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Influence maximization is a fundamental research problem in social networks. Viral marketing, one of 

its applications, aims to select a small set of users to adopt a product, so that the word-of-mouth effect 

can subsequently trigger a large cascade of further adoption in social networks. The problem of influ- 

ence maximization is to select a set of K nodes from a social network so that the spread of influence is 

maximized over the network. Previous research on mining top- K influential nodes assumes that all of the 

selected K nodes can propagate the influence as expected. However, some of the selected nodes may not 

function well in practice, which leads to influence loss of top- K nodes. In this paper, we study an alterna- 

tive influence maximization problem which is naturally motivated by the reliability constraint of nodes 

in social networks. We aim to find top- K influential nodes given a threshold of influence loss due to the 

failure of a subset of R ( < K ) nodes. To solve the new type of influence maximization problem, we pro- 

pose an approach based on constrained simulated annealing and further improve its performance through 

efficiently estimating the influence loss. We provide experimental results over multiple real-world so- 

cial networks in support. This research will further support practical applications of social networks in 

various domains particularly where reliability would be a main concern in a system deployment. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

Social networks provide an intuitive representation about in-

ividual connections and display interesting behavioral patterns

cross various populations of users ( Wasserman & Faust, 1994 ). So-

ial network analysis is attracting more and more attention from

ifferent research areas and becomes an important tool for devel-

ping intelligent systems in recommendation, crowdsourcing ser-

ice and so on Domingos and Richardson (2001) , Zafarani, Abbasi,

nd Liu (2014) , Sun, Lin, and Xu (2015) , Zeng et al. (2015) . 

The merit of a social network lies in the power of users’ inter-

ction that propagates influence of individuals toward the entire

etwork. Such effects have been seen in many real-world appli-
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ations. For example, a Tweet in Twitter is probably followed by

undreds even thousands of the registered users. By exploiting in-

uence spread, a marketing campaign may target a small set of in-

uential individuals and expect that the selected users would gen-

rate the largest influence coverage in the market. This is a general

roblem of influence maximization in social networks where the

ask is to find top- K influential nodes through influence diffusion

odels ( Kempe, Kleinberg, & Tardos, 2003 ). 

In an ideal circumstance, top- K nodes will spread the influence

nce they are selected and subsequently activated in a social net-

ork. The maximum influence can be achieved only if all of the se-

ected nodes have successfully propagated the influence. However,

he influence will be compromised when some of the nodes may

ot function as they are expected. For example, to market a new

roduct, a company selects a set of retailers that are active and

how interest in a similar product market. Due to the changing of

nancial situations, some of the retailers may not persist the mar-

eting focus on the recommended product. Consequently the new

roduct will not be exposed as much as it should be in the market.
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Fig. 1. A social network with influence values on the directed edges. Top-3 in- 

fluential nodes are { v 2 , v 5 , v 7 } in the conventional influence maximization while 

{ v 2 , v 5 , v 1 } are solutions to the influence maximization with a tolerable influence 

loss (1.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a
 

c  

i  

c

(  

n  

{  

l

 

f  

v  

w  

fl  

l  

m  

t  

fl  

l  

l  

t  

t  

t  

p

 

p  

p  

i  

K  

t  

b  

c  

T  

u  

c  

v  

fl  

w  

c  

t

 

W  

m  

a  

p  

m  

p  

t  

M  

p  

g

 

n  

e  

c  

g  

p  

s  

g

 

S  

m  

i  

h  

f  

t  
The influence loss occurs to the selected retailers from the perspec-

tive of the marketing company. Intuitively, the company may pre-

fer to choose a set of retailers such that they are able to reach a

certain level of market coverage (probably not the maximum one),

and the market loss is tolerable due to possible malfunctions of the

selected retailers in the campaign. As another example application

of influence maximization, considering a water network, sensors

deployed on the selected locations (pipe junctions) to monitor con-

taminant spread in the network ( Ostfeld, Uber, & Salomons, 2006 )

as quickly as possible. The detection loss due to the possible mal-

functions of sensors would lead to a disastrous effect, and thus it

is vital that the detection loss shall be considered when locations

are selected. In this paper, we study how the consideration of in-

fluence loss would impact the selection of top- K influential nodes

in social networks. 

Things become complex since the set of nodes that are proned

to failure are unknown in the selection process. In addition, it is

normally hard, if not impossible, to predict individual failure prob-

abilities of nodes in a large scale of social networks, which may

depend on many uncertain factors and vary from time to time.

On the other hand, it is easier to estimate the number of failure

nodes according to previous observations on the malfunctioning

networks. For example, in a water network ( Ostfeld et al., 2006 ),

it is rather difficult to predict the failure probabilities of individ-

ual sensors, which may be affected by their environment, deploy-

ment duration, etc. However, it is easier to estimate the number

of failure sensors in the future since the sensor quality is a main

factor deciding its functions. Similarly, it is difficult to get failure

probabilities of retailers in the marking campaign ( Hajian & White,

2012 ) while it is more feasible to predict the number of retailers

that may not perform well as expected. Hence we focus on the in-

vestigation of influence loss given the number of failure nodes in

social networks. 

Failure of some nodes may lead to an invisible influence loss

while the loss could be significantly large due to failure of others.

To act in a pessimistic way, we consider the worst case that the

largest influence loss occurs to the selected nodes, and we may tol-

erate the loss only if it is not beyond a threshold. By computing the

influence of nodes through a traditional influence diffusion model,

e.g. independent cascade model as well as its improvement ( Jacob,

Barak, & Eitan, 2001; Liu, Cong, Zeng, Xu, & Meng, 2014a ), we elab-

orate one example of influence loss in Fig. 1 . 

Example 1. Given K = 3 , we can compute the influence for the set

of nodes, { v 2 , v 5 , v 7 }, as follows. We first compute the influence

for every node in the social network and then sum the individ-

ual influence. As v 1 is only influenced by v 2 , the influence is 0.3

from the entire set. For the node v , two paths, v − > v − > v 
3 2 1 3 
nd v 2 − > v 3 , may spread the influence from the set { v 2 , v 5 , v 7 }. v 3
ould be influenced by either of them or both. Hence, the influence

s counted as: 1-(1–0.6) × (1–0.3 × 0.7) = 0.684. Similarly, v 4 re-

eives the influence from three paths: 1-(1–0.4) × (1–0.3 × 0.6) ×
1–0.1) = 0.5572. v 6 gets the influence: 1-(1–0.2) × (1–0.2) = 0.36. Fi-

ally, the set have deterministic influence ( = 1) on their own nodes

 v 2 , v 5 , v 7 }. Hence the influence induced by { v 2 , v 5 , v 7 } is calcu-

ated as: 0.3 + 0.684 + 0.5572 + 0.36 + 3 = 4.9012. 

For the network of a small size, we can compute the influence

or every set of three nodes and identify that the set of nodes, { v 2 ,

 5 , v 7 }, exhibit the maximum influence (influence value = 4.9012)

hile nodes, { v 1 , v 2 , v 5 }, are the second best influential ones (in-

uence value = 4.864). Assume that only one node fails in the se-

ected set. We then compute the influence exhibited by the re-

aining two nodes in the set. The influence difference between

he original set of three nodes and the remaining nodes is the in-

uence loss value due to the node failure. Accordingly, the largest

oss is 2.4412 for the first set when node v 2 fails; while, the

argest loss is 1.2264 when v 1 fails in the second set. Given a

olerable value of influence loss (threshold = 1.5), we may accept

he second set of nodes, { v 1 , v 2 , v 5 }, although they are not the

op-3 influential ones in the conventional influence maximization

roblem. 

To provide a reliable top- K solution to influence maximization

roblems in social networks, we study influence loss in this pa-

er. Assume that the number of failure nodes could be predicted

n influence propagation, we develop an approach to finding top-

 nodes that maximize the influence spread given a threshold of

he largest influence loss. We solve the task of mining top- K nodes

y formulating it as one constrained optimization problem. In the

ontext of social networks, solving such a problem is rather hard.

he greedy algorithm ( Kempe et al., 2003 ) that was extensively

sed to solve conventional influence maximization problems be-

omes problematic since feasible/optimal solutions may be pre-

ented. Incrementally adding nodes with the largest marginal in-

uence may simultaneously introduce potential nodes failure of

hich will result in an incredible influence loss. In addition, the

omputation of influence loss may further contribute to the solu-

ion complexity. 

We propose a Constrained Simulated Annealing (CSA) ( Wah &

ang, 1999; Wang, 2001 ) based technique for solving influence

aximization problems with the constraint of influence loss. The

pproach is guaranteed to converge towards the optimum with

robability one if such solutions exist. The CSA algorithm develop-

ent is not trivial in our context since we need to design a proper

enalty function that correctly encodes the influence maximiza-

ion problem with influence loss constraint in an effective way.

ore importantly, we need to investigate sufficient conditions and

ractical parameter settings that guarantee the algorithmic conver-

ence in the new problem. 

To improve the efficiency of the CSA algorithm, we develop a

ew evaluation function that allows a fast computation of influ-

nce loss by reusing calculations of individual influence in a so-

ial network. Subsequently, we prove that the new algorithm can

enerate feasible solutions to the complex influence maximization

roblem. We conduct extensive experiments in multiple real-life

ocial networks and demonstrate performance of the proposed al-

orithms. 

The remainder of this paper is organized as follows. In

ection 2 , we review the most relevant work on influence maxi-

ization techniques. In Section 3 , we formulate an influence max-

mization problem with influence loss constraint and prove its

ardness. In Section 4 , we propose the CSA based algorithm and

urther improve its efficiency by developing a new penalty func-

ion in CSA. The algorithmic convergence and complexity are also
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Table 1 

Notations. 

Notations Descriptions 

G = {V, E} Social network, its set of vertices V and edges E
N The number of nodes in G
M The number of edges in G
S The seed set 

A The failure set 

K The number of seed nodes 

R The number of failure nodes 

P vu The propagation probability from v to u 

σ ( S ) The expected number of nodes influenced by S 

η The influence loss threshold 

h ( v, u ) The influence spreading path from v to u 

AP ( v, u ) The expected influence on u activated by v 

L �( S, λ) The penalty function of joint space � = (S, λ) 
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nalyzed. In Section 5 , we conduct a series of experiments to

emonstrate the algorithm performance in multiple social net-

orks. Finally, we summarize this research and discuss its limita-

ions followed by some hints on future directions. 

. Related work 

We briefly review influence maximization problem as well as

elevant techniques and elaborate one state-of-art influence maxi-

ization algorithm. Notations used in this paper are summarized

n Table 1 . 

.1. Influence maximization problem 

The problem of influence maximization has received substan-

ial attention in the past decade. Richardson et al. ( Domingos

 Richardson, 2001; Richardson & Domingos, 2002 ) are pioneers

n studying influence maximization problem in social networks.

hey describe the problem in a probabilistic framework and re-

olve it using Markov Random Field. Kempe et al. (2003) formu-

ate the problem as a discrete optimization problem. They prove

he NP-hardness of influence maximization problems, and propose

 greedy algorithm to approximately solve it by repeatedly select-

ng the node incurring the largest marginal influence increase to a

eed set. 

Most of the subsequent research on mining top- K influential

odes is developed based on the greedy algorithm and improves

he algorithm performance by reducing the complexity on calculat-

ng influence spread. For example, Leskovec et al. (2007) propose

 mechanism called Cost-Effective Lazy Forward (CELF) to reduce

he number of times required to calculate influence spread. Chen

t al. propose two fast heuristics algorithms, DegreeDiscount ( Chen,

ang, & Yang, 2009 ) and PMIA ( Chen, Wang, & Wang, 2010 ), to se-

ect nodes at each step of the greedy algorithm. Meanwhile, Wang,

ong, Song, and Xie (2010) solve the problem by exploring the

nderlying community structure of social networks. Based on this

ork, Song, Zhou, Wang, and Xie (2014) propose a more efficient

ivide-and-conquer method. Jiang et al. (2011) resort to a simu-

ated annealing (SA) algorithm to find top- K influential nodes. As-

uming a small propagation probability, the SA algorithm adopts a

imple fitness function by exploiting the property of neighboring

odes of a seed set in social networks. Jung, Heo, and Chen (2012)

mploy the influence ranking technique to scale up the mining

lgorithms. Liu et al. (2014b) use the parallel processing capabil-

ty of GPU to accelerate the process of solving influence maxi-

ization problem. Liu et al. (2014a) propose the Influence Spread

ath (ISP) technique for computing influence spread. Following the

imilar strategy, Kim, Kim, and Yu (2013) present an indepen-
ent path algorithm and parallelize the algorithm in order to ef-

ciently solve some large social networks. However, it seems that

here is no straightforward way to generalize the mentioned algo-

ithms for solving the new influence maximization problem in this

aper. 

Recently, the influence maximization problem with impact fac-

ors emerges as a new line of research on social networks ( Chen,

u, & Zhang, 2012; Gomez-Rodriguez & Scholkopf, 2012 ). Goyal,

onchi, Lakshmanan, and Venkatasubramanian (2013) investigate

he problem on searching the smallest set of influential nodes

hose expected spread is beyond a threshold value at a time

oint. Similarly, Nguyen and Zheng (2012) study the budgeted in-

uence maximization in which activating each node incurs an arbi-

rary cost. Li, Chen, Feng, Tan, and Li (2014) consider the influence

aximization with location limitation and propose two greedy al-

orithms for solving their problem. Feng et al. (2014) investigate

he effect of novelty decay on influence propagation on real-life

atasets and solve the influence maximization with novelty decay.

he aforementioned solutions mainly extend the greedy algorithm

o solve the influence maximization problem with constraints. The

lgorithms select candidate nodes by making a trade-off between

heir marginal influence increase and resulting cost to the seed set.

owever, influence loss studied in this paper can only be com-

uted when an entire selection process is completed. This prevents

n immediate extension of the greedy algorithm with a guarantee

f the solution quality. 

.2. Influence spread path methods 

The ISP method ( Liu, Cong, Xu, & Zeng, 2012; Liu et al., 2014a )

rovides a structural representation that can speed up the calcu-

ation of influence spread. An influence spreading path, h ( v, u ),

s from one of the seed nodes, v ∈ S , to a non-seed node, u ∈
(V − S) , and the path does not contain any of the other seed

odes in between. The path probability, P h ( v, u ) , is the multiplica-

ion of the propagation probability of all edges in the path, e.g.,

 h (v ,u ) = 

∏ 

(v ′ ,u ′ ) ∈ h (v ,u ) P (v ′ , u ′ ) . Subsequently, we may calculate the

xpected influence, AP (S, u ) = 1 − ∏ 

v ∈ S (1 − P h (v ,u ) ) , on a non-seed

ode u activated by the seed set S , by assuming that all the paths

nding at u are independent. Thus, the influence of the seed set

an then be estimated as the sum of all AP ( S, u ) over the non-seed

et, e.g., σ (S) = 

∑ 

u ∈ (V−S) AP (S, u ) . 

There exist a host of approaches to estimating influence spread

or a given seed set. It is not our interest to propose another

ethod. In this paper, we employ the ISP method ( Liu et al., 2014a )

n the proposed CSA algorithms. It is demonstrated in the experi-

ents that ISP achieves good performance (with a trade-off be-

ween influence spread and run time) compared to a wide range

f existing algorithms. In this paper, we will integrate the ISP

ethod into the proposed CSA algorithms by employing it to es-

imate influence of the set of seed nodes. However, we shall note

hat other existing influence calculation techniques can also be in-

egrated into our proposed CSA algorithms for the same purpose

lthough they cannot be directly used to solve the new influence

aximization problem. 

. Problem formulation 

Consider a directed graph G = {V, E} with |V| = N vertices and

E| = M edges. For each edge ( v, u ) ∈ E, P v u is the probability of in-

uence being propagated over the edge. A conventional influence

aximization problem is to find a seed set S ⊆ V given | S| = K

uch that the influence, σ ( S ), is maximized according to a diffusion

odel. We adopt independent cascade (IC) model ( Kempe et al.,

003 ) that is widely used in the literature. Given an initial set

f seed nodes, S , the IC model propagates influence in inductive
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Fig. 2. The ratio of the average influence spread of ( S − A ) to the influence spread of top- K nodes decreases when more nodes fail in the seed set ( S ) instead of the non-seed 

set ( V − S). 
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steps. Let Z t be the set of nodes activated at t , and Z 0 = S. Every

active node v ( ∈ Z t ) has a single chance to activate any of its cur-

rently inactive node, u �∈ 

⋃ t 
0 Z t , with the probability P vu . The prop-

agation process terminates if and only if we cannot find any ac-

tive node. The expected number of all active nodes is denoted as

σ (S) = 

∑ ∞ 

0 | Z t | . 
Let A be the set of failure nodes of size R ( = | A |) in the influ-

ence propagation. Influence loss occurs when the set of nodes fail

in propagating the influence as they are expected. The selected R

nodes may work properly in an initial setting, but fail to function

later in an actual propagation. In general, nodes in any part of a

network could fail; however, they may lead to more visible influ-

ence loss when nodes in a seed set S fail. Let TR be the total num-

ber of failure nodes and R be the number of failure seed nodes.

We compute Ratio = 

A v e [ σ (S−A )] 
σ (S) 

, where A v e [ σ (S − A )] is the aver-

age influence spread when TR nodes, including both R nodes in

top- K nodes ( S ) and (T R − R ) nodes in ( V − S), fail in a network

once the seed set S has been selected. We conduct experiments

with the computation in two publicly available real-world social

networks: NetHEPT and Epinion . Details about the networks will be

elaborated in Section 5 . 

Fig. 2 shows that the influence ratio decreases when the per-

centage R 
T R % increases (more nodes fail in the seed set instead of

the non-seed set). In both cases ( K = 50 or 20), the influence spread

is reduced by half (even more) if all of the failure nodes are se-

lected from the seed set ( R 
T R % = 1 ). Hence, focusing on the seed set

may prevent unaffordable influence loss due to the node failure. 

In this paper, we consider the failure set as a subset of seed

nodes, A ⊆ S , where in general R ≤ K . We define influence loss

as the reduced influence [ σ (S) − σ (S − A )] , where σ (S − A ) is the

expected influence of nodes excluding the failure nodes. Essentially

we need to calculate the influence of ( K − R ) nodes since a set of

R nodes are to be removed from the network due to their failure.

The failure of some R nodes may not largely impact the expected

influence of K nodes while a significant influence may be lost due

to the failure of other R nodes. We consider the worst case: the

largest loss, MaxLoss , occurs when the maximum influence of the

remaining ( K − R ) nodes is the minimum one compared to that of

any set of other ( K − R ) nodes. Formally, given | A | = R, MaxLoss =
σ (S) − min A ⊆S σ (S − A ) . 

For a given social network, our problem is to find a seed set S

of size K that maximizes σ ( S ) subject to that the largest influence

loss is not above a threshold η( > 0) due to a failure set A of size R .

We may formulate the Influence Maximization problem with Influ-

ence Loss constraint (IMIL) as a constrained optimization problem
elow. 

Given : G, K, R, η
Objective : max 

S⊆V, | S| = K 
σ (S) 

Constraint : σ (S) − min 

A ⊆S, | A | = R 
σ (S − A ) ≤ η

(1)

ote that a sufficiently large value of η may convert the IMIL prob-

em into a conventional influence maximization problem without

onstraint (IM). Since the conventional IM problem is NP-hard , we

ay prove that the IMIL problem is NP-hard , which is given in

heorem 1 . 

heorem 1. The influence maximization problem with influence loss

onstraint (IMIL) is NP-hard . 

roof. Given a conventional influence maximization (IM) problem

nstance ϕ: G = {V, E} and K , we can construct an IMIL instance ω
y adding an influence loss constraint, σ (S) − min A ⊆S σ (S − A ) ≤ η
nd η ≥ N . As σ ( S ) ≤ N , every S meets the influence loss con-

traint. Hence, S are the top- K influential nodes of ω iff S is the se-

ected seed set of ϕ. As the IM problem has been proved to be NP-

ard ( Kempe et al., 2003 ), the IMIL problem is NP-hard as well. �

We observe that the IMIL problem requires the settings of K, R

nd η for a given network. In general, K refers to the limited bud-

et in the marketing campaign while R is the amount of campaign-

ng resource that may fail to meet the expectation on propagating

nfluence in practice. η is tolerable loss of the market coverage and

ainly depends on personal preference, particularly the risk pro-

le, over the expected market coverage. A reasonable setting of R

nd η ensures feasible solutions to the IMIL problem, which is as-

umed in this paper. On the other hand, we will examine the im-

act of the parameter settings on the proposed algorithms in the

ollowing sections. 

. Our methods 

We first show that the greedy algorithm for conventional IM

roblems may not generate feasible solutions to the IMIL problem.

ubsequently, we develop a Constrained Simulated Annealing (CSA)

ased algorithm for solving IMIL. Meanwhile, we propose an ap-

roach to improving the efficiency of the CSA algorithm and prove

easibility of the new algorithm. 
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CSA for IMIL
Input: G, K, R, η, initial temperature T0,
termination temperature Tf and trial number q
Output: Seed set S, where |S|=K
1. Initialize t ← 0, Tt ← T0, c ←0
2. Initialize a solution D ←(S,λ) including λ=0

and a seed set S ⊆ V with (|S|=K)
3. While Tt > Tf do
4. Compute LD(S,λ)
5. Update a neighbour set ND for D
6. Generate a trail point D′ ∈ ND randomly
7. Compute the change of L: ΔL ←LD′ − LD

8. Set c ← c+1
9. If λ′ = λ then
10. If ΔL<0 then
11. D ← D′

12. else
13. Generate a random number θ ∈(0,1)
14. If exp(−ΔL

Tt
)> θ then

15. D ← D′

16. else
17. If S ′ = S then
18. If ΔL>0 then
19. D ← D′

20. else
21. Generate a random number θ ∈(0,1)
22. If exp(−ΔL

Tt
)> θ then

23. D ← D′

24. If c>q then
25. Compute the trial temperature ρ
26. t ← t+1, Tt ← q×ρ

ln(t+1)
, c ←0

27.Return S

Fig. 3. The CSA algorithm searches the joint space ( S, λ) and computes the penalty 

function. It will be improved by using a new penalty function in Section 4.3 . 
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.1. Infeasibility of plain greedy algorithms 

A natural solution to the IMIL problem attempts a plain greedy

lgorithm that is the cornerstone of many state-of-art techniques

or influence maximization ( Kempe et al., 2003 ). This plain greedy

lgorithm is one of the most important approximation techniques,

ith a lower bound ratio of 1 − 1 
e . Its principle is to repeatedly add

he node incurring the largest marginal influence increase to the

eed set S until the size of the seed set reaches K . 

As the plain greedy algorithm picks up a node without consid-

ring possible influence loss of its own or other nodes, it may lead

o a large amount of influence loss when some of the selected

odes fail in the actual influence propagation. This is mainly be-

ause the newly selected nodes (into the top- K nodes) do not pre-

erve the joint influence of K -1 nodes if some of the nodes would

ail. Consequently, the algorithm may not generate a feasible solu-

ion even if such solutions exist in the IMIL problem. For example,

sing the greedy algorithm to solve the IMIL problem ( K = 3 and

 = 1) in Fig. 1 , we first pick the node, v 2 , and then v 5 . After that,

he algorithm selects the node v 7 as it has the largest marginal

nfluence increase to the incomplete seed set { v 2 , v 5 }, which gen-

rates the maximum influence of the top-3 nodes. However, the

eed set of { v 2 , v 5 , v 7 } is not a feasible solution when influence

oss (given the threshold 1.5) is considered in the influence maxi-

ization problem. As we know, the optimal selection shall be the

et { v 2 , v 5 , v 1 } as including v 1 will compensate the influence loss

ue to the failure of v 2 . 

Another attempt is to select top-( K − R ) nodes, which explic-

tly considers the effect of R failure nodes, through existing al-

orithms for conventional influence maximization. However, since

he set of failure nodes is unknown, it is impossible to select

 K − R ) nodes that guarantee to be successful on propagating the

nfluence. Hence it is not proper to simply convert our problem

nto the issue on finding top-( K − R ) nodes. 

To seek feasible solutions to the IMIL problem, we extend the

reedy algorithm by employing one backtracking strategy in the

earch. The extended algorithm, called GreedyB , first generates top-

 influential nodes. Subsequently, it updates the top- K nodes if

he seed set does not meet the constraint. For each update, only

ne candidate node is replaced with the one having the largest

arginal influence increase among the rest ( V − S) nodes. The pro-

edure is terminated once a new solution satisfies the constraint. 

Built upon the backtracking strategy, the GreedyB algorithm

enerates a feasible solution to the IMIL problem; however, the

olution optimality is not guaranteed in a theoretical way since

he replacement process does not optimize the solution under the

onstraint. Similar to some extension of greedy algorithms ( Goyal

t al., 2013; Nguyen & Zheng, 2012 ), one possible way would select

andidate nodes by making a trade-off between their influence in-

rease and influence loss to the seed set. However, the information

oss is subject to the changing of the seed set and cannot be com-

uted without completing the entire selection process. This moti-

ates us to develop a new technique for solving the IMIL problem. 

.2. CSA based approaches 

Essentially we need an algorithm that can strategically explore

n entire solution space of a seed set and accept candidate solu-

ions in a systematic way. We proceed to develop a Constrained

imulated Annealing (CSA) based algorithm for solving IMIL. The

SA technique provides a uniform way to handle both objective

unctions (influence maximization) and constraints (influence loss)

n the search space. 

CSA extends conventional SA ( Metropolis, Rosenbluth, Rosen-

luth, Teller, & Teller, 1953 ) to solve constrained nonlinear pro-

ramming problems ( Wah & Wang, 1999 ). Particularly we resort
o the CSA method for discrete constrained optimization problems.

SA searches solutions to a penalty function that is a summation of

ts objective and constraint functions weighted by a penalty factor.

ifferent from SA, CSA looks for saddle points in its search space

nstead of locating a local extremum. 

.2.1. Algorithm description 

In the IMIL context (formulated in (1) ), we first transfer the max

bjective function into the min one, and then convert the inequal-

ty constraint function into the equality one by using a max func-

ion, 

max [0 , σ (S) − min A ⊆S σ (S − A ) − η] = 0 . The new equality con-

traint is satisfied iff MaxLoss ≤ η. Subsequently, the penalty

unction is designed in Eq (2) . 

 �(S, λ) = −σ (S) + λ × max [0 , σ (S) − min σ (S − A ) − η] (2) 

here � is a joint space of seed nodes S and a penalty factor λ. A

tate (trial point) D is a solution in the space, e.g., D = (S, λ) ∈ �. 

A selection of λ values varies on the problem domain. In the

MIL context, we use a relatively large value so that the penalty

ecomes large once the constraint is broken. 

We outline the CSA algorithm for solving the IMIL problem in

ig. 3 . In principle, the CSA searches solutions in the joint space

for a number of trials per temperature and accepts a solution

robabilistically in a cooling schedule. It starts with an initial so-

ution D and temperature T 0 (lines 1–2). By computing σ ( S ) and

in A ⊆S σ (S − A ) , the algorithm gets the penalty value L D for the

olution (line 4). 

Lines 5–6 compute the penalty function for a neighbor of the

urrent solution D in the search space. A neighbour set, N D , is gen-

rated by listing neighboring nodes of S and adjacent values of λ.
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We randomly sample a new solution D 

′ from N D . Subsequently, we

calculate difference of the penalty functions, �L , between the so-

lutions D and D 

′ (line 7). 

Lines 9–23 proceed to check whether the new solution shall be

accepted. The algorithm considers the acceptance differently in the

subspaces λ and S . If λ has not been changed, we tend to accept

the new solution with a lower penalty value that in turn returns

a larger σ ( S ). We only accept the solution having a larger penalty

value with the probability exp ( −�L 
T t 

) that decreases over time (lines

10–15). On the contrary, we accept the new solution that has a

larger penalty value if the seed nodes, S , are not updated (lines 17–

23). By doing this, we can increase the penalties of violated con-

straints, which will enforce S to satisfy the constraints. After we

keep searching solutions for q times at a level of temperature T t ,

we compute a new temperature (explained later) and start a new

trial (lines 25–26). The CSA is terminated when the termination

temperature T f is reached. 

4.2.2. Parameter setting 

As mentioned in Wah and Wang (1999) , the variable S is

normally tried 10 times more often than every penalty factor

λ. We determine the discrete space for λ, 	( λ) = [0, max σ (S) 
10% K ∗(N−K ) 

,

2 max σ (S) 
10% K ∗(N−K ) 

, ���, max σ ( S )], since the maximum number of S ’s

neighbors is K ∗ (N − K) . The parameter ρ is one factor of the

step temperature ( T t ) in the cooling schedule (line 25 in Fig. 3 )

of CSA. The temperature is reset once a set of q trials have been

completed. Also, ρ is relevant to the asymptotic convergence (con-

vergence to a global extremum with probability one given t →
∞ ) as ρ dominates the temperature value of every iteration in

the CSA. We let ρ = 2 max σ (S)(1 + max σ (A )) such that the CSA

convergence will be guaranteed (explained below). The remaining

problem is on how to compute the values of both max σ ( S ) and

max σ ( A ) in an efficient way. 

We estimate influence values using the generalized ISP method.

As the ISP can compute the influence spread of every seed node,

the influence sum of all seed nodes that have the largest influ-

ence provides an upper bound to max σ ( S ), e.g., 
∑ 

u ∈ S AP (V, u ) ≥
max σ (S) , which is exploiting the property of submodular func-

tions. Similarly we can estimate max σ ( A ). Note that the estimation

is not an exact influence spread, but is efficient and sufficient for

the parameter setting. 

4.2.3. Asymptotic convergence 

The CSA approach solves the IMIL problem (via the penalty

function L �(S, λ) ) by adding a penalty factor λ to every state that

is a set of seed nodes S . Let Z D,D ′ be the probability of generating

state D 

′ from D ’s neighbor set N D . Since the neighbor set is a union

of both S and λ, we have Z D,D ′ = 

1 
K (N−K )+ | 	(λ) |−1 

, where | 	( λ)| is

the size of the discrete space of λ, 	( λ). 

As CSA accepts a new solution differently in the subspaces of S

and λ (lines 9–23 in Fig. 3 ), the probability of accepting D 

′ is 

F D,D ′ = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

exp(−max [0 , L D ′ − L D ]) 

T t 
, D 

′ = (S ′ , λ) ;
exp(−max [0 , L D − L D ′ ]) 

T t 
, D 

′ = (S, λ′ ) . 

Thus, the transition probability from state D to state D 

′ is 

I D,D ′ = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

Z D,D ′ F D,D ′ , D 

′ ∈ N D ;
1 −

∑ 

W ∈ N D 
Z D,W 

F D,W 

, D 

′ = D ;

0 , otherwise. 

As the transition probability differs in the subspaces and the tran-

sition occurs over time, the CSA procedure can be modeled using
n inhomogeneous Markov chain. Let q be the maximum of the

inimum number of transitions required to reach optimum from

ny state. The q value can always be found if the neighbor set is

roperly constructed. 

In the cooling schedule (line 25 in Fig. 3 ), we have T t = 

q ×ρ
ln (t+1) 

.

ith the specification, ρ = 2 max σ (S)(1 + max σ (A )) , we get the

ollowing proposition. 

roposition 1. The temperature setting, T t = 

q ×ρ
ln (t+1) 

, satisfies the

roperties: ( a ) T t > T t+1 , ( b ) lim t → ∞ 

T t = 0, and ( c ) T t ≥ 2 q 
ln (t+1) 

×
ax | L D ′ − L D | . 
roof. Properties a and b are obvious as both q and ρ are con-

tant and T t is the monotonically decreasing function with t . We

ompute max | L D ′ − L D | for two cases where either S or λ changes

n a joint space. 

Case 1 : D 

′ = (S ′ , λ) 
max | L D ′ − L D | = | −σ (S ′ ) + λ×max [0 , (σ (S ′ ) −min σ (S ′ −A 

′ ))] 
−[ −σ (S) + λ × max [0 , (σ (S) − min σ (S − A ))] | 
f or � �σ (S) − σ (S − A ) ≤ σ (A ) � � 
≤ | σ (S) + λmax σ (A 

′ ) | f or � �λ ≤ max σ (S) � � 
≤ max σ (S) + max σ (S) × max σ (A 

′ ) 
Case 2 : D 

′ = (S , λ′ ) 
max | L D ′ − L D | = | λ′ × max [0 , (σ (S) − min σ (S − A ) − η)] 
−λ × max [0 , (σ (S) − min σ (S − A ) − η)] | 
≤ λ′ × max σ (A ) 
≤ max σ (S) × max σ (A ) 

Since T t = 

q ×ρ
ln (t+1) 

= 

2 q ×max σ (S)(1+ max σ (A )) 
ln (t+1) 

, property c is

ulfilled. �

Consequently, given definitions of the transition probability I D,D ′ 
nd properties of the decreasing temperature T t , we can get the

symptotic convergence of the CSA for the IMIL problem by fol-

owing the proof in Wah and Wang (1999) . Formally, we have the

heorem below. 

heorem 2. The CSA based algorithm for the influence maximization

roblem with the influence loss constraint converges to a constraint

lobal optimum with probability one as t → ∞ . 

.3. Improved CSA: CSA-Q 

The CSA algorithm needs to evaluate the penalty function of

q. 2 in each iteration. Since the penalty function involves the

ime-consuming computation of influence loss, [ σ (S) − min σ (S −
 ) ], the CSA complexity is further exacerbated by the complex

unction evaluation. This motives us to improve the CSA’s efficiency

sing more tractable computation of influence loss. 

The property of the submodular function, σ ( S ), allows us to

ound the influence loss as shown in Proposition 2 . 

roposition 2. The information loss, [ σ (S) − min σ (S − A )] , is

ounded by max 
∑ R 

i =1 , v i ∈ S σ (v i ) , where R is the number of failure

odes ( | A | ). 

roof. We aim to prove the inequation: σ (S) − min σ (S − A ) ≤
ax 

∑ R 
i =1 , v i ∈ S σ (v i ) . As σ ( S ) is submodular, we get min σ (S − A ) ≥

in [ σ (S) − σ (A )] = σ (S) − max σ (A ) . Thus, σ (S) − min σ (S − A ) ≤
(S) − [ σ (S) − max σ (A )] = max σ (A ) . 

Similarly, we get max A ⊆S σ (A ) ≤ max 
∑ R 

i =1 , v i ∈ S σ (v i ) , where

ax 
∑ R 

i =1 , v i ∈ S σ (v i ) is the influence sum of the first R nodes that

re ranked according to their individual influences. �

Accordingly we may approximate the largest influence loss via

omputing its upper-bound value max 
∑ R 

i =1 , v i ∈ S σ (v i ) . By doing

his, we make a more protective decision on selecting top- K nodes
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Table 2 

Statistics of four social networks. 

Networks NetHEPT Wiki Epinions Amazon 

Node number 15, 233 7, 115 75.9 K 262 K 

Edge number 58, 891 103 K 508.8 K 1.23 M 

Clustering coefficient 0.2089 0.2283 0.0617 0.3123 

Average degree 14.54 6.7 11.54 4.77 

90% effective diameter 3.8 5 4.7 6.5 
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ith the consideration of influence loss. Hence we can get the new

enalty function, L ′ 
�
(S, λ) , in Eq. 3 . 

 

′ 
�(S, λ) = −σ (S) + λ × max [0 , max 

R ∑ 

i =1 , v i ∈ S 
σ (v i ) − η] (3) 

We denote the improved CSA algorithm by CSA-Q that adopts

he approximate penalty function, L ′ 
�
(S, λ) , and expects to solve

he IMIL problem much more quickly than the original CSA in

ig. 3 . Intuitively the evaluation of L ′ 
�
(S, λ) will become much

ore efficient because it computes influence spread of individual

ailure nodes, v ∈ A , instead of every set of the remaining nodes

(S − A ) . In addition, we will achieve significant computational sav-

ngs as influence spread of individual nodes can be computed at

ne time and be reused for all iterations. 

More importantly, the CSA-Q algorithm can generate feasible

olutions to the IMIL problem, which is benefited from using the

pper-bound value of influence loss in the new penalty function.

roposition 3 formally states feasibility of the CSA-Q algorithm. 

roposition 3. Top-K nodes generated by the CSA-Q algorithm guar-

ntee to be feasible for the IMIL problem. 

roof. For top- K nodes S , the CSA-Q solutions satisfy the con-

traint, max 
∑ R 

i =1 , v i ∈ S σ (v i ) ≤ η, since it takes the new penalty

unction L ′ 
�
(S, λ) in Eq. (3) . Using Proposition 2 , we get σ (S) −

in σ (S − A ) ≤ η. Hence the solutions are also feasible to the IMIL

roblem as defined in Section 3 . �

Note that the CSA-Q algorithm still shares the convergence

roperty with the CSA, which is stated in Theorem 2 , while it may

onverge to a sub-optimal solution in term of influence spread. We

ill show later that influence spread achieved by the CSA-Q algo-

ithm is very close to that obtained through the CSA algorithm in

he experimental study. 

Both the CSA and CSA-Q algorithms provide the principled way

o searching top- K nodes in the IMIL problem. In every iteration,

hey need to calculate the penalty functions ( Eqs. (2) and (3 )) that

nvolve the computation of influence spread e.g. σ ( S ), σ ( v ) and so

n. As mentioned previously, any of the existing influence max-

mization techniques can be employed to compute the influence

pread in the CSA and CSA-Q algorithms. We select the ISP method

nd briefly describe its application in our algorithms. 

The ISP method is used to compute influence spread of a seed

et that is an influence sum of all activated nodes in a non-seed

et ( Liu et al., 2014a ). Similarly we may use the method to com-

ute the expected influence on the non-seed set activated by an

ndividual seed node v ∈ S , e.g., σ (v ) = 

∑ 

u ∈ (V−S) AP (v , u ) . By doing

his, we can rank the seed nodes in term of their expected influ-

nce over the non-seed set. The ranking operation could be done

n the fly and provides an efficient way to estimate the influence

pread of a given seed set. For example, to estimate max σ ( A ), we

ay pick a set of candidate nodes that have the largest expected

nfluence, AP (v , V − A ) , in the list and sum all of the influence. 

.4. Time and space complexities 

For every iteration of the CSA algorithm in Fig. 3 , we compute

oth σ ( S ) and σ (S − A ) using the ISP method. As ISP requires to

ompute influence of all the influence spreading paths, denoted by

ATH(S) and PATH(S −A) , from the seed set and the non-failure set

espectively, the run time takes O(| PATH(S) | ) + O(| PAT H(S − A ) | ) if
he depth-first search is used to find all the paths. The total run

ime is qT [ O(| PAT H(S) | ) + O(| PAT H(S − A ) | ) ], where T is the num-

er of iterations (in the while loop) to terminate CSA. 

CSA-Q avoids to compute influence spreading paths, PATH(S −A) ,

or all iterations. In addition, it reuses the influence spread of in-
ividual nodes, PATH(v) , that can be computed once in the al-

orithm. Hence the total run time of CSA-Q is qT O(| PAT H(S) | ) +
O(| PAT H(v ) | ) . This achieves a large amount of computational

avings on solving the IMIL problem. 

Meanwhile, the space complexity of both algorithms is O(N +
 + | PAT H(S) | ) as we need to store a social network and all the

aths in the computation. 

. Experiments 

We used four publicly available real-world social networks in

he experiment and summarize their statistics in Table 2 . 

We implemented the following algorithms and compared their

erformance in terms of influence spread and run time. 
• CSA and CSA-Q : We implemented the CSA algorithm as pre-

ented in Fig. 3 , and the CSA-Q algorithm using the new penalty

unction in Eq. 3 . The algorithms generate an initial seed set in

 random way and develop a neighbor set of seed nodes without

xcluding previously selected nodes (as the seed set may also be

hanging in the iterations). To compute influence spread, we im-

lemented the ISP method, and as suggested in Liu et al. (2014a)

e remove the paths that are leading to insignificant influence

ropagation (that is smaller than a threshold 0.0 0 01 - a tradeoff

etween influence spread and run time). 

• GreedyB : We implemented the GreedyB algorithm as discussed

in Section 4.1 . Since the GreedyB algorithm can produce feasible

solutions to the IMIL problem, it acts as a baseline comparison.
• Random : We implemented the Random algorithm that is of-

ten used in the comparison about influence maximization tech-

niques ( Chen et al., 2009 ). To solve the IMIL problem, the Ran-

dom algorithm picks K nodes randomly from a social network

and accepts a solution once it meets an influence loss con-

straint. 

All algorithms are implemented in C++ language, and compiled

y gcc 4.7.2 on a Linux PC with a 4-core Intel i7-3770 3.4GHz CPU

nd 8 GB memory. To compute the number of nodes influenced by

he selected seed set of an evaluated algorithm, we apply 20,0 0 0

onte Carlo simulations with the seed set selected by each evalu-

ted method, and the average number of influenced nodes is used

s influence spread of the seed set. This evaluation method follows

he previous work on influence maximization ( Chen et al., 2009 ). 

.1. Parameter settings 

In social networks, the activating probability, P vu , is set by the

eighted cascade policy , e.g. P v u = 

1 
N in (u ) 

where N in ( u ) is indegree

f u , which is widely used in the existing conventional influ-

nce maximization techniques ( Chen et al., 2009; Kempe et al.,

003 ). We pick values of η in the range [ min σ ( A ), max σ ( A )],

here min σ ( A ) is the minimum influence spread of a set of R

odes (|A| = R ), and both min σ ( A ) and max σ ( A ) can be estimated

hrough the ISP method as described in Section 4.3 . In the CSA

ased algorithms, following the spirit of T t calculation, the initial

emperature is set as T 0 = 2 q × max σ (S)(max σ (A ) + 1) . Both σ ( S )

nd σ ( A ) values are estimated through the ISP method. 
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As shown in Fig. 3 , the number of trials, q , has a large im-

pact on the run time of the CSA algorithms. Intuitively, few iter-

ations may prevent the algorithmic convergence thereby leading

to smaller influence spread. A large number of iterations guaran-

tee the global convergence while incurring a large amount of ex-

ecution time. Meanwhile, the q value is most relevant to how the

neighbor set is constructed and a solution set of K nodes together

with a λ value are updated (Lines 5–6 in Fig. 3 ). Ideally, q is equal

to ( K + 1) if a solution is replaced in an optimal way at each it-

eration. For a general replacement strategy in the CSA algorithms,

we investigate the selection of q values in term of the algorithmic

efficiency. 

Fig. 4 shows the selection of q values in the NetHEPT network

with the setting: η = 20, K = 10, R = 2, and T f = 10 −4 . With

q = 10( K + 1), both the CSA and CSA-Q algorithms converge to rel-

atively large influence spread and consume a reasonable amount

of run time. Since the CSA-Q algorithm reuses most of influence

spread computation, its run time does not significantly grow with

the increasing values of q . In addition, as shown in Fig. 4 ( a ), more

iterations may not contribute to a visible improvement on perfor-

mance of both the CSA and CSA-Q algorithms. Hence we will use

q = 10( K + 1) in the rest of the experiments. 

We take a further step to investigate the setting of the termina-

tion temperature T f that controls the outermost loop of the algo-

rithms in Fig. 3 . In Fig. 5 , we show influence spread and run time

of the CSA based algorithms when T f values vary in NetHEPT with

i  
he setting: η = 20, K = 10, R = 2, and q = 10(K + 1) . We observe

hat both the CSA and CSA-Q algorithms achieve best cost-effective

erformance in terms of influence spread and run time when T f 
akes the value 10 −4 . 

In summary, we empirically study the parameters of q and T f 
n both the CSA and CSA-Q algorithms, and choose proper values

y considering their impact on influence spread and run time in

etHEPT . Similar performance is also observed in other networks.

e will use T f = 10 −4 and q = 10(K + 1) in the rest of our experi-

ents. 

.2. Experimental results 

With the aforementioned parameter settings, we conduct ex-

eriments to demonstrate the performance of our methods. 

.2.1. Influence loss 

As mentioned previously, failure of nodes may lead to different

evels of influence loss in social networks. We investigate how the

ailure of different sets of nodes will impact influence spread in

etHEPT and Epinion . We first employ the ISP method to compute

op- K nodes, and then obtain influence spread of ( K - R ) nodes when

ny set of R nodes fails in the networks. Subsequently, we com-

ute the ratio of the average influence loss to the influence spread

f top- K nodes: Ratio = 

σ (S) −A v e [ σ (S−A )] 
σ (S) 

, where A v e [ σ (S − A )] is the

nfluence spread averaged over P sets of ( K − R ) nodes randomly
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Fig. 6. The ratio of the average influence loss to the maximum influence spread of top- K nodes when R nodes fail. 
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Fig. 7. As η increases, all algorithms achieve more influence spread. In ( a ), the curves of CSA-Q and CSA overlap in NetHEPT . 
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elected from top- K nodes and P ranges from tens to thousands de-

ending on the network size and R values. Fig. 6 shows the results

f ratio in two networks with the setting of K = 10 and different R

alues. 

In Fig. 6 , we observe that the failure of R nodes does lead

o visible influence loss (around 10% of the maximum influence

pread of top-10 nodes) even when only one node fails in the se-

ected seed set. The proportion grows with the increasing num-

er of failure nodes, and rises to around 50% of the total influence

pread when half of top-10 nodes fail in both networks. Hence it

s important to consider influence loss in influence maximization

roblems. 

.2.2. Variations of η
We proceed to demonstrate performance of the CSA based al-

orithms given the input parameters including η, K and R . Fig. 7

hows performance of the algorithms given K = 10 and R = 2 when

values are varied. A large η value relaxes constraints of influence

oss when the failure occurs to the selected nodes. This may re-
ain more influential nodes failure of which may lead to visible

nfluence loss, but still satisfy the loose constraint. As expected,

ll of the algorithms generate larger influence spread when η
ncreases. 

Both the CSA and CSA-Q methods outperform the other two al-

orithms in all experiments. The Random method performs poorly

nd does not lead to significant increase on the influence spread

ven when η increases. Although GreedyB may generate feasible

olutions, it results in relatively small influence spread compared

o the CSA and CSA-Q algorithms. With a large η value, the Ran-

om and GreedyB algorithms immediately accept any solution that

eets the constraint and do not conduct any further search to im-

rove the solution, which generally leads to low influence values. 

The CSA and CSA-Q algorithms continuously improve their solu-

ions with the increasing of η values. The loose constraint, which

s ascribed to a large η value, allows both algorithms to search

 large space in which more influential nodes could be identi-

ed. On the other hand, the performance of the CSA-Q algorithm

pproaches that of the CSA algorithm although CSA-Q uses an
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Fig. 8. Performance of the CSA and CSA-Q methods is similar to that of the ISP IM approach when η is sufficiently large. The top horizontal line denotes the performance of 

ISP IM when the ISP method is used to solve the conventional IM problem. 
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Fig. 9. Influence spread achieved by the algorithms decreases as more nodes ( R ) fail in the networks ( K = 20, η = 40). CSA-Q is consistently close to CSA . 
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approximate penalty function. The gap of their performance is ex-

tremely small and even becomes invisible in some network like

NetHEPT in Fig. 7 ( a ). It verifies that the new penalty function is

good enough to ensure the high quality of solutions achieved by

the CSA-Q algorithm. 

To further verify performance of the CSA based framework, we

additionally conduct the comparison to the ISP approach, denoted

by ISP IM 

, that is employed to solve conventional influence max-

imization problems without influence loss constraints and to find

top- K nodes. In Fig. 8 , we show the results, including the reference

of ISP IM 

, in Wiki and Amazon , with K = 10 and R = 2. We observe

that the influence spread achieved by the CSA and CSA-Q meth-

ods gradually converges to the value obtained by ISP IM 

when η is

larger than 50. Given a sufficiently large η value, the IMIL prob-

lem is converted to the conventional IM problem. The solutions

returned by the CSA based framework are identical to top- K nodes

found by ISP IM 

. Hence both the CSA and CSA-Q algorithms per-

form as well as the ISP technique on solving the conventional IM

problem. 
.2.3. Effect of R and K values 

Fig. 9 shows performance of all the algorithms when R values

ary in the experiments. We fix K = 20 and η = 40 for all net-

orks. The joint impact of more failure nodes normally leads to

 significant reduction on the influence spread. To prevent such a

arge influence loss, the algorithms are likely to choose more cor-

elated nodes that may complement each other once the failure

ccurs to some of the selected nodes. This causes a low value of

nfluence spread achieved by top- K nodes. 

In Fig. 9 , the influence spread generated by all the algorithms

ecreases while the number ( R ) of failure nodes increases. Mean-

hile, both the CSA and CSA-Q algorithms identify better solutions

hen they are compared to other two algorithms, GreedyB and

andom . The CSA-Q algorithm still achieves relatively large influ-

nce spread as CSA does in four networks. The gap of their perfor-

ance is even invisible in NetHEPT and Amazon , which is indicated

y the overlapping curves in Figs. 9 ( a ) and ( d ) respectively. 

Fig. 10 exhibits the influence spread of the top- K nodes re-

urned by four algorithms for different K values. We fix R = 2 and
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Fig. 10. The algorithms obtain larger influence spread as K increases in four networks ( R = 2, η = 20). 
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Table 3 

Run time of the algorithms over the networks NetH.(EPT) and Wiki . 

Net. K R ( η) Rand. Gre.B CSA CSA-Q 

10 2(20) 9 ms 168 55 0.5 

2(30) 8 ms 168 72 0.6 

2(50) 8 ms 164 125 1.6 

5(50) 22 ms 682 201 0.8 

20 2(20) 60 ms 1358 679 2.1 

2(40) 10 ms 1440 885 3.5 

4(40) 98 ms ∗ 1305 2.4 

6(40) 208 ms ∗ ∗ 1.2 

NetH. 30 2(20) 259 ms ∗ ∗ 4.5 

8(80) 27 s ∗ ∗ 5 

40 2(20) 525 ms ∗ ∗ 5.5 

10(100) 65 mins ∗ ∗ 7.0 

50 2(20) 980 ms ∗ ∗ 8.6 

10(100) 790 mins ∗ ∗ 11.4 

20(200) ∗ ∗ ∗ 13.2 

10 2(20) 20 ms 512 157 3.3 

2(30) 18 ms 462 242 4.1 

2(50) 16 ms 400 305 6.0 

5(50) 52 ms 1520 271 3.8 

20 2(20) 210 ms ∗ 954 12 

2(40) 165 ms ∗ 1062 19.5 

4(40) 315 ms ∗ 1398 13 

6(40) 615 ms ∗ ∗ 8.5 

Wiki 30 2(20) 1.5 s ∗ ∗ 27 

8(80) 30 s ∗ ∗ 34.5 

40 2(20) 2 s ∗ ∗ 36 

10(100) 70 mins ∗ ∗ 48 

50 2(20) 2.8 s ∗ ∗ 52 

10(100) 870 mins ∗ ∗ 55.3 

20(200) ∗ ∗ ∗ 59.6 

s  

l

 

R  

C  

i  

O  

r

= 20 for all networks. It is not a surprise that the influence

pread increases given a larger K value. Both the CSA and CSA-Q

lgorithms consistently outperform the GreedyB and Random algo-

ithms for different K values over four networks. The CSA-Q algo-

ithm achieves similar influence spread as the CSA algorithm does

n most of the experiments. 

.2.4. Runtime comparison 

In Tables 3 and 4 , we compare different algorithms based on

he run time each takes to identify top- K nodes in four networks.

e measure the run time of Rand.(om) in milli-seconds( ms ) or sec-

nds( s ) while using minutes ( mins ) to measure the time of other

hree methods. The cell ∗ indicates that the program has run over

ne day. 

Although the Rand.(om) method runs fast (measured by ms or

 ) in most of cases, it is deemed to generate quite low influ-

nce spread (as shown in the experimental results above) due to

ts randomness. Hence the Rand.(om) solutions are not acceptable

n solving the IMIL problem. In addition, the Rand.(om) method

till needs to compute influence loss of every subset of the se-

ected nodes. Consequently, it has to spend much time on solving

he cases of large K (or R ) in all networks. For example, it costs

round 870 mins to solve the IMIL problem in the network Wiki

ith K = 50 and R = 10. This is rather time-consuming as the CSA-

 algorithm spends only 55 . 3 min on solving the similar case. 

The Gre.(edy)B algorithm requires a large amount of time to

olve the IMIL problem. The additional step of backtracking strat-

gy contributes to its complexity thereby causing more execution

imes. The algorithm may repeatedly conduct the replacement pro-

ess to find a feasible solution. Consequently, the Gre.(edy)B algo-

ithm cannot solve most of complex cases of large K (or R ) in all

f four networks. 

Both the CSA and CSA-Q algorithms consume substantially less

ime compared to the Gre.(edy)B algorithm. The savings are mainly

scribed to the systematical search of the CSA based techniques.

articularly the CSA-Q algorithm shows significant speed-up over

he CSA algorithm. Even when either K or R increases, the CSA-Q

lgorithm does not require much more run time. For example, for
olving the largest network Amaz .( on ), the increase of run time is

ess than 10 min when K increases from 30 to 50 ( R = 2, η = 20). 

When η increases given fixed ( K, R ) values (e.g. (10,2)), both

and.(om) and Gre.(edy)B do not cost more time while the CSA and

SA-Q algorithms require more time to achieve the convergence. It

s easier to find feasible solutions when the constraint is relaxed.

n the other hand, the loose constraint allows the CSA based algo-

ithms to search better solutions through more iterations. 
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Table 4 

Run time of the algorithms over the networks Epin.(ions) and 

Amaz.(on) . 

Net. K R ( η) Rand. Gre.B CSA CSA-Q 

10 2(20) 33 ms 2850 191 5.5 

2(30) 30 ms 2772 316 5.7 

2(50) 26 ms 2560 504 6.5 

5(50) 81 ms ∗ 476 6.3 

20 2(20) 500 ms ∗ 1216 7.8 

2(40) 386 ms ∗ ∗ 11.2 

4(40) 1.2 s ∗ ∗ 8.6 

6(40) 2.5 s ∗ ∗ 6.3 

Epin. 30 2(20) 4 s ∗ ∗ 11.5 

8(80) 29 s ∗ ∗ 13.8 

40 2(20) 10 s ∗ ∗ 14.6 

10(100) 69 mins ∗ ∗ 18 

50 2(20) 18 s ∗ ∗ 18.2 

10(100) 840 mins ∗ ∗ 19.8 

20(200) ∗ ∗ ∗ 23.9 

10 2(20) 22 ms 616 117 8 

2(30) 20 ms 600 159 9 

2(50) 20 ms 582 198 12.1 

5(50) 55 ms 982 462 8.8 

20 2(20) 43 ms ∗ ∗ 12.5 

2(40) 33 ms 1250 ∗ 17 

4(40) 84 ms ∗ ∗ 13.6 

6(40) 158 ms ∗ ∗ 11.8 

Amaz. 30 2(20) 88 ms ∗ ∗ 19.4 

8(80) 30 s ∗ ∗ 22.5 

40 2(20) 108 ms ∗ ∗ 23.3 

10(100) 70 mins ∗ ∗ 27.8 

50 2(20) 130 ms ∗ ∗ 28 

10(100) 870 mins ∗ ∗ 32.2 

20(200) ∗ ∗ ∗ 37.5 

Table 5 

Influence spread of the Rand.(om) and CSA-Q algorithms for two 

complex cases. 

Method K R ( η) NetH. Wiki Epin. Amaz. 

Rand. 40 10(100) 90 75 165 158 

50 10(100) 315 283 334 351 

CSA-Q 40 10(100) 112 93 196 192 

50 10(100) 377 343 402 456 
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We observe that the run time of CSA-Q decreases when R in-

creases given fixed values of ( K, η) (e.g. (20,40)). For a larger R ,

the CSA-Q algorithm is driven to search nodes with less influence

since the failure of such nodes can still meet the constraint. The

targeting nodes are normally with a small number of paths, which

reduces the computational time (as analyzed in Section 4.4 ). For

the CSA algorithm, the reduction is overwhelmed by the growth of

run time needed to compute influence loss for more subsets as R

increases. 

Except the Rand.(om) and CSA-Q methods, the other two algo-

rithms cannot solve most of the cases in all networks. Even the

Rand.(om) method cannot solve the case ( K = 50, R = 20) within

one day. In contrast, the CSA-Q method can complete the search

of top- K nodes in less than one hour for any of the networks. In-

stead of computing influence loss for every subset of the selected

nodes, CSA-Q evaluates the constraint by summing individual in-

fluence, which is linear with the number of failure nodes. Hence it

is scalable to solve all complex cases in our experiments within a

reasonable amount of time. 

To further confirm the quality of solutions produced by the

CSA-Q algorithm, we show influence spread when the algorithm is

compared to the Rand.(om) method - the other one can solve the

complex cases within acceptable time (one day). Table 5 demon-

strates that the CSA-Q algorithm achieves significantly larger in-
uence spread while it costs much less time (as seen in Tables 3

nd 4 ). 

.2.5. Summary 

We show the impact of influence loss and reveal its im-

ortance in solving influence maximization problem. We further

emonstrate that both the CSA and CSA-Q algorithms outperform

he baseline methods, GreedyB and Random , in term of influence

pread of top- K nodes. More importantly, the CSA-Q algorithm

chieves significantly improvement on the scalability while main-

aining sufficiently good solutions to the IMIL problem. 

. Conclusions 

The IMIL problem is motivated by practical thoughts on viral

arketing. We aim to find top- K influential nodes given influence

oss constraint in social networks. This problem is proved to be

P-hardness and existing methods fail to provide reasonably good

olutions. To solve the problem, we developed a CSA based frame-

ork that optimizes top- K solutions while enforcing satisfaction

f influence loss constraint. The development of CSA algorithms is

ot trivial in the new problem context as we need to investigate

lgorithmic convergence according to a particular domain based

enalty function and practical parameter settings. We further pro-

osed an enhanced version of the CSA algorithm that employs a

ew penalty function, and showed its significant improvement on

he algorithmic efficiency. 

It is the first time that influence loss is considered in influence

ropagation in social networks. The proposed influence maximiza-

ion technique is a reliable top- K solution to developing practical

pplications of social networks in a complex setting. Due to un-

redictable factors, node failure may often occur in the real-world

nvironment. For example, in knowledge diffusion networks, indi-

iduals may lose the propagation capability during the knowledge

volution ( Luo, Du, Liu, Xuan, & Wang, 2015 ). Our technique may

educe the risk of knowledge loss in a knowledge-transfer process.

his directly facilitates a robust development of expert systems on

he knowledge elicitation and combination. On the other hand, the

roposed CSA framework is shown to be very useful for solving

ther constrained optimization problems in social networks. We

an perceive effective CSA based solutions to many optimization

roblems in the development of intelligent systems ( Marinaki &

arinakis, 2016 ). 

As a primitive step to investigate influence loss in social net-

orks, we empirically study impact of the required inputs in the

roposed technique: the number of failure nodes and the influ-

nce loss threshold. As demonstrated in Figs. 7 and 9 , the two

arameters exhibit expected impact in the influence propagation.

 precise estimation on the parameter values will definitely di-

ect the development of our technique on both its effectiveness

nd efficiency. Hence the proposed technique may require much

ffort from domain experts in the problem formulation and solu-

ion development. Meanwhile, we can observe that the CSA algo-

ithm with the new penalty function still demands a large amount

f time on solving very large networks since it needs to search

he entire solution space. This may limit its real-time applications

hen the calculation shall be conducted online. 

The previous limitations imply two lines of future research. On

ne hand, we can study behavior of failure nodes in social net-

orks particularly in practical applications. The investigation may

rovide more insightful knowledge about influence loss in the real-

ime propagation, which in turn supplies exact inputs to the solu-

ion development. This study may simultaneously indicate poten-

ial strategies to avoid the node failure as well as to remedy the

educed influence when nodes fail in social networks. The strate-

ies are valuable upon building reliable application systems and
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elease a tedious task on eliciting domain knowledge for develop-

ng the solutions. On the other hand, we will continue to improve

he CSA algorithm by pruning solutions with large influence loss in

dvance. We are particularly interested in examining the utility of

omain knowledge on the CSA performance when a complex con-

trained optimization problem needs to be solved in applications. 
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