis results

The displacement time histories at the top floor of
each model structure are compared in Fig. 5. It can be
seen that the results for Case-RM, mode superposition
method on a condensed stick model, are very similar to
those of Case-OM, mode superposition on original
model. This can be expected, considering the similarity
in modal characteristics of the condensed and the orig-
inal models. Likewise the responses for Case-OI and
Case-RI, result from the direct integration method with
and without condensation, are almost identical. The
accuracy of the results from the condensed model is pre-
served also for structures with arbitrarily distributed vis-
coelastic dampers and with an irregular plan shape.
However, it can be observed that the responses for the
case-MSE are quite different from the others.

Figs. 6 and 7 show the maximum storey displacements
and inter-storey drifts of the model structures, respect-
ively. A little discrepancy can be observed between the

Fig. 5. Roof displacement time histories. (a) Model-A; (b) Model-B;
(c) Model-C; (d) Model-D.

results for the condensed and the original model struc-
tures, but the difference is small enough to be negligible
in engineering practice. It can also be noticed that the
results from the modal strain energy method highly
underestimate those predicted from the other methods.

In previous examples, the first and the second modal
damping ratios were assumed to be 2% of the critical
damping, which is generally applied for structures
behaving elastically under moderate earthquake or wind
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Fig. 6. Maximum storey displacements. (a) Model-A; (b) Model-B; (c) Model-C; (d) Model-D.

load. Fig. 8 presents the analysis results for the Model-
B with the modal damping ratios increased to 5%, which
is generally used for structures subjected to strong earth-
quake, and the results were compared with those with
2% damping. It can be noticed that the accuracy of the
proposed method is preserved in structures with a higher
damping ratio.

4.4. Comparison of computation time

The computation time required for each analysis
method is compared in Table 3 for model structure A
and D. As the numbers of degrees of freedom of struc-
tures A, B and C are the same, only structure A is taken
for analysis. In case A, as shown in Table 3 (a), the
number of degrees-of-freedom and the matrix size in the
condensed stick model were reduced to 1/16 and 1/256,
respectively. Consequently even though additional com-
putation time was needed in the matrix condensation
procedure in the Case-RI and RM, a lot of analysis time
and memory space can be saved in the overall dynamic
analysis procedure. The computational time for Case-RI
was reduced to only about 0.1% of that required for

Case-OI. This resulted from the significant reduction in
DOFs by matrix condensation. The Case-RM with
reduced DOFs consumed less than 1% of the analysis
time compared to Case-OM. The time required for Case-
MSE is between the cases with the original and the
reduced models.

The efficiency of the matrix condensation technique
turned out to be more considerable in the Model-D as
can be seen in Table 3 (b). In the Model-D the number
of stories was doubled, while the number of DOFs
increased four times. However, in case the matrix con-
densation technique is applied, the number of DOFs of
the reduced stick model of the Model-D increases twice
because three DOFs exist per floor, regardless of the
number of bays. As expected, this reduction in DOFs
resulted in significant saving in computation time; the
Case-RI and Case-RM required less than 0.05% of the
analysis time needed for Case-OI and Case-OM. Fur-
thermore, a lot of computer memory space could be
saved because the matrix size was reduced to 1/1024.
Throughout the study a personal computer equipped with
Pentium-III 500 MHz main board and 128 Mbyte RAM
was used in the dynamic analysis.
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Fig. 7. Maximum inter-storey drifts. (a) Model-A; (b) Model-B; (c) Model-C; (d) Model-D.

Fig. 8. Roof displacement time histories of Model-B. (a) With 2%
inherent damping; (b) With 5% inherent damping.

5. Conclusions

In this study an efficient analytical procedure, based
on matrix condensation technique, was proposed for the
seismic analysis of structures with added viscoelastic
dampers. Special attention has been paid to the conden-
sation of the stiffness and damping matrices contributed
from the added dampers. The results from the modal
strain energy method, direct integration and the complex
mode superposition method without matrix condensation
were compared with the results from the proposed
method to check the reliability and efficiency of the pro-
posed method.

According to the eigenvalue analysis the major
vibration modes were mostly preserved after the matrix
condensation. It was also found that the matrix conden-
sation technique applied to dynamic analysis of a struc-
ture with added viscoelastic dampers provided accurate
results in significantly reduced time, regardless of the
location of the viscoelastic dampers. In the direct inte-
gration method the largest benefit of matrix condensation
could be observed in the process of time history analysis,
while in the mode superposition method the reduction
in computation time was most prominent in the process
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Table 3(a)
Number of DOF’s and required computation time (unit: second). (a) Model-A

Cases Case-OI Case-OM Case-RI Case-RM Case-MSE

DOF’s 480 480 30 30 480
Matrix size 480×480 960×960 30×30 60×60 480×480
Condensation – – 2.2 2.3
Eigenvalue analysis – 417.1 – 0.3 62.4
Time history analysis 5125.0 497.1 4.7 2.9 291.5
Total 5125.0 914.2 6.9 5.5 353.9

Table 3(b)
Model-D

Cases Case-OI Case-OM Case-RI Case-RM

DOF’s 1920 1920 60 60
Matrix size 1920×1920 3840×3840 60×60 120×120
Condensation – – 113.8 114.4
Eigenvalue analysis – 26694.4 – 2.0
Time history analysis 291240.6 35349.3 37.1 22.9
Total 291240.6 62043.7 150.9 139.3

of eigenvalue analysis. The efficiency of the proposed
method is expected to increase as the scale of the struc-
ture increases. Finally the direct integration or mode
superposition method combined with the matrix conden-
sation technique, turned out to provide more accurate
results in less computation time compared with the
modal strain energy method. Based on these findings it
could be concluded that the proposed procedure can be
a useful tool for predicting the dynamic behavior of a
structure with viscoelastic dampers, especially in the
stage of preliminary analysis and design, or in the pro-
cess of determining the optimum amount and location
of the supplemental dampers.
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