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• A clustering based algorithm is recommended for data center selection problem.
• It is more applicable to large scale VM placement and runs faster.
• A more effective VM partition algorithm is presented utilizing a new model of VMs.
• All algorithms can address both homogeneous and heterogeneous requirements of VMs.
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a b s t r a c t

Resource virtualization is one of the most prominent characteristics of cloud computing. The placement
of virtual machines (VMs) in the physical machines determines the resource utilization efficiency and
service quality. Especially for distributed cloud computing, where the data centers (DCs) span a large
number of geographical areas and all DCs are connected by high speed internet, the placement of VMs of
one big task or of one organization focuses on minimizing the distances and bandwidths between DCs.
This minimizes communication latency and improves availability. A data center cluster should be found
firstly to accommodate the requested VMs. The purpose is to minimize the maximum inter-DC distance.
In contrast to existing method that only considers the distances between data centers, a more efficient
clustering based2-approximation algorithm is developedby taking full use of the topology and thedensity
property of cloud network. The simulation shows the proposed algorithm is especially appropriate for
very large scale problems. Then, the requested VMs should be partitioned to the DC cluster, so that the
expensive inter-DC bandwidth is saved and the availability is improved. With the introduction of a half
communication model, a novel heuristic algorithm which further cuts down the used bandwidths is
presented to partition VMs. Its time complexity is reduced to O(n2) by a factor of O(logn) and it runs
3 times faster than the existing method.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Cloud computing has gained great popularity in recent years
for the efficient resource usage and convenient service access [1,
2]. These competitive powers are attributable to the introduction
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of virtual technology and distributed networking of cloud. Based
on the actual standard of virtualization industry, the cores of
physical machines (PMs) can be virtualized into more virtual
CPUs (vCPUs) [3]. Virtual machines (VMs) can be placed on the
granularity of vCPUs and thus gain a more efficient resource
utilization. It is also hoped VMs can be deployed closer to
the end users in different geographical locations by distributed
networking. Distributed cloud consists of a lot of data centers
(DCs) and all DCs are connected by high speed internet [4].
Contrary to the counterparts of centralized cloud, distributed
DCs have relatively small capability because they are planned
according to the less traffic of the dispersed area they locate.
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As more small cloud service providers enter cloud market, DC
becomesmuch smaller [5]. But the distribution scheme has several
benefits. The sites of DCs are selected according to the principle
of proximity. Services of end users can be completed in the DC
nearer to them. The reaction time is shortened and the overall
long-distance bandwidth consumption is cut down. Thismeans the
service latency is reduced and availability is increased. Moreover,
relatively small DC can be easily retreated/added based on the
services traffic change in different areas. So distributed cloud is
more scalable and more elastic. It has become the mainstream.

The VMs of some applications may span more than one DC
for the relatively small capacity of DCs or some availability policy
where an upper limit for the VMs in one DC is designated [6]. Most
of such applications are geo-distributed in nature and can benefit
from the utilizationmultiple DCs. One example is a big data stream
processing system on a cloud for a huge supermarket chain across
regions [7]. The processing systems consist of a large number
of independent tasks. Because various data, such as information
of customers and sales are produced continuously in different
regions, the VMs to process the data and tasks are also distributed
naturally. The VMs can be deployed in any DCs without violating
the forced task semantics. The data stream will consume huge
inter-DC bandwidth. Other applications, such as the thousands of
virtual desktops (they are also a kind of VMs) for all branches of
companies [8,9], processing-intensive taskswhere the input of one
processor is from another processor in another area [5,10] and
logistic information systems [11], also need to spanmore than one
DCs. Distributed cloud is the most eligible candidate.

We should select such a DC cluster firstly to accommodate
the requested VMs which dedicate to one application and
communicate with each other. In addition to the consideration
of capacity matching, the inter-DC distance should be as small as
possible to reduce the service latency. The primary objective is to
minimize the maximum inter-DC distance. This prevents from the
possibility of tasks running in VMs which are very far apart, so as
not to delay the overall completion time of the user application [6].

After DC cluster is selected VMs should be partitioned to
each DC of the cluster. On one side, the partition should not
exceed the upper bound of DC capacity. On the other side, the
important resource: network bandwidth between different DCs
should be minimized [12]. This is because of two reasons: (1)
Economical consideration. The long-distance line between DCs is
very expensive. (2) Availability consideration. The more the long-
distance line is used, the lower availability is possible. VMs with
larger traffic can be agglomerated in one DC so that as many
communications are completed inside the DC as possible.

This paper aims to investigate more efficient algorithms for the
aforementioned data center selection and VM partition problems.
The main contributions are summarized as follows:

1. A novel clustering based algorithm is recommended for data
center selection problem. In addition to distance, this algorithm
fully takes into consideration other networking information of
cloud, such as topology, density integratedwithDC capacity and
thus improves the efficiency. The execution time is shortened
15%–27% for the random distribution scenario of DCs and
15%–72% for the clustering scenario respectively. Furthermore,
it is more applicable to large scale VM placement.

2. With introduction of half communication model of VMs, the
overall traffic of a VM can be considered in the decision process.
Therefore, a new slightly more effective VM partition algorithm
is presented. Its time complexity is reduced to O(n2) by a factor
of O(log n) and the efficiency is improved about 4 times.

3. The two algorithms are designed on the basis of the actual
standard of virtualization industry, i.e., the granularity of
vCPUs. They can address both homogeneous andheterogeneous
requirements of VMs.
The rest of this paper is organized as follows. Section 2
discusses related work. Section 3 addresses the DC selection
problem bymeans of a clustering basedmethod and proves it as 2-
approximation. Section 4 defines the half communicationmodel of
VMs and thenpresents a new faster algorithm. Section 5 introduces
the test environment and evaluates both methods, especially on
the algorithm efficiency. Finally the whole paper is wrapped up in
Section 6 with some future work.

2. Related work

2.1. VM placement and current virtualization standard

Efficient resource usage lays the foundation for the service
level assurance and thus makes the cloud service provider
business a success and of maximum profitability. So the resource
allocation problem is a key challenge for cloud computing [13,14].
Various aspects of resource allocation are explored, such as server
integration [15], load balance [16] and energy [17]. But all these
papers mainly concentrate on memory and CPU resources. DC
selection and bandwidth saving are seldom studied in past years.
The placement of VMs in one DC based on the traffic matrix
is investigated in [18,19] and the objective is to improve the
scalability of DCs.

Different models are adopted to address the challenge. Bin
packing [20,21] and graph theory [18,22,23] are twomodelswidely
used and they are selected based on the granularity of resources.
The former assumes resource can be split arbitrarily to adapt to
the diverse resource requirements of VMs. Statistical multiplexing
is often utilized to compact more VMs into one PM. But it is not
realistic for the current virtualization techniques. The resource can
only be refined to the granularity of vCPUs [24]. Even VMWare, one
of the leading virtualization technology corporations, claims that
for its latest virtualization product: VMware vSphere 5.x, a virtual
machine cannot havemore vCPUs than the number of logical cores
of the host. The number of logical cores is equal to the number
if hyperthreading is disabled or at most twice of that number of
the physical cores if hyperthreading is enabled [3]. The number of
logical cores is just the most number of VMs that can be hosted
in the PMs. In the VM instance types provided by Amazon, vCPU
is used as the computing resource metric and it varies from 1 to
32 [25]. On the other side, bin packing based algorithmassumes the
items have no relationship and fails to describe the situation when
the packed VMs communicate with each other [26]. So we use the
graph theory basedmodel. Resource unit ‘‘slots’’ is often integrated
with it [18,22,23]. The number of slots can be determined by some
existing capacity tools [18]. Herein each slot corresponds to a vCPU.
One slot can only be occupied by one VM. But one VMmay require
more than one slot.

Data center selection problem is firstly explored in [6].
After formulating as minimizing the diameter of a complete
vertex weighted graph, the problem is proved as NP-hard. A
FindMinStar algorithm is recommended to find aDC cluster around
a certain DC and to calculate the corresponding diameter. Then
in a 2-approximation algorithm MinDiameterGraph, FindMinStar
is invoked for each DC. All the corresponding diameters are
calculated and compared straight-forward. The DC cluster with
the minimum diameter is selected as the solution. The time
complexity of MinDiameterGraph is O(n3) and it is dominated
by FindMinStar algorithm with time complexity O(n2). For the
VM partition problem, a heuristic algorithm with O(n2 log n) time
complexity is also presented [6]. The simulation shows themethod
can produce better result than a random and a greedy algorithm.

But the paper assumes the DC capacity is measured by
the number of VMs, so the algorithms can only address the
homogeneous situation where all VMs require the same amount
of resource. Moreover, normally the VM placement is online. It is
necessary to explore lighter-weight algorithms.
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Fig. 1. Density-based clustering concepts where MinPts equals 5. Stars denote
noise objects, triangles denote core objects and square denotes border objects.
Core-distanceϵ,5(i) = ξ .

2.2. Density-based clustering

Density-based clustering method is extensively used in cluster
analysis [27–29]. Its key idea is that, given a radius ϵ, the cluster
consists of two kinds of objects. The first kind of object is ‘‘core
object’’. For each core object i, its ϵ-neighborhood Nϵ(i) (the closed
disk whose core is i and radius is ϵ) contains at least MinPts
points, i.e., the numbers of points in the neighborhood exceed a
threshold. For other objects in the cluster, their ϵ-neighborhood
contains fewer points thanMinPts. These objects are called ‘‘border
objects’’. If the ϵ-neighborhood of an object contains fewer points
than MinPts and it is not included in any cluster, this object is a
‘‘noise’’. Intuitively, noise object is sparser. The whole point set can
be viewed as clusters of points separated by noise points. Utilizing
the aforementioned concepts, DBSCAN algorithm [30] can find the
corresponding clusters based on the input ϵ andMinPts. The related
concepts are illustrated in Fig. 1 for easy understanding.

Any change in the input parameters will lead to different
clusters and DBSCAN algorithm must run again. With the
introduction of core-distance and reachability-distance, OPTICS
algorithm [31] is presented on the basis of DBSCAN. OPTICS finds
core objectswith respect to (w.r.t.) inputs ϵ andMinPts firstly. Then
all points are ordered in reachability-distance after calculating the
corresponding core-distance and reachability-distance. Thus, any
cluster whose input radius is shorter than ϵ can be found easily.

3. Clustering based data center selection

3.1. Motivation

Data center selection problem aims to find a DC cluster to
accommodate the requested VMs where each VM requires a
certain number of vCPUs. The maximum inter-DC distance of
the cluster needs to be minimized so that the latency of the
application is reduced. This problem is formulated as a diameter
minimizing problem of a complete vertices weighted graph G =
(N, E, w). The vertices N represent n DCs. The weight vector w
of the vertices is the capacity of DCs, i.e., the number of vCPUs
can be accommodated. E is the edge length matrix where Eij is
the edge length between vertices i and j. The diameter is the
longest one of all edges. It is natural to suppose the distance
between DCs (e.g., Euclidean distance) follows triangle inequality.
The prerequisite is that the capacity of DCs can accommodate the
requested VMs, otherwise the capacity needs to be expanded.

ThoughMinDiameterGraph in [6] is said to be network aware, it
only considers the distances between DCs. In reality, the clustering
nature of the distributed cloud is an important factor and should
not be ignored. The location selection of DC is based mainly
on communication traffic and population distribution which are
usually both unbalanced. Some DCs are much denser and cluster
together. While others are sparser and scatter widely. It is more
possible to find a DC cluster in denser DCs in conjunction with
the capacity of them, so that the diameter is as small as possible.
MinDiameterGraph does not take advantage of this information.
It can only use the straight-forward mechanism by comparing all
DC clusters, one by one to find the solution. So despite the different
densities, for the same problem, its execution time is very high and
almost the same for different networks (refer Fig. 4 in Section 5.1
for details). MinDiameterGraph invokes FindMinStar one time for
each DC to find a DC cluster and calculate the corresponding
diameter by simply comparing the edges one by one. Because there
are n2 edges for n DCs, the diameter calculation is rather time-
consuming and the time complexity of FindMinStar is O(n2).

In addition to the cluster nature of DCs, each DC can
accommodate different numbers of vCPUs. After all, the designed
capacity of each DC may not be the same. Moreover, resources
allocated after delivery contrast greatly. Hence the remaining
capacity is different. Integrating with the remaining capacity, if
we can find a DC cluster, which can accommodate the requested
VMs in a denser area, then some sparser DCs are unnecessary to
be checked anymore and will be cut off directly. Further, we do
not need to calculate their time-consuming diameter and avoid the
straight-forward comparison of them. The efficiencywill be greatly
improved without deteriorating quality. The basic idea is to find
a rather small radius ϵ, there exists at least one DC and whose ϵ-
neighborhood contains enoughDCs to accommodate the requested
VMs. A corresponding diameter of these DCs is calculated. Any
DC which is noise w.r.t. this diameter (acts as a new radius) and
the number of vCPUs (acts as MinPts) required by some VMs is
unnecessary to be considered.

3.2. Data center selection

In the notion of density-based clustering, every point is viewed
as equivalent, except its varying distance to the core. But in cloud
computing, even if a DC can be viewed as a point, it is still not
equivalent because its capacity to accommodate VMs is different.
So we cannot cluster simply according to the number of DCs.

Here we will introduce some concepts firstly in order to
facilitate the later discussion.

We view a DC which can accommodate k vCPUs as a k points
set and all inter-point distances are zero. If all DCs contained in
the ϵ-neighborhood of a DC can accommodate the total m vCPUs
required by some VMs, it means the ϵ-neighborhood of the DC
contains m points. In this sense it is coincident with the density-
based clustering notions. So we have the following definition:

Definition 1 (Core Object).Given ϵ as a distance value, if DCs in the
ϵ-neighborhood of a DC can accommodate at least m vCPUs, then
this DC is a core object w.r.t. (ϵ,m).

Core-distance is modified accordingly from that in [31] as
follows:

Definition 2 (Core-Distance of anObject i).Given i as an object from
DCs, ϵ as a distance value, m as a natural number. Denote Nϵ(i) as
the ϵ-neighborhood of i. Let m-distance(i) be the distance from i
to its neighbor DC who just accommodates themth vCPU andm is
the total number of vCPUs required by some VMs. Let Card(Nϵ(i))
be the number of vCPUs accommodated by DCs contained in Nϵ(i).
Then, the core-distance of i is defined as core-distanceϵ,m(i) =
UNDEFINED if Card(Nϵ(i)) < m
m-distance(i) otherwise.

For core object, core-distance is the smallest radius ξ , from i to
its neighbor DC such that i is a core object w.r.t. (ξ,m). There is no
definition for non-core object. Please refer Fig. 1 for illustration.
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Definition 3 (Feasible Subgraph). Given one vertex i, if i and its
closest neighbors constitute a subgraph whose vertices (DCs)
accommodate at least m vCPUs and the corresponding VMs. Then
this subgraph is called a feasible subgraph centers around i.

Definition 4 (Minimum Feasible Subgraph). Given one feasible
subgraph, if any subgraph of it is not feasible subgraph, this feasible
subgraph is called a minimum feasible subgraph.

Denote minimum feasible subgraph centers around i as Fi and
the diameter of the graph as D(Fi). For a core object i whose
core-distanceϵ,m(i) = ξ , Fi is just formed by all objects in Nξ (i).
If radius of Fi is defined as the distance between i and the farthest
neighbor in Fi, then the radius is just the same as the core distance.

The following method ModFindMinStar (Algorithm 1) can be
used to find a minimum feasible subgraph. ModFindMinStar is
modified from FindMinStar algorithm [6] except the diameter
calculation process is deleted.

Algorithm 1ModFindMinStar
Input: G = (N, E, w): a complete graph with vertex, edge length

matrix and weight
m: required weight of the subgraph, i: starting vertex

Output: Subgraph G′ = (N ′, E ′) of weight at least m formed by i
and its closest neighbors

1: Let e = (e1, e2, ..., en−1) is the i-th column vector of E
excluding Eii sorted in non-decreasing order: e1 ≤ e2 ≤ ... ≤
en−1. The corresponding vertices of e are (Ne1 ,Ne2 , ...,Nen−1)
and the weights are (we1 , we2 , ..., wen−1)

2: N ′ ← i, m′ ← wi
3: for j = 1, . . . , n− 1 do
4: if m′ < m then
5: N ′ ← N ′


Nej , m

′
← m′ + wej

6: else
7: E ′ ← submatrix of E corresponding to N ′
8: return G′ = (N ′, E ′)
9: end if

10: end for
11: if m′ < m then
12: No subgraph of sizem in G
13: return NULL
14: end if
15: E ′ ← submatrix of E corresponding to N ′
16: return G′ = (N ′, E ′)

For a given DC, ModFindMinStar orders all other DCs in
increasing distance to this DC, then the closest DC is added to the
cluster. If the cluster can accommodate all the requested vCPU
and the corresponding VMs, the program terminates. Otherwise
the second closest DC is added until the cluster meets the VMs
number requirement or all DCs have been added. Because of the
heterogeneity of VMs, the feasibility to accommodate the concrete
VMs combination is necessary. But for a real DC which can supply
thousands of vCPUs, it can be negligible.

Proposition 3.1. Suppose there exist one object i, D(Fi) = d and
ϵ ≥ d, then for any core object j w.r.t. (ϵ,m) whose core-distance
is bigger than d, we have D(Fj) > d.

Proof. Suppose the core-distance of j is ξ . Because ξ > d, there
must exist at least two objects in Nξ (j) and they are at least d
apart. Fj is just formed by all objects in Nξ (j). So diameter D(Fj),
the maximum edge length of Fj, is bigger than d.
Proposition 3.1 enlightens us, if there is one feasible subgraph
and its diameter is d, then we only need to judge whether other
objects are core objects w.r.t. (d,m). All noise objects will be cut
off directly because the minimum feasible subgraphs that center
around these objects cannot produce a more optimal solution. The
smaller the d is, themore pointswill be cut off and hence improves
the efficiency.

A new algorithm ClusteringBasedMinDiameter (CBMinDia,
Algorithm 2) is presented to find a DC cluster with minimum
diameter. CBMinDia includes three phases: phase 1 (line 1) selects
an arbitrary vertex and uses the radius of its minimum feasible
subgraph (all the minimal feasible subgraphs in this algorithm are
found by ModFindMinStar) as the initial radius ϵ. Phase 2 (lines
2–9) judges whether each vertex is core object w.r.t. (ϵ,m) and
then labels. Lines 10–25 are phase 3. In this phase vertices which
cannot be more optimal are cut off by a criterion and the vertex
with the smallest diameter is found. The criterion is d, i.e., the
diameter of theminimum feasible subgraphwith the smallest core
distance. This feasible subgraph is a feasible solution and is used as
the initial value. We hope d is rather small, so that more vertices
can be excluded from it. Based on Proposition 3.1, for core objects
w.r.t. (ϵ,m), only the one with core distance smaller than d is
checked. The solution is updatedwhen a smaller diameter is found.
The process is reflected in lines 15–18. For non-core objects w.r.t.
(ϵ,m), it is checked only when the initial radius ϵ is smaller than d
and its neighborhood contains at leastm objects (line 20), because
a non-core object w.r.t. a bigger ϵ than d cannot be more optimal.
Furthermore, the neighborhood should contain enough objects.
Otherwise it is not a feasible solution.

Algorithm 2 ClusteringBasedMinDiameter (CBMinDia)
Input: G = (N, E, w): a complete graph with vertex, edge length

matrix and weight
m: required weight of the subgraph

Output: Subgraph G′ = (N ′, E ′) of weight at least m with
minimum diameter d

1: Select any vertex k from N , initial radius ϵ ← radius of Fk
2: for i = 1, . . . , n do
3: if Card(Nϵ(i)) ≥ m then
4: Label i as core object
5: Sort points inNϵ(i) in increasing distance to i and calculate

core-distanceϵ,m(i)
6: else
7: Label i as non-core object
8: end if
9: end for

10: Let k is the vertex with the minimum core-distance.
11: d← D(Fk), feasible subgraph center: center ← k
12: N ′ ← vertices of Fk, E ′ ← edge matrix of Fk
13: for j = 1, . . . , n do
14: if j is labeled as core object then
15: if (core-distϵ,m(j) ≤ d) and (D(Fj) ≤ d) then
16: d← D(Fj), center ← j
17: N ′ ← vertices of Fcenter , E ′ ← edge matrix of Fcenter
18: end if
19: else
20: if (ϵ < d) and (Card(Nd(j)) ≥ m) and (D(Fj) ≤ d) then
21: d← D(Fj), center ← j
22: N ′ ← vertices of Fcenter , E ′ ← edge matrix of Fcenter
23: end if
24: end if
25: end for
26: return G′ = (N ′, E ′) and d
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3.3. Complexity analysis and effectiveness proof

Phase 1 finds a feasible subgraph after sorting all vertices and
takes O(n log n) time. In phase 2, core-distance is calculated by
sorting after vertices within the neighborhood are found. The
execution time is O(n log n). This process is traversed for each
vertex and takesO(n2 log n). Plus the timeO(n) to get theminimum
core-distance, the worst execution time is still O(n2 log n). Phase 3
calculates diameters for the non-excluded vertices and each vertex
needs to compare the diameters at most O(n2) times. There are
total O(n) vertices giving the worst execution time O(n3).

The total time complexity is dominated by phase 3. Hence the
worst case complexity is O(n3). Because many objects are cut
off and their most time-consuming diameter computing is saved,
the execution time of CBMinDia is much shorter than that of
MinDiameterGraph [6]. This is demonstrated in Section 5.1.

Theorem 3.2. Algorithm CBMinDia finds a 2-approximation solution
when VMs are homogeneous.

Proof. Suppose the longest edge in the optimum subgraph is AB
and its length is l. After running the algorithm we affirm A and B
will not be cut off by taking d as the criterion. This is because d
is the diameter of a feasible subgraph, l is the optimum solution
and hence the minimum. This gives l ≤ d. But only objects with
diameter bigger than d is cut off in the program.

Now we take A as an example to prove the approximation
property. If A is a core object, suppose its core-distance computed
by the algorithm is l′. Then l′ is the smallest distance, from this
object to its neighbor DC who just accommodates the mth vCPU
and the corresponding VMs. So we have l′ < l. The diameter of the
feasible subgraph centers around A is at most 2l′ due to triangle
inequality, hence is not bigger than 2l.

If A is not a core object, suppose the radius of the minimum
feasible subgraph centers aroundA is l′. This distance is the shortest
one if objects centers around A can accommodatem vCPUs and the
corresponding VMs. This gives l′ ≤ l. Similarly, the diameter of the
feasible subgraph centers around A < 2l′ ≤ 2l.

Actually, the result of CBMinDia is just the same as that of
algorithm MinDiameterGraph. This is because the new algorithm
only cuts off the objects less optimal than a criterion. Because this
criterion is a feasible solution, the operation will not deteriorate
the optimum.

4. Virtual machines partition to selected data centers

Virtual machines partition problem aims to assign the re-
quested VMs to the corresponding DCs so that the total inter-DC
bandwidth used is as small as possible. This is because the inter-
DC line is usually long-distance link and hence very expensive. The
saving of long-distance bandwidth saves capital expenditures. Re-
liability is another consideration because it deteriorates as the dis-
tance becomes longer.

The traffic between n VMs can be denoted by a symmetric n ∗ n
traffic matrix T [18], where Tij is the traffic between VMs i and j
and Tii = 0. For a selected DC cluster (D1,D2, . . . ,Dr), eachDk(k =
1, 2, . . . , r) can accommodate sk vCPUs. All VMs are partitioned to
disjoint sets: P1, P2, . . . , Pr . It is required that the assigned VMs in
each partition component Pk commensurate with the capacity of
the corresponding Dk. So the objective of VM partition problem is
to minimize

r
k=1

n
i,j=1,i∈Pk,j∉Pk

Tij. It subjects to |Pk| ≤ sk, k =
1, 2, . . . , r . Here |Pk| is the number of vCPUs in component Pk.
Fig. 2. Four traffic definitions of Half Communication Model (HCM) for different
partition components P1, . . . , Pk . Arrows between VM i (VM j) and the dotted
squares denote traffic between this VM and VMs included in the squares.

4.1. Half communication model (HCM) of VMs

For a given partition component Pk whose all members have
been determined, i.e., all VMs belong to the component have been
found and the component is commensurate with the capacity of a
DC. We have definitions:

Definition 5 (Inner Traffic (InnT) and Outer Traffic (OutT)). Given
the requested VMs set as V , the partition component as Pk ⊆ V
and traffic matrix as T . ∀i ∈ Pk, inner traffic of i w.r.t. Pk is defined
as the total communication traffic between i and other members
in the component. Formally: InnT Pk(i) =


j∈Pk,ı≠j

Tij.
Similarly, outer traffic of i w.r.t. Pk is defined as the total

communication traffic between i and the non-members of the
component. Formally: OutT Pk(i) =


j∉Pk

Tij.

Given a partition, InnT and OutT of any VM in the partition
are determined values. Ideally, we hope any VM in each partition
component has the largest InnT and the smallest OutT . However
the member is found one by one in the building of the objective
partition component.We cannot know all themembers in advance
and so do InnT and OutT . What we can know are the following two
kinds of approximate traffic for a candidate VM:

Definition 6 (AIT and AOT). For the objective partition component
Pk, ∀ candidate i ∉ Pk, approximate inner traffic: AIT Pk(i) =

j∈Pk
Tij, and approximate outer traffic: AOT Pk(i) =


j∉Pk,ı≠j

Tij.

AIT and AOT are traffic in the process of building the partition.
They can be calculated and viewed as the approximation of InnT
andOutT, so as to illustratewhichVMshould be selected and added
to the partition in priority.

The sum of InnT and OutT equals the sum of AIT and AOT once
a candidate VM becomes a member of a partition component. It
is just the overall traffic between this VM and other VMs. The
aforementioned four definitions reveal the traffic of one VM from
the inner part and the outer one of a partition component. Thus
making it possible to explore the traffic of a VM from a point view
of the component. They are summarized as half communication
model (HCM) and illustrated in Fig. 2.

We have the following observations:

Proposition 4.1. For any candidate VM i and partition component
Pk, considering Pk in building and after Pk is determined, we have,

1. InnT Pk(i) ≥ AIT Pk(i), OutT Pk(i) ≤ AOT Pk(i).
2. AOT of a previously added member dominates the overall traffic

between this member and the later added ones. Moreover the
overall AOT of the previously added members dominates the AIT
of the later added one. Formally, ∀i, j, j is added after i to Pk,
AOT Pk(i) ≥


j Tij. Moreover,


i∈Pk

AOT Pk(i) ≥ AIT Pk(j).
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3. AIT andAOT of a later addedmember approximatesmore to its InnT
and OutT than the previously added member does. Formally, ∀i, j, j
is added after i to Pk, InnT Pk(i)− AIT Pk(i) ≥ InnT Pk(j)− AIT Pk(j),
AOT Pk(i)− OutT Pk(i) ≥ AOT Pk(j)− OutT Pk(j).

4. InnT Pk(i) = AIT Pk(i), OutT Pk(i) = AOT Pk(i) if i is the last added
member of Pk.

Though we want to turn larger inter-VM traffic into intra-DC
traffic, so that the inter-DC traffic becomes as small as possible.
It cannot ensure the VM added to the partition component is the
best one or has the largest InnT and smallest OutT. Intuitively,
a candidate should have larger AIT and smaller AOT as much
as possible in the building process of the partition component.
However, based on item 2 of Proposition 4.1, the AOT of the
previously added member limits the traffic of the later candidates,
hence the selection of them. If the AOT of a previous member is
too small, the traffic of this VM and the later added ones cannot
be too large. Furthermore, the total AOT of all the formerly added
members dominates AIT of the later ones added. A too small AOT
will decrease the overall intra-DC traffic.Weneed an ‘‘appropriate’’
small AOT for the previously added VM so that VMs with much
larger AIT can be selected in the building process. Item 3 of
Proposition 4.1 indicates AOT has less deviation from OutT in the
closing stage of building. Sowe require AOT becomes smaller as the
process draws to end. For the last candidate, we select the smallest
AOT based on item 4 of Proposition 4.1.

This idea is implemented by aWeighted Combination of AIT and
AOT: For candidate VM i, WCT (i) =
AOT Pk(i) λ = 0
(1/λ) ∗ AIT Pk(i)+ (1− 2λ) ∗ AOT Pk(i) λ ∈ (0, 1]

whereλ =


i,j∈Pk
Tij/(sk/average|Ck|∗(maxi,j∈Ck Tij+mini,j∈Ck Tij)),

where sk is the required size of Pk, Ck is the candidate VMs set for Pk.
For example, C1 is all VMs set:V , C2 is the remainingVMs:V \P1 and
so on. |Ck| is the number of vCPUs of VMs in Ck. So the numerator
is the current traffic between VMs partitioned to Pk. The denomi-
nator is the estimated total traffic between VMs in Pk supposing Pk
is determined.

For each component, we will select the VM with the maximum
WCT from the candidates in sequence. The change of λ indicates
the progress of the partition component building. We hope λ can
facilitate the selection of a VM with a maximum AOT and an
appropriate AIT in each step. λ = 0 implies i is the first member
to be added. This ensures the first selected VM has the largest
AOT, i.e., the largest traffic with all the other VMs. λ → 1 as the
process progresses. VM with the largest AIT and the ‘‘appropriate
small’’ AOT is selected. At the same time, this VM has a rather large
overall traffic. This will not prevent the selection of the VM that
has a large traffic with the formerly added ones based on item 2 of
HCM. As the process progresses, λ approaches 1, WCT approaches
AIT Pk(i)−λ∗AOT Pk(i). This ensures VMwith smaller AOT is selected
and it approximates the expected OutT according to item3 of HCM.
λ = 1 if i is the last member to be added. VM with the smallest
AOT is selected for the reason of item 4 of Proposition 4.1. WCT
considers the overall traffic of a VM to make the decision. It is
different from [6]which only considers the traffic between this VM
and the selected ones. Thus it achieves a better quality.

4.2. Virtual machines partition

Based on HCM property we give the following scheme to
partition VMs more efficiently.
Algorithm 3 HCMPartition
Input: V : VMs to be partitioned

T : n ∗ n traffic matrix of n VMs
s1, s2, ..., sr : vCPU number of required partition components

Output: A partition with components P1, P2, ..., Pr such that
|Pk| ≤ sk(k = 1, . . . , r)

1: Let s1, s2, ..., sr be in non-increasing order
2: V ′ ← ∅
3: VMs total traffic vector: VT = (VT (1), VT (2), ..., VT (n))where

VT (j) =
n

i=1 Tij
4: Candidate VMs total traffic vector: CVT ← VT
5: for k = 1, . . . , r do
6: Pk ← HCMFindCluster(T , VT , CVT , V , V ′, sk)
7: V ← V \ Pk
8: V ′ ← V ′ ∪ Pk
9: CVT ← CVT \ CVT (j), j ∈ Pk

10: end for
11: return P1, P2, ..., Pr

Algorithm 4 HCMFindCluster
Input: T : n ∗ n traffic matrix of n VMs

VT : VMs total traffic vector
CVT : candidate VMs total traffic vector
V : candidate VMs, V ′: partitioned VMs
s: required number of vCPUs of the partition component.

Output: Partition component P
1: P ← ∅, AOT ← CVT , currentTraff ← 0, x ← 0(Equals 1 if

all vCPUs required by the VM can be accommodated by the DC,
and 0, otherwise)

2: if |V | > s then
3: while s > |P| do
4: if |P| = 0 then
5: estimatedTraff ← (s/average|V | ∗ (maxi,j∈V Tij +

mini,j∈V Tij))
6: u ← VM with maximum AOT (This is the first member

and λ = 0, so AOT = WCT )
7: if |u| + |P| ≤ s then
8: x← 1
9: end if

10: else
11: currentTraff ← currentTraff +


i∈P Tiu

12: λ← currentTraff /estimatedTraff
13: AOT ′ ← VT − Tu (The u-th row of T )
14: AOT ← AOT ′ \ AOT (j), j ∈ V ′
15: AIT ← CVT − AOT
16: WCT ← (1/λ) ∗ AIT + (1− 2λ) ∗ AOT
17: u← VM iwith max(WCT (i))
18: if |u| + |P| ≤ s then
19: x← 1
20: end if
21: end if
22: if x == 1 then
23: P ← P ∪ u, V ′ ← V ′ ∪ u
24: else
25: Find other candidate VM which can be accommodated.

Update P and V ′
26: end if
27: end while
28: else
29: P ← V
30: end if
31: return P

AlgorithmsHCMPartition andHCMFindCluster present a heuris-
tic scheme. In HCMPartition, firstly, the objective partition



J. Zhang et al. / Future Generation Computer Systems 66 (2017) 1–10 7
0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

-200 0 200 400 600 800 1000 1200
-200

0

200

400

600

800

1000

1200

-200 0 200 400 600 800 1000
-200

0

200

400

600

800

1000

1200

(a) Uniformly random distributed DCs. (b) Clustering distributed DCs. (c) Equivalent-distance distributed DCs.

Fig. 3. Three simulated distribution scenarios of distributed DCs. Amplified stars denote solution found by algorithm CBMinDia and the solid squares denote DCs cut off by
the algorithm.
Table 1
Number of vCPUs and proportion for VMs instance.

Number of vCPUs 1 2 4 8 16 32

Proportion (%) 15 30 30 20 4 1

components are sorted in non-increasing order of their size. Then
candidates VMs are selected by HCMFindCluster for each partition
in sequence until all components are determined. In the building
process of each component inHCMFindCluster, VMwithmaximum
WCT is selected one by one from the candidates and added to the
component until this component is determined.

The while loop is executed one time for the selection of each
VM. In the selection process of each VM, AOT and AIT of each
candidate are calculated only once simply by the traffic matrix
vector addition and subtraction. There are at most n candidates.
So the worst time complexity is O(n2), which is smaller than the
complexity of algorithm Partition: O(n2 log n) [6]. The efficiency
is improved greatly and a slightly better result is obtained as
illustrated in Section 5.2.

5. Experiments

5.1. Clustering based data centers selection

In order to evaluate the effectiveness and time complexity, we
use the algorithms in [6] as the baseline. Because the baseline can
only address the homogeneous scenario, all the algorithms are
adapted to address the heterogeneous VMs. Except that the traffic
between VMs follows Zipf distribution [32] instead of uniform
distribution to capture the long tail characteristics [18], and DC
capacity is measured in number of vCPUs rather than VMs, the test
method is almost the same as that in [6].

As illustrated in Table 1, these VMs are randomly selected from
Amazon instancewith certain proportions based on the 80/20prin-
ciple. Each instance requires a different number of vCPUs [25].

The distance between DCs is E-distance and the capacity
(numbers of vCPUs can be accommodated) of each DC follows
U(200−450). DC is selected froma 1000∗1000 grid in x–y plane by
uniform random distribution. In addition, in this paper, two other
different topologies of DCs are added to verify the efficiency in
different scenarios. One scenario is that DCs have certain clustering
property. 80% DCs follow a normal distribution and 20% DCs are
selected uniformly randomly from the grids. Another is an ideal
scenario. DC locates just on the vertices and centers of congruent
planar hexagons. All distances between DCs are equivalent. It will
be demonstrated that algorithmCBMinDia can obtain a rather good
result, even in the ideal equivalent-distance environment, though
Fig. 4. Comparing algorithms for three scenarios when selecting data cluster to
accommodate different number of VMs (increases from 50 to 2000) in 800 DCs.

the algorithm is designed based on the ideas of clustering method.
The aforementioned three topologies are illustrated in Fig. 3. There
are 100 DCs in the network and the requested number of VMs is
800.

Because DCs are randomly distributed except for the ideal
situation and the capacity of each DC also follows random
distribution, we produce DCs and the capacity randomly for each
run. The test result is the mean value of 100 executions. We
simulate in Matlab on a personal computer (Think Centre M4350t,
Intel(R) Core(TM) i3-2120 CPU @ 3.30 GHz, 4G RAM).

Fig. 4 shows the differences and variations of execution
time of algorithm MinDiameterGraph and CBMinDia when the
requested number of VMs to be placed in 100 DCs increases.
The execution time of MinDiameterGraph is almost the same
in all three scenarios and reveals its weak awareness of the
cloud network. It does not utilize fully the density property and
capability information of DCs. On the other side, it grows linearly
with the increment of VMs in all scenarios. For the algorithm
CBMinDia, the time consumed grows more slowly compared
to the corresponding scenario of MinDiameterGraph. CBMinDia
outperforms MinDiameterGraph distinctly for the clustering
distribution. Efficiency increases 15%–72%. Though for random
distribution it takes more time. The cost is considerably lower
thanMinDiameterGraph. Efficiency increases 15%–27%. Even in the
ideal equivalent-distance environment, the new algorithm runs
faster than the old one when the requested VMs exceed 1000.

One point that needs explanation is that the CBMinDia runs
slower than MinDiameterGraph when the number of VMs is
smaller than about 75 due to the check of core objects and the
calculation of core-distance. If CBMinDia can cut off enough points
to compensate for the payment of core object checking and core-
distance calculating, the efficiency will improve obviously.
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Fig. 5. Comparing algorithms for three scenarios when selecting data cluster to
accommodate 1000 VMs in different number of DCs (increases from 20 to 200).

Fig. 6. NSFNET T3 network with 16 datacenters. Amplified stars denote solution
found by algorithm CBMinDia when 800 VMa are placed and the solid squares
denote DCs cut off by the algorithm.

The phenomenon can be complemented by Fig. 3. Obviously
the points cut are the most for clustering distribution, least for
equivalent-distance scenario and median for uniform random
distribution. So algorithm CBMinDia is the most efficient for
clustering scenario, then uniform random distribution, and worst
for equivalent-distance scenario. We can discover the solutions
denoted by amplified stars do not always lie in the densest DCs.
The reason is that the different capacity of each DC makes its
contribution to the optimum solution different. This also explains
why some points can be excluded by the algorithm even for the
ideal equivalent-distance scenario in Fig. 3(c).

Fig. 5 demonstrates the execution time difference and variation
with increasing of DCs when there are 1000 VMs to be deployed.
Similarly, CBMinDia is more efficient than MinDiameterGraph for
uniform distribution and performs most efficiently for clustering
conditions. Even for the ideal equivalent-distance scenario, it be-
gins to outperform MinDiameterGraph when VMs exceed 100.

The combination of Figs. 4 and 5 illustrates CBMinDia has more
advantages than MinDiameterGraph with the growth of DCs and
requested VMs. The execution time grows much more slowly.
So algorithm CBMinDia is more appropriate for large scale DC
selection problem.

In addition to the simulated DC topology, a realistic DC topology
is utilized to verify the performance of the proposed algorithm.
Since the locations of DCs of the public could service providers
are secret and are not available, US NSFNET T3 network [33,34] is
considered here. NSFNET T3 has 16 DCs across US and is projected
onto an x–y plane as illustrated in Fig. 6. Suppose that all the
DCs are interconnected and the capacity of each DC is a little
bigger than the simulated one. The numbers of vCPUs that can be
accommodated by each DC follow U(400 − 900). The distance
between DCs is estimated by the latitude and longitude of the
city where it locates in. Fig. 7 compares the execution time of the
algorithms when different number of VMs are placed.
Fig. 7. Comparing algorithms when selecting data cluster to accommodate differ-
ent number of VMs (increases from 50 to 1500) in 16 DCs of NSFNET T3 network. .

Fig. 8. Comparing algorithms when partitioning VMs to different number of DCs.

It demonstrates a similar phenomenon to that of the simulated
scenario in Fig. 4: CBMinDia is faster than MinDiameterGraph.
Because there are only 16 DCs the execution time is much shorter
than the time when there are 800 DCs in Fig. 4.

5.2. Virtual machines partition

We will assign 100 VMs to a certain number of DCs. The traffic
between VMs follows a Zipf distribution of 0–1 Mbps. The number
of vCPUs supported by each DC is a quotient where the denomina-
tor is the total number of vCPUs required and the numerator is the
number of DCs. So each DC accommodates more VMs when there
are fewer DCs and inversely, accommodates fewer VMs.

Algorithm Partition has already shown that it outperformed a
random and a greedy algorithm in partition quality and its time
complexity is O(n2 log n) [6]. Here we only compare our new
algorithm with it. When the DC number grows from 2 to 18, Fig. 8
plots the efficiency improvement of 100 VMs partition. With the
introduction of HCM, the efficiency of partition is improved about
3 times compared to Partition.

Fig. 9 demonstrates that HCMPartition produces slightly better
quality at a considerably shorter execution time.

6. Conclusions and future work

By means of the notions of clustering methods, this paper
presents amore efficient algorithm, CBMinDia, for the DC selection
problem. CBMinDia keeps the 2-approximation property and is
more appropriate for large scaleDCs or requestedVMs. Because the
algorithm takes full use of the density and DC capacity information
of the network, it cuts off the sub-optimum DCs compared to
a rather good feasible solution. The computing effort is greatly
decreased and the simulation reveals that it is the most efficient
for clustering DC distribution.
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Fig. 9. Overall Inter-DCs traffic comparing of two algorithms.

For VM partition problem, a slightly more effective algorithm is
investigated with the introduction of HCM concept. This algorithm
determines an appropriate pair of AOT and AIT for each selection of
a VM. The value of AOT and AIT permits maximizing the intra-DC
traffic and minimizing the inter-DC traffic. More importantly, the
concept can facilitate the convenient selection of VMs by means
of simple vector addition and subtraction calculation of the traffic
matrix. Hence the time complexity is reduced to O(n2) by a factor
of O(log n) and the efficiency is improved about 3 times.

All algorithms consider the actual standard of virtualization in-
dustry and are designed on the granularity of vCPUs. They can ad-
dress both homogeneous and heterogeneous requirements of VMs.

Our future work is a natural extension of the DC selection
problem. We aim to address the DC selection problem for a
large company which has multiple geo-distributed branches in
the distributed clouds. We need a distributed mechanism which
can offer services to users in closer data centers with minimum
diameter. This, not only shortens the reaction time of a user
request, but also minimizes the consumption of the network
bandwidth. However, the closer are the data centers to the
branches, the farther are the distances between the data centers,
hence enlarge the communication distances between branches.
On the other side, the limited data centers will be competed by
more than one branch. How to select the appropriate data centers
for the multiple branches while balancing the aforementioned
contradictions is a great challenge.
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