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a b s t r a c t

A test for panel structural mean change is developed from the CUSUM of the panel
processes. Limiting null distribution and consistency of the test are established. The test
is shown to have stable finite sample sizes than the existing test of Horvath and Huskova
(2012) based on the squared CUSUM. If the mean changes are not cancelled in that their
average is away from zero, the proposed test has better power than the existing test. On
the other hand, if themean changes are nearly cancelled, the existing test has better power.
The proposed tests are illustrated by a real data set analysis.

© 2016 Published by Elsevier B.V. on behalf of The Korean Statistical Society.

1. Introduction

Structural change problems in panel data models are important issues for economic or financial data analysis because a
big macroeconomic policy change or a financial crisis has simultaneous influence on many economic or financial variables.
Researches for structural change problems in panel models have been activated due to a vast amount of data in the modern
economic world or financial markets. Some studies were made by Bai (1997), Bai et al. (1998) and Han and Park (1989) for
change point estimation and testing of multivariate time series models and by Emerson and Kao (2001, 2002) for testing of
structural change of a time trend regression in panel data.

Recently, structural change detection problems in mean and variance of panel data have been investigated by some
authors. Bai (2010) studied estimation for common change point in mean and variance in panel data. Horvath and Huskova
(2012), following Bai (2010)’s quasi-maximum likelihood argument, developed a test for panel mean change, based on the
squared cumulative sum (squared CUSUM) of the panel processes. Li, Tian, Xiao, and Chen (2015) and Shi (2015) proposed
tests for panel variance changes, based on the CUSUM and the squared CUSUM, respectively, of the squared panel processes.

Wenote that the test ofHorvath andHuskova (2012), being based on the squaredCUSUM, has goodpower against average
squared change away from 0. However, in practice, one may be more interested in detecting average change than average
squared change. For that purpose, we will construct a simple panel mean change detection test based on the CUSUM of the
panel processes. Aswell as the limiting null distribution, consistency of the proposed test will be established against average
change away from 0. The proposed test, being based on the CUSUM, has good power against average changes away from 0.

Aimed at different targets of average squared changes and average changes, none of the existing test of Horvath and
Huskova (2012) and the proposed test does not dominate the other one in power performance. The existing test has power
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advantage over the proposed test against changes which cancel to near-zero sum. The proposed test has power advantage
over the existing test against non-cancelling changes.

We claim that non-cancelling changes are more frequent than cancelling change in practice. The mean changes in the
panel system are usually caused by a big shock which shifts all means to a common direction: a good big shock shifts all
panel units to a good direction and a bad big shock acts reversely. For example, the Korean IMF economic crisis in the years
1997–1998 caused bad effects on almost all Korean stock prices, foreign exchange rates, house values, etc. Similar bad effects
of the world wide financial crisis in the years 2007–2008 can be observed on stock prices and house values.

A Monte Carlo experiment compares the two tests. It shows better power performance of the proposed test than the
existing test against non-cancelling changes and reversed power performance against cancelling changes. Moreover, it
reveals that the proposed test has significantly better size performance in case of serially correlated panels.

The panel volatility change tests of Li et al. (2015) and Shi (2015) are compared in the context of mean changes of the
squared process showing the same relative performance as the panel mean change tests: in case of non-cancelling volatility
changes, the test of Li et al. (2015) based on the CUSUM of squared process has better power than the test of Shi (2015)
based on the squared CUSUM of squared process; in case of cancelling volatility changes, the test of Shi (2015) has better
power than the test of Li et al. (2015).

The remaining of the paper is organized as follows. Section 2 discusses the mean change detection with main theoretical
results. Section 3 dealswithMonte Carlo comparisons. Section 4 compares the tests for volatility change detections. Section 5
illustrates the proposed tests with a real data set. Section 6 concludes.

2. Mean change detection

We consider a panel data model consisting of n panels and T observations on each panel unit as given by

Xit = µi + σi(δiI{t > t0} + uit), 1 ≤ i ≤ n, 1 ≤ t ≤ T (1)

where t0 ∈ {1, . . . , T } is unknown common change point, I{t > t0} is the indicator function of {t > t0}, and, for each i, {uit}

is a stationary process with Euit = 0 and Var(uit) = 1. As in Horvath and Huskova (2012), Li et al. (2015), and Shi (2015),
we assume that {uit , −∞ < t < ∞} are cross-sectionally independent but can be serially correlated. We have E(Xit) = µi
for 1 ≤ t ≤ t0; E(Xit) = µi + σiδi for t0 < t ≤ T ; and Var(Xit) = σ 2

i . The mean change parameter δi is standardized mean
change in E(Xit). We wish to test the null hypothesis

H0 : δi = 0 for all 1 ≤ i ≤ n

that the mean E(Xit) will not change during the observation period.
Horvath and Huskova (2012) developed a test by applying the quasi-maximum likelihood argument of Bai (2010) which

is based on the squared cumulative sum process

H̄nT (z) =
1

√
n

n
i=1


1
v2
i
Z2
iT (z) −

[Tz](T − [Tz])
T 2


, 0 ≤ z ≤ 1, (2)

where

ZiT (z) =
1

√
T

[Tz]
t=1

(Xit − X̄i), with X̄i =
1
T

T
t=1

Xit ,

is the cumulative sum process and v2
i = limT→∞ Var


1

√
T

T
t=1 Xit


is the long-run variance of Xit for i = 1, . . . , n. Note

that ZiT (z) is standardized by the long-run standard deviation vi in order to adjust serial correlation in Xit .
As proved by Horvath and Huskova (2012, Theorem 3) for consistency of the sup test based on the squared CUSUM

process, say SupH , against changes such that n−1/2T
n

i=1 δ2
i → ∞, the test has good power for detecting average squared

changes δ̄Q
= n−1n

i=1 δ2
i . However, even though the test SupH has good power against average squared changes, the

SupH test remains to be improved for detecting other changes in some class of important alternatives of nonnegative (or
nonpositive) panel mean changes such as those caused by the world wide financial crisis or the Korean IMF economic crisis
mentioned in Section 1.

Such nonnegative or nonpositive panel mean changes may be more well detected by a test designed to detect average
change δ̄ = n−1n

i=1 δi than by the SupH test designed to detect average squared change δ̄Q . Average change is well
detected by a test designed to detect a common change δ1 = · · · = δn = δ. From (1),we have (Xit−µi)/σi = δiI{t > t0}+uit .
Note that, if µi are all known, then the test problem for the common change δ becomes that of the summed univariate time
series model

n
i=1(Xit − µi)/σi =

n
i=1 δI{t > t0} +

n
i=1 uit for which the Sup test and the CUSUM test are all based on

the cumulative sum process BnT (z) =
1

√
n

n
i=1


1
vi

1
√
T


[Tz]
t=1(Xit − µi)


. For the real situation of unknown µi, the unknown

µi are replaced by X̄i and a natural test for the common change is constructed from the cumulative sum process

B̄nT (z) =
1

√
n

n
i=1


1
vi
ZiT (z)


. (3)
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Being designed for detecting a common change, the sup test based on the CUSUM process, say sup B, has consistency
against average changes |δ̄| such that

√
nT |δ̄| → ∞ as will be shown in Theorem 2.2.

The long-run variance parameter v2
i is consistently estimated by the usual kernel estimator

v̂2
i = γ̂i(0) + 2

ℓ
j=1


1 −

j
ℓ + 1


γ̂i(j), γ̂i(j) = T−1

T−j
t=1

(Xit − X̄i)(Xi,t+j − X̄i)

where ℓ is a bandwidth parameter. This long-run variance estimator v̂2
i may be preferred to other kernel estimators because

v̂2
i is always positive, which guarantees existence of v̂i. The long-run variance estimators are plugged-in in (2) and (3) to give

ĤnT (z) and B̂nT (z), respectively, and the sup tests

ĤnT (z) =
1

√
n

n
i=1


1
v̂2
i
Z2
iT (z) −

[Tz](T − [Tz])
T 2


, SupH = sup

0≤z≤1
|ĤnT (z)|, (4)

B̂nT (z) =
1

√
n

n
i=1


1
v̂i
ZiT (z)


, Sup B = sup

0≤z≤1
|B̂nT (z)|. (5)

Limiting null distribution of B̂nT (z) and consistency of the Sup B test are established in the following theorems for which
we assume linear innovations

uit =

∞
l=0

cilϵi,t−l, 1 ≤ i ≤ n, 1 ≤ t ≤ T

with the following assumptions (A1)–(A5) below:

(A1) E(ϵi0) = 0, E(ϵ2
i0) = 1, E|ϵi0|

κ < ∞ and lim supn→∞ n−1n
i=1 E|ϵi0|

κ < ∞ for some κ > 4,
(A2) The sequences {ϵit , −∞ < t < ∞} are independent of each other,
(A3) For every i the random variables {ϵit , −∞ < t < ∞} are i.i.d.,
(A4) |cil| ≤ c0(l + 1)−α for all 1 ≤ i ≤ n, 0 ≤ l < ∞, with some c0 and α > 2,
(A5) Let ai =


∞

l=0 cil for each 1 ≤ i ≤ n and there exists b > 0 such that ai ≥ b for all i.

Theorem 2.1. Consider model (1) with H0. Under conditions (A1)–(A5), asmin{n, T } → ∞,

sup
0≤z≤1

|B̂nT (z)|
d

−→ sup
0≤z≤1

|B0(z)|

where B0(z) is a standard Brownian bridge.

Theorem 2.2. Consider model (1) and assume that conditions (A1)–(A5) hold. If
√
nT |δ̄| → ∞ as min{n, T } → ∞

and for t0 = t0(T ),

0 < lim inf
T→∞

t0
T

≤ lim sup
T→∞

t0
T

< 1,

then asmin{n, T } → ∞,

sup
0≤z≤1

|B̂nT (z)|
p

−→ ∞.

3. Monte Carlo comparison

We compare the two tests SupH and Sup B of (4) and (5) in a Monte Carlo experiment whose setup is similar to that of
Horvath and Huskova (2012). We choose the data generating process

xit = ρxi,t−1 + uit , Xit = δiI{t > t0} + xit , i = 1, . . . , n, t = 1, . . . , T

with standard normal error uit . As in Horvath and Huskova (2012), the mean changes of Xit , if any, occur at time t0 = bT for
half of the panel units i = 1, . . . , n for which we consider b = 0.1 and b = 0.5. Mean change parameters δi are chosen from
uniform distributions:

NC : δi = 0; MC1 : δi ∼ U(−0.2, 0.2); MC2 : δi ∼ U(0, 0.2); MC3 : δi ∼ U(0.1, 0.3).
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Table 1
Sizes (%) of level 5% tests formean changes based on 10000 replications.

n T ρ = 0.1 ρ = 0.3
Sup B SupH Sup B SupH Sup B SupH

50 50 4.8 6.2 5.0 10.8 5.3 20.4
50 100 5.0 5.7 5.2 8.9 5.5 16.5
50 200 5.1 5.4 5.5 8.5 6.0 15.5

100 50 4.9 6.8 4.9 13.5 5.2 31.3
100 100 4.7 6.6 4.8 12.2 5.2 25.6
100 200 5.4 6.7 5.8 11.7 6.4 24.4
200 50 4.8 7.9 4.9 20.8 5.3 52.2
200 100 5.3 7.3 5.3 16.5 5.7 40.5
200 200 5.2 7.1 5.5 15.9 5.9 37.1

Table 2
Powers (%) of level 5% tests for mean changes based on 10000 replications.

n T Breaks at 0.1T Breaks at 0.5T
MC1 MC2 MC3 MC1 MC2 MC3
Sup B SupH Sup B SupH Sup B SupH Sup B SupH Sup B SupH Sup B SupH

50 50 4.7 4.9 5.8 4.9 10.1 5.2 4.9 9.5 21.0 14.0 59.2 24.4
50 100 4.9 4.8 7.2 4.9 16.6 5.2 5.7 15.6 36.0 14.0 88.4 59.2
50 200 5.4 5.0 11.0 4.9 34.9 6.2 7.7 36.9 59.0 32.0 99.4 96.9

100 50 4.8 4.9 6.9 4.8 16.6 5.0 5.3 10.9 38.0 14.0 86.5 36.7
100 100 4.6 5.0 10.0 4.9 34.0 5.3 5.5 23.0 56.0 16.0 99.4 84.2
100 200 5.5 5.7 17.5 5.8 69.6 8.0 7.3 58.4 85.0 50.0 100.0 99.9
200 50 4.8 5.1 10.2 5.1 34.9 5.3 5.3 15.2 66.0 23.0 99.2 60.4
200 100 5.2 5.1 17.0 5.1 68.7 5.9 6.0 36.3 91.0 36.0 100.0 98.2
200 200 5.2 5.8 33.3 5.8 97.6 9.0 7.2 82.5 100.0 87.0 100.0 100.0

Note that NC has no mean change. Other cases have mean changes: MC1 has cancelling mean changes in that δ̄ =

n−1n
i=1 δi ∼= 0; MC2 and MC3 have non-cancelling positive mean changes with δ̄ ∼= 0.1 and δ̄ ∼= 0.2, the latter being

more homogeneous than the former.
As in Horvath and Huskova (2012), we consider n = 50, 100, 200; T = 50, 100, 200. We set ρ = 0, 0.1, 0.3, 0.5 for the

case of NC for size study. For the other MC1, MC2, MC3 cases for power study, we set ρ = 0. The data Xit are simulated using
xi0 = 0 and standard normal error uit generated by RNNOA, a FORTRAN subroutine in IMSL.

Tables 1, 2 report sizes and powers of the two level 5% tests Sup B and SupH which are computed using 10000
independent replications {Xit , i = 1, . . . , n, t = 1, . . . , T }. For the long-run variance estimator, we use the bandwidth
parameter ℓ = [10(T/100)1/4]. We use the 1/4-order bandwidth because, in the semiparametric unit root test literature,
the 1/4-order bandwidth is generally recommended for consistent longrun variance estimators, see Schwert (1989).

For each test, as the critical value, we use the right 5% empirical quantile of 100000 values of the test simulated under
NC with ρ = 0.

Our major findings from these tables are:

1. Sup B has significantly better size than SupH in case of serial correlation of NC with ρ = 0.1, 0.3, 0.5,
2. For MC1 of cancelling U(−0.2, 0.2) mean changes, SupH has substantially better power than Sup B,
3. For MC2, MC3 of non-cancelling U(0, 0.2), U(0.1, 0.3) mean changes, Sup B has substantially better power than SupH .

More detailed comparison may be also interesting. For size performance, the proposed test Sup B has stable size value
close to the nominal level 5% for all combinations of (n, T , ρ) considered here. On the other hand, the existing test SupH
has size distortion which gets more severe as ρ increases: for n = 200, SupH has empirical size greater than 15%, 37%,
respectively, if ρ = 0.3, 0.5, respectively. For given ρ > 0, size of SupH gets more deviated from the nominal level for the
larger n or for the smaller T .

For MC2 and MC3 of non-cancelling changes δ̄ > 0, the proposed test Sup B has substantially better power for all n, T
considered here than SupH . When breaks occur at early time (b = 0.1), SupH has almost no power while Sup B has some
power.

On the other hand, for MC1 of cancelling changes δ̄ ∼= 0, the proposed test Sup B has almost no power even for larger n
or larger T while the existing test SupH has good power increasing as n or T increase if break occurs at the middle of data
span.

From this Monte Carlo study, we may conclude that the proposed test Sup B has substantially better size performance
than the existing test SupH while having better power against non-cancelling homogeneous changes and having almost no
power against cancelling changes.



D.W. Shin, E. Hwang / Journal of the Korean Statistical Society ( ) – 5

Table 3
Sizes (%) of level 5% tests for volatility changes based on 10000 replications.

n T ρ = 0.1 ρ = 0.3 ρ = 0.5
Sup BQ SupHQ Sup BQ SupHQ Sup BQ SupHQ

50 50 5.0 4.6 5.1 5.2 5.6 7.4
50 100 5.0 4.7 5.0 5.3 5.3 6.9
50 200 5.0 4.9 4.9 5.2 5.1 7.3

100 50 5.3 5.2 5.5 6.3 6.8 9.9
100 100 4.5 4.9 4.9 5.9 5.7 9.6
100 200 5.2 4.9 5.1 6.1 5.8 8.8
200 50 4.8 4.8 5.1 6.9 7.9 13.8
200 100 4.7 5.3 5.2 7.2 6.5 12.6
200 200 5.1 5.3 5.3 6.9 6.2 11.9

4. Volatility change detection

It would be interesting to compare the test, Sup BQ say, of Li et al. (2015) and the test, SupHQ say, of Shi (2015) for
volatility change detection in the context of mean change detection described in Sections 2 and 3. The test Sup BQ is
constructed from the CUSUM of (Xit − X̄i)

2 in the same way as Sup B is constructed from the CUSUM of (Xit − X̄i). Similarly,
the test SupHQ is constructed from the squared CUSUM of (Xit − X̄i)

2 in the same way as SupH is constructed from the
squared CUSUM of (Xit − X̄i).

We consider a panel data model having variance changes ν1, . . . , νn at common time t0 as given by

Xit = µi + σi (1 + νiI{t > t0}) uit , 1 ≤ i ≤ n, 1 ≤ t ≤ T

where uit is a linear process with the same condition as that for model (1). We have

Var(Xit) = σ 2
i for 1 ≤ t ≤ t0; Var(Xit) = σ 2

i (1 + νi)
2 for t0 < t ≤ T .

We wish to test the null hypothesis H0 : νi = 0 for all 1 ≤ i ≤ n of no change volatility. We have

(Xit − µi)
2

= σ 2
i [(1 + δiI{t > t0}) + ait ], 1 ≤ i ≤ n, 1 ≤ t ≤ T ,

where δi = 2νi + ν2
i and ait = (1 + δiI{t > t0}) (u2

it − 1) is a zero-mean process. Noting that the squared process has mean
changes δi = 2νi + ν2

i at time t0, we have

E(Xit − µi)
2

= σ 2
i , 1 ≤ t ≤ t0; E(Xit − µi)

2
= σ 2

i (1 + δi), t0 < t ≤ T .

Since detection of obvious change is not of statistical interests, we may assume that |νi| ≪ 1 for the usual statistical
comparison of the two tests. Then the mean change in the squared process satisfies δi ∼= 2νi and we expect the same
relative power performance of Sup BQ and SupHQ as that of Sup B and SupH discussed in Sections 2 and 3. If volatility
changes cancel each other so that ν̄ = n−1n

i=1 νi ∼= 0, then so is the average mean change δ̄ in the squared process and
expect better power for SupHQ than for Sup BQ . If volatility changes do not cancel each other significantly, we expect the
reverse: better power for Sup BQ than for SupHQ . This point will be investigated in a Monte Carlo simulation below.

The two tests Sup BQ and SupHQ are compared in a Monte Carlo experiment whose setup is similar to those of Li et al.
(2015) and Shi (2015). We choose the data generating process

xit = ρxi,t−1 + uit , Xit = xit + νiI{t > t0}uit , i = 1, . . . , n, t = 1, . . . , T

with standard normal error uit . Volatility changes, if any, occur for half of n panel units at a time t0 = bT for which we
consider b = 0.1 and b = 0.5. The volatility change parameters νi are chosen from:

NC : νi = 0; VC1 : νi ∼ U(−0.2, 0.2); VC2 : νi ∼ U(0, 0.2).

Note that NC has no volatility change, VC1 has cancelling volatility changes νi on [−0.2, 0.2] in that ν̄ ∼= 0, and VC2 has
non-cancelling positive volatility changes νi on [0, 0.2]. Other experimental setup is the same as that in Section 3. Sizes and
powers of the volatility change tests SupBQ and SupHQ are reported in Tables 3, 4, respectively.

We observe that both Sup BQ and SupHQ have good size performance even though SupHQ has some size distortion for
ρ = 0.5. Relative power performance of the volatility change tests Sup BQ and SupHQ is similar to that of the mean change
tests Sup B and SupH: for the cancelling volatility change of VC1, SupHQ has good power while Sup BQ has no power; for
the non-cancelling volatility change of VC2, Sup BQ has better power than SupHQ .
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Table 4
Powers (%) of level 5% tests for volatility changes based on 10000 replications.

n T Breaks at 0.1T Breaks at 0.5T
VC1 VC2 VC1 VC2
Sup BQ SupHQ Sup BQ SupHQ Sup BQ SupHQ Sup BQ SupHQ

50 50 4.9 4.6 6.7 4.6 5.8 13.0 29.9 12.1
50 100 5.3 4.9 8.5 5.0 7.0 31.7 53.8 26.7
50 200 5.4 6.0 13.6 5.9 9.9 73.2 83.3 64.5

100 50 5.6 5.2 8.9 5.2 6.4 19.9 50.6 17.2
100 100 4.9 5.2 12.8 5.1 6.9 49.2 81.5 41.8
100 200 6.0 6.6 24.6 5.9 10.2 93.3 98.3 87.8
200 50 4.8 4.8 13.0 4.8 6.1 29.4 80.8 25.7
200 100 5.1 5.9 25.4 5.6 7.0 76.3 98.5 67.0
200 200 6.2 7.5 52.9 6.9 10.6 99.7 100.0 99.0

Fig. 1. Daily 5 min realized volatilities of the KOSPI, the NIKKEI, and the Hang Seng index.

5. An example

The proposed tests are illustrated by a real data set consisting of the daily 5 min realized volatilities of 3 eastern
Asian country stock price indices for the year 2015: the KOSPI, the NIKKEI, and the Hangseng index. The volatility data
set is downloaded from the Oxford-Man realized library (http://realized.oxford-man.ox.ac.uk/). Some example analyses for
univariate realized volatilities are available in Hwang and Shin (2013, 2015, in press) and Song and Shin (2015) for structural
breaks, in Yun and Shin (2015) for an overnight issue, and in Cho and Shin (2016) for an integrated model.

Fig. 1 shows time series plots of the 3 series, which reveals simultaneous increases both in levels and variations in
September–October. Values of the test statistics are: Sup B = 5.517, SupH = 5.887, SubBQ = 2.413, SupHQ = 1.410
Level 5%, 1% critical values of (Sup B, SupH, Sup BQ , SupHQ ) are (2.29, 2.29, 1.68, 1.68), (2.74, 2.74, 2.24, 2.24), respectively.
For the mean, we find significant breaks at level 1% by both SupB and SupH . For the volatility, SupBQ indicates breaks at 1%
level while SupHQ fails to detect significance at 5% level. It seems that the non-cancelling high values in variations around
September–October may have been more well detected by Sup BQ than SupHQ .

6. Conclusion

We have considered a panel mean change test based on the CUSUM of the panel processes. The test has better size
performance than the existing test of Horvath and Huskova (2012). Compared with the existing test, the proposed test has
better power against non-cancelling changes but has worse power against cancelling changes. Therefore, when we have
prior information that the means are shifted to a common direction as in the world wide financial crisis, we may prefer
the proposed test to the existing one. When we have the prior information of cancelling changes, the existing test should
be preferred. When we do not have information on the direction of mean shifts, we need to consider both of the proposed
test and the existing one because none of the two dominates the other one in power performance. It would be better if we
have a theoretical explanation on the Monte-Carlo difference between the proposed test SupB and the existing test SupH .
Investigation of the theoretical point may be a good topic of future research.

7. Proofs

Proof of Theorem 2.1. Under H0, note that for 0 ≤ z ≤ 1,

1
v̂i

1
√
T

[Tz]
t=1

(Xit − X̄i) =
σi

v̂i

1
√
T

[Tz]
t=1


uit −

1
T

T
t=1

uit



http://realized.oxford-man.ox.ac.uk/
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and
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is the long-run variance of uit , i = 1, . . . , n. According to Phillips and Solo (1992)

we have
[Tz]
t=1


uit −

1
T

T
t=1

uit


= ai


[Tz]
t=1

ϵit −
[Tz]
T

T
t=1

ϵit


+ ηiT (z)

where ai is defined in (A5), noting a2i = ϕ2
i , and where

ηiT (z) =


1 −

[Tz]
T


ũi0 − ũi,[Tz] +

[Tz]
T

ũiT

with ũit =


∞

l=1 c̃ilϵi,t−l and c̃il =


∞

k=l+1 cik. Under condition (A4), lim supi→∞


∞

l=0 |c̃il| < ∞ and thus ηiT (z)
p

−→ 0 as
T → ∞ for each i = 1, . . . , n. Thus, uniformly in z,

1
ϕi

1
√
T


[Tz]
t=1

uit −
[Tz]
T

T
t=1

uit


d

−→ B0
i (z) as T → ∞

where B0
i (z), i = 1, . . . , n, are independent standard Brownian bridges. Thus as T → ∞,σi

v̂i

1
√
T

[Tz]
t=1


uit −

1
T

T
t=1

uit


−

σiϕi

v̂i
B0
i (z)

 p
−→ 0.

Since σiϕi/v̂i
p

−→ 1, we have
 1v̂i 1

√
T


[Tz]
t=1(Xit − X̄i) − B0

i (z)
 p

−→ 0. Therefore, uniformly in z,
B̂nT (z) −

1
√
n

n
i=1 B

0
i (z)


p

−→ 0 as min{n, T } → ∞. Since 1
√
n

n
i=1 B

0
i (z)

d
−→ B0(z) uniformly in z as n → ∞, along with the tightness argument

similar to the proof of Lemma 2 of Horvath and Huskova (2012), we have the desired result. �

Proof of Theorem 2.2. For t0 = t0(T ) we denote

τ := lim inf
T→∞

t0
T

, τ̄ := lim sup
T→∞

t0
T

.

By the assumption, 0 < τ ≤ τ̄ < 1. We observe ZiT (z) for z ∈ [0, t0/T ] and z ∈ (t0/T , 1], respectively. It can be shown
straightforwardly that

ZiT (z) =
σi
√
T


[Tz]
t=1

uit −
[Tz]
T

T
t=1

uit


+

σi
√
T

λiT (z)

where

λiT (z) =


−δi

[Tz](T − t0)
T

if 0 ≤ [Tz] ≤ t0

−δi
t0(T − [Tz])

T
if t0 < [Tz] ≤ T .

Note that ZiT (z) has the same limiting distribution as that of σiϕiB0
i (z) +

σi√
T
λiT (z) by the proof of Theorem 2.1. Hence

B̂nT (z) =
1

√
n

n
i=1

σiϕi

v̂i
B0
i (z) +

1
√
nT

n
i=1

σi

v̂i
λiT (z) + op(1)

and thus, using the fact that σiϕi/v̂i
p

−→ 1,

B̂nT (z) = B0(z) +
1

√
nT

n
i=1

ϕiλiT (z) + op(1). (6)

Note that 1
√
nT

n
i=1

ϕiλiT (z)

 ≥
b

√
nT

 n
i=1

λiT (z)

+ op(1) (7)
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where b is the common lower bound of ϕi (=ai) in (A5) for all i. In case that 0 ≤ [Tz] ≤ t0, we have

1
√
nT

 n
i=1

λiT (z)

 =
1

√
nT

 n
i=1

(−δi)
[Tz](T − t0)

T

 = [Tz]
√
n

√
T

δ̄ T − t0
T


≥ [Tz]

√
n

√
T

δ̄ (1 − τ̄ )

since (T − t0)/T ≥ lim infT→∞(T − t0)/T = 1 − τ̄ . Also in case that t0 < [Tz] ≤ T , we have

1
√
nT

 n
i=1

λiT (z)

 =
1

√
nT

 n
i=1

(−δi)
t0(T − [Tz])

T

 = (T − [Tz])
√
n

√
T

δ̄ t0
T

≥ (T − [Tz])
√
n

√
T

δ̄ τ
since t0/T ≥ lim infT→∞ t0/T = τ . Thus

sup
0≤z≤1

1
√
nT

 n
i=1

λiT (z)

 ≥ max


sup
0≤z≤t0/T

[Tz]
√
n

√
T

δ̄ (1 − τ̄ ), sup
t0/T<z≤1

(T − [Tz])
√
n

√
T

δ̄ τ . (8)

Note that since 1 − τ̄ > 0 and τ > 0, we have

lim
min{n,T }→∞

max


sup
0≤z≤t0/T

[Tz]
√
n

√
T

δ̄ (1 − τ̄ ), sup
t0/T<z≤1

(T − [Tz])
√
n

√
T

δ̄ τ = C lim
min{n,T }→∞

√
nT |δ̄|

for some positive C . By the assumption, the right-hand side is ∞. Thus by (6)–(8) along with the above limit, we conclude
that sup0≤z≤1

B̂nT (z)
 p

−→ ∞. �

Acknowledgement

This study was supported by grants from the National Research Foundation of Korea (2016R1A2B4008780, NRF-2015-
1006133).

References

Bai, J. (1997). Estimation of a change point in multiple regression models. Review of Economics and Statistics, 79, 551–563.
Bai, J. (2010). Common breaks in means and variances for panel data. Journal of Econometrics, 157, 78–92.
Bai, J., Lumsdaine, R. L., & Stock, J. H. (1998). Testing for and dating common breaks in multivariate time sereis. Review of Economic Studies, 65, 395–432.
Cho, S., & Shin, D.W. (2016). An integrated heteroscedastic autoregressivemodel for forecasting realized volatilities. Journal of the Korean Statistical Society,

45, 371–380.
Emerson, J., & Kao, C. (2001). Testing for structural change of a time trend regression in panel data: Part I. Journal of Propagations in Probability and Statistics,

2, 57–75.
Emerson, J., & Kao, C. (2002). Testing for structural change of a time trend regression in panel data: Part II. Journal of Propagations in Probability and Statistics,

2, 207–250.
Han, A. K., & Park, D. (1989). Testing for structural changes in panel data: Application to a study of US foreign trade in manufacturing goods. Review of

Economics and Statistics, 71, 135–142.
Horvath, L., & Huskova, M. (2012). Change-point detection in panel data. Journal of Time Series Analysis, 33, 631–648.
Hwang, E., & Shin, D. W. (2013). A CUSUM test for a long memory heterogeneous autoregressive model. Economics Letters, 121, 379–383.
Hwang, E., & Shin, D. W. (2015). A CUSUMSQ test for structural breaks in error variance for a long memory heterogeneous autoregressive model. Statistics

& Probability Letters, 99, 167–176.
Hwang, E., & Shin, D. W. (2016). Estimation of structural mean breaks for long-memory data sets. Statistics, (in press).
Li, F., Tian, Z., Xiao, Y., & Chen, Z. (2015). Variance change-point detection in panel data models. Economics Letters, 126, 140–143.
Phillips, P. C. B., & Solo, V. (1992). Asymptotics for linear processes. Annals of Statistics, 20, 971–1001.
Schwert, G. W. (1989). Tests for unit roots: A Monte Carlo investigation. Journal of Business & Economic Statistics, 7, 147–159.
Shi, Y. (2015). Testing change in volatility using panel data. Economics Letters, 134, 107–110.
Song, H., & Shin, D. W. (2015). Long-memories and mean breaks in realized volatilities. Applied Economics Letters, 22, 1273–1280.
Yun, S., & Shin, D. W. (2015). Forecasting the realized variance of the log-return of Korean won US dollar exchange rate addressing jumps both in stock-

trading time and in overnight. Journal of the Korean Statistical Society, 44, 390–402.

http://refhub.elsevier.com/S1226-3192(15)30166-6/sbref1
http://refhub.elsevier.com/S1226-3192(15)30166-6/sbref2
http://refhub.elsevier.com/S1226-3192(15)30166-6/sbref3
http://refhub.elsevier.com/S1226-3192(15)30166-6/sbref4
http://refhub.elsevier.com/S1226-3192(15)30166-6/sbref5
http://refhub.elsevier.com/S1226-3192(15)30166-6/sbref6
http://refhub.elsevier.com/S1226-3192(15)30166-6/sbref7
http://refhub.elsevier.com/S1226-3192(15)30166-6/sbref8
http://refhub.elsevier.com/S1226-3192(15)30166-6/sbref9
http://refhub.elsevier.com/S1226-3192(15)30166-6/sbref10
http://refhub.elsevier.com/S1226-3192(15)30166-6/sbref11
http://refhub.elsevier.com/S1226-3192(15)30166-6/sbref12
http://refhub.elsevier.com/S1226-3192(15)30166-6/sbref13
http://refhub.elsevier.com/S1226-3192(15)30166-6/sbref14
http://refhub.elsevier.com/S1226-3192(15)30166-6/sbref15
http://refhub.elsevier.com/S1226-3192(15)30166-6/sbref16
http://refhub.elsevier.com/S1226-3192(15)30166-6/sbref17

	A CUSUM test for panel mean change detection
	Introduction
	Mean change detection
	Monte Carlo comparison
	Volatility change detection
	An example
	Conclusion
	Proofs
	Acknowledgement
	References


