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a b s t r a c t

This paper extends the evaluation and allocation of distortion risk measures to apply to arbitrary ho-
mogeneous operators (‘‘financial derivatives,’’ e.g. reinsurance recovery) of primitive portfolio elements
(e.g. line of business losses). Previous literature argues that the allocation of the portfolio measure to
the financial derivative should take the usual special-case form of Aumann–Shapley, being a distortion-
weighted ‘‘co-measure’’ expectation. This is taken here as the definition of the ‘‘distorted’’ measure of
the derivative ‘‘with respect to’’ the underlying portfolio. Due to homogeneity, the subsequent allocation
of the derivative’s value to the primitive elements of the portfolio again follows Aumann–Shapley, in
the form of the exposure gradient of the distorted measure. However, the gradient in this case is seen
to consist of two terms. The first is the familiar distorted expectation of the gradient of the financial
derivativewith respect to exposure to the element. The second term involves the conditional covariance of
the financial derivativewith the element. Sufficient conditions for this second term to vanish are provided.
A method for estimating the second term in a simulation framework is proposed. Examples are provided.

© 2017 Published by Elsevier B.V.

1. Introduction

This paper discusses the allocation of capital or costs in the
particular situation where (1) the capital or costs are computed by
a distortion risk measure, (2) that measure is applied to a portfolio
of liabilities whose total loss is the sum of the component loss ran-
dom variables, (3) a nonlinear homogeneous risk transformation
(e.g., reinsurance) is contemplated in order to decompose the total
loss into a ceded portion that will be paid by another party and the
complementary retained portion that will remain in the portfolio,
(4) it is desired to evaluate the impact of that risk transformation
on capital or costs, and (5) it is desired to allocate that impact back
to the original component loss random variables.

Distortion measures are an important class of coherent risk
measures. Kusuoka (2001) proved that distortion measures are
the only law invariant comonotonic additive coherent risk mea-
sures. Distortion measures satisfy numerous desirable properties
as pricing principles or capital requirements. See Wirch and Hardy
(2001), Goovaerts et al. (2003), or Föllmer and Schied (2011,
chapter 4) for elaboration of these properties. Distortion measures
are equivalent to spectral measures (Acerbi, 2002). Goovaerts et
al. (2010) provides background about the origin of distortion risk
measures.

Given a continuous, increasing, concave function g mapping
[0,1] onto [0,1] and a random variable U with density f existing
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everywhere1 and survival function (complement of cumulative
distribution function) SU (U), the distortion measure (Wang, 1996)
is defined as:

EH [U] ≡

∫
∞

0
g (SU (u)) du −

∫ 0

−∞

(1 − g (SU (u))) du

=

∫
∞

−∞

u · g ′ (SU (u)) · f (u) du = E
[
U · g ′ (SU (U))

]
.

(1)

In keeping with the actuarial perspective, positive U represents
losses, so high values are undesirable. We will sometimes drop
the subscript U in SU () when it is obvious. An example of EH[U]
might use g(s) = min(s, α)/α for some 0 < α < 1, say 0.01.
This corresponds to the well-known tail value at risk (TVaR, some-
times known as CVaR, conditional value at risk) measure. Other
well-known examples include the proportional hazards transform
g(s) = sα , 0 < α ≤ 1, and the Wang transform (Wang, 1996) (a
specialization of the Esscher–Girsanov transform (Goovaerts and
Laeven, 2008)) g(s) = Φ(Φ−1(s) − λ) where Φ is the cumulative
normal distribution function.

Consider a portfolio whose total loss U is the sum of (possibly
correlated) component losses:

U =

C∑
c=1

Xc . (2)

1 This assumption is made to keep the exposition simple; it can be relaxed at the
expense of introducing certain housekeeping details.
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If no further subdivision is available, we refer to the X c as
‘‘primitive’’ components.

If EH[U] represents a risk-adjusted premium or a capital re-
quirement, itmakes sense to inquire as to how itmight be allocated
fairly among the components c = 1, . . . , C . Numerous reasonable
sets of conditions have been proposed.

Aumann–Shapley allocation (Aumann and Shapley, 1974) has
emerged as an important allocation principle. In particular, con-
sider Denault’s (2001) motivation for the axioms of ‘‘coherent
allocation’’ of capital defined by a coherent risk measure2:

We stress fairness, as all constituents are from the same firm,
and none should receive preferential treatment for the purpose
of this allocation exercise. . . .
Upon a component joining the firm (or any subset thereof), the
total risk capital increases by no more than the component’s
own risk capital: in all fairness, that component cannot justi-
fiably be allocated more risk capital than it can possibly have
brought to the firm. . . .
If two components make the same incremental contribution to
all subportfolios, then their allocation is the same. . . .
A riskless component is allocated capital equal to its standalone
capital.

Denault (2001) elaborates these principles in an extension to
the case where components are able to participate fractionally
(i.e. be rescaled by a real number) in the total portfolio. The con-
clusion is that, if the risk measure is sufficiently differentiable,
the Aumann–Shapley value ‘‘is the only linear coherent allocation
principle’’. Equivalent axioms and conclusions appear in Aubin
(1981), Billera et al. (1981), Tasche (1999), and Tsanakas and Bar-
nett (2003).

Applied to the coherent allocation of a distortionmeasure EH[U]
to the component X c , one gets:

Ac
H [X] =

∂

∂νc
EH [ν · X] = E

[
Xc · g ′ (SU (U))

]
. (3)

Here, the bold-face notation represents the portfolio compo-
nents as components of a vector X = (X1, . . . , XC), and the ‘‘·’’
symbol indicates inner product between vectors or multiplication
between scalars. The middle expression is a differentiation with
respect to exposure, a special case of Aumann–Shapley allocation
that obtains when the argument is homogeneous of degree one.
The partial derivative is evaluated at ν = (1, 1, . . . , 1). This opera-
tion be elaborated upon below.

The right-hand expression in Eq. (3) is sometimes referred to
as a co-measure (Kreps, 2005), from an analogy with the way that
covariance terms cov(X c , U) sum to the variance cov(U , U) =

var(U).
It should be noted that the Aumann–Shapley allocation princi-

ple is also compatible with the optimization approaches to capital
allocation in Laeven andGoovaerts (2004). It is also a special case of
more general allocation principles treated in Dhaene et al. (2012),
also organized around optimization. Zaks and Tsanakas (2014)
generalize further to derive an optimal solution for the capital
allocation in a hierarchy corporate environment, allowing for con-
flicting objectives, preferences, and beliefs about risks between
board members and line managers.

In all of the papers cited above, when allocation is addressed,
the objective is allocation of risk from aggregate loss to the com-
ponents from which it is summed, e.g., lines of business. Typically,
it is assumed that when components grow or shrink, they scale
linearly.

2 Here we have replaced his use of the word ‘‘portfolio’’ with our term ‘‘compo-
nent’’.

Boonen et al. (2017) is distinguished by addressing the situation
of non-homogeneous scaling in loss aggregations. The aggregate
loss is still defined as the sum of component losses, but the distri-
bution of losses is no longer assumed linear in the exposure param-
eter. That is, while a doubling of scale may double the mean loss, it
will not necessarily quadruple the variance of loss. They show that
Aumann–Shapley allocation applied to a linearized version of the
problem still provides an appropriate solution. Thus the Aumann–
Shapley linear scaling model is still relevant to insurance contexts
where linear scaling does not, in fact, apply.

Tsanakas (2004) addresses distortion measure allocation to
nonlinear portfolio components that sum to the aggregate loss.
Consider, for example, an excess-of-loss contract (Strain, 1981)
that divides the company-wide original (‘‘gross’’) losses into
reinsurance-paid (‘‘ceded’’) losses and net-of-reinsurance (‘‘re-
tained’’) losses according to a nonlinear function of the original
loss. Tsanakas (2004) shows that the Aumann–Shapley distortion
operator (right hand side of Eq. (3)) is the appropriate way to
allocate the capital associated with the company-wide loss down
to the ceded and retained portions. This enables one to apply
distortion measures to evaluate the efficacy of nonlinear deriva-
tive contracts like reinsurance. A restricted version of Tsanakas’s
conclusion is offered below as Definition 3.

The present paper investigates the further allocation of the
nonlinear portfolio’s capital down to the primitive components.
For example, once the gross loss has been transformed to the net
loss, how should that new capital amount now be allocated to
the lines of business? The retained loss no longer has a natural
decomposition into the sum of contributions from the lines of
business in the way that the gross loss did.

How one should allocate the capital impact of a reinsurance
contract to the lines of business is an important question in the
(re)insurance industry. To this author’s knowledge, it has not
been addressed. In cases where reinsurance can be modeled as
a homogeneous financial derivative, this paper provides both a
theoretical (closed-form) answer and strategies for computing that
answer in a simulation context where closed-form distributional
assumptions are not available or applicable.

The remainder of this paper is organized as follows.
In Section 2, the basic mathematical setup is introduced, and

financial derivatives of portfolio components are defined as oper-
ators on random variables. Examples are provided. The ‘‘distorted
measure of a financial derivative with respect to the underlying’’ is
defined.

Section 3 addresses the coherent allocation of a homoge-
neous financial derivative’s distorted measure to components and
equates it to the sum of two expectations, one a gradient co-
measure (analogous to Eq. (3)), and the other involving conditional
covariances. Sufficient conditions for the second term to vanish are
provided. An example is given where it will not vanish, in general.
Sub-allocation is discussed.

Section 4 provides an analytical case study in allocating the
distorted expectation of an aggregate excess-of-loss contract to
bivariate normal components. The results are given with closed-
form formulas.

Section 5 outlines an approach to estimating the allocation in a
Monte Carlo simulation setting.

Section 6 provides a numerical case study of the simulation
approach. The R code used to implement the example is available
from the author.

Section 7 concludes.

2. Financial derivatives of portfolio components

2.1. Financial derivative operators

Definition 1 (Financial Derivative). Let (Ω , F,P) be a probabil-
ity space and 𝒳 the set of its P-measurable scalar (real-valued)
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random variables. A financial derivative operator ℱ is a mapping
from 𝒳C to 𝒳 that takes the vector random variable X = (X1,
. . . , XC ) to a real-value random variable (the financial derivative)
Z = ℱ(X1, . . . , XC ). The variable X is termed the underlying.

Remark. Denote𝒰(X) = X1 + · · · + XC = U as the sum portfolio
loss operator.

We say that such an operator is linear ifℱ(a · X + b · Y ) = a ·

ℱ(X)+ b·ℱ(Y ) for any real a, b.We say that such an operator is ho-
mogeneous (understood to mean degree one) ifℱ(tX) = tℱ(X) for
any real t > 0. Clearly, a linear operator is homogeneous, whereas
a homogeneous operator might not be linear. Linear combinations
of homogeneous operators are homogeneous.

Consider, for example, the following operators on X = (X1, X2):

𝒵(a)
: X → Z = X1 + X2 + E [X1 + X2]

𝒵(b)
: X → Z = max(0, X1 + X2 − E [X1 + X2])

𝒵(c)
: X → Z = X1 + X2 + Qα [X1 + X2]

𝒵(d)
: X → Z = max(0,min(X1 + X2 − Qα [X1 + X2] ,

Qβ [X1 + X2] − Qα [X1 + X2])).

(4)

Here, the notation Q α[X] signifies the α-quantile (also known
as Value at Risk or VaR) of the random variable X .

All the above operators are homogeneous. 𝒵(a) is linear. 𝒵(b)

is not linear due to the max( ) function. 𝒵(c) is not linear because
quantile operators are not linear in general.

𝒵(d) can be recognized as the payout of an excess-of-loss rein-
surance contract (equivalently, a call spread) with 1 − α proba-
bility of attachment (first dollar payment) and 1−β probability of
exhaustion (full payment of the limit, Q β − Q α). It is not linear.

There are two distinct ways in which the argument X is used
in equation block (4). On the one hand, it is used pointwise, in the
sense that for any ω ∈ Ω , Z(ω) is a function of X1(ω) and X2(ω).
On the other hand, it is also used holistically, in the sense that
E[X1+X2] orQ α[X1+X2] is the same constant value over all choices
of ω, but those constants would generally be different for different
random variable arguments.

Definition 2 (Exposure Differentiation). Letℱ be a financial deriva-
tive operator. The partial derivative with respect to exposure in
component c is the randomvariableℱc [X]whose value at outcome
ω is

ℱc [X] (ω) ≡
∂

∂νc
(ℱ [ν ∗ X] (ω)) , (5)

evaluated at ν = (1, 1, . . . , 1). Here, the symbol ‘‘∗’’ signifies
Hadamard (elementwise) product of vectors.

Remark. For any particular ν, X → ℱ[ν ∗ X] is a financial deriva-
tive. On the other hand, the value ofℱ[ν ∗ X] at any particular ω is
an ordinary real-valued function of ν, which can be differentiated.
When extra clarity is needed, we may use the notation ℱc [X] =
∂

∂νc
ℱ [ν ∗ X].

Theorem1 (Euler’s Theorem for Homogeneous Financial Derivatives).
Let ℱ be a homogeneous financial derivative operator. Then

ℱ [X] =

∑
c

ℱc [X] . (6)

Proof. This follows becauseℱ [ν ∗ X] (ω) is a homogeneous func-
tion of ν. ■

Remark. When applied to𝒰[X], this restates Eq. (2).

Second-order exposure differentiation is also possible, with

ℱi,j [X] (ω) ≡
∂

∂νi

(
∂

∂νj
(ℱ [ν ∗ X] (ω))

)
, (7)

again evaluated at ν = (1, 1, . . . , 1).

2.2. Distortion measures of financial derivatives

Given the example Z = 𝒵(d)(X) from equation block (4),
consider the decomposition of the portfolio total loss U = X1+

X2 into U = Y + Z where Y = U − Z . This splits the gross loss U ,
into the net loss Y and ceded loss (reinsurance payment), Z .

How should one allocate EH[U] to Y and Z?
Billera et al. (1981) set out numerous desirable properties that

a cost allocation procedure should possess, and found Aumann–
Shapley to uniquely satisfy them. Their property 3, additivity, was
described as follows:

Statedmore formally, suppose that the cost of a process f (x1, x2)
is decomposed into two costs, k (x1, x2) and h (x1, x2): f (x1, x2)
= k (x1, x2) +h (x1, x2). We say a cost allocation procedure is
additive if it yields an identical per unit charge regardless of
whether the procedure is applied directly to the process f (a1,
a2), or indirectly to each of the different cost components of the
process, k (a1, a2), and h (a1, a2), and then summed.

Here we envision the portfolio loss distortion measure ‘‘cost’’
(as a function of exposure ν) taking the role of f , being decomposed
into the cost of the ceded loss (reinsurance payout) k and that of the
retained (net of reinsurance) loss h.

Tsanakas (2004), as previously noted, found that when nonlin-
ear components sum to the aggregate, the appropriate allocation
to them is still Aumann–Shapley.

This motivates the following:

Definition 3 (Distorted Measure of a Financial Derivative with Re-
spect to the Underlying). Let ℱ be a financial derivative operator
taking a vector random variable X= (X1, . . . ,XC ) to a scalar random
variable Z . The distorted measure ofℱ with respect to the under-
lying portfolio of primitive components X is defined as:

EH,ℱ [X] ≡ E
[
ℱ (X) · g ′ (SU (U))

]
(8)

where U = X1 + · · · + XC .

Remark. Regarding the previous discussion, clearly we will have
f = EH[U] = the sum of EH,ℱ[X] = k + h.

Remark. The terminology adopted here distinguishes between
‘‘distortion measure’’ and ‘‘distorted measure’’. If the derivative
ℱ(X) were considered in isolation, its distortionmeasurewould be
EH[ℱ(X)], using g ′(Sℱ(X)(ℱ(X))) instead of g ′(SU (U)). This measure
would not, in general, be equal to the ‘‘distorted’’ EH,ℱ[X]. Fur-
thermore, the sum of themeasures of complementary loss random
variables, EH[ℱ(X)]+ EH[U−ℱ(X)],wouldnot in general equal that
of the total losses, EH[U].

Next we consider allocation down from ℱ(X) to the primitive
components.

3. Allocating homogeneous financial derivatives

If ℱ is a homogeneous financial derivative operator, then it is
easily verified that the distorted measure EHℱ[X] is also homoge-
neous in the sense that

EH,ℱ [ν ∗ X] ≡ E
[
ℱ (ν ∗ X) · g ′ (Sν·X (ν · X))

]
, (9)

as a real-valued function of ν, is homogeneous.
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Theorem 2 (Coherent Allocation of Financial Derivatives). If ℱ
is a homogeneous financial derivative operator, then the coherent
allocation of EH,ℱ[X] to the components X c of X is given by

Ac
H,ℱ [X] ≡

∂

∂νc
E
[
ℱ (ν ∗ X) · g ′ (Sν·X (ν · X))

] ⏐⏐⏐⏐
ν=(1,...,1)

. (10)

Proof. This follows from Aumann–Shapley allocation applied to a
homogeneous function of ν. ■

Theorem 3 (Coherent Allocation is the Sum of Two Expectations). If
the distribution of X and the smoothness of ℱ are such that differen-
tiation on ν can be exchanged with expectation, then the following is
equivalent to Eq. (10):

Ac
H,ℱ [X] = E

[
∂

∂νc
ℱ (ν ∗ X)

⏐⏐⏐⏐
ν=(1,...,1)

· g ′ (S (U))

]
+ E2 (11)

where

E2 = −EU
[
fU (U) · cov [ℱ (X) , Xc |U] · g ′′ (S (U))

]
, (12)

and f U (U) is the marginal density of U.

Proof. See Appendix A. ■

Remark. There are two sources of complication here. First, the
exposure differentiation of ℱ(ν · X) appearing in Eq. (11) may
not resolve nicely if ℱ is not linear. Second, there is the E2 term,
involving a weighted expectation of the conditional covariance of
the financial derivative with the underlying cth component.

Remark. Since g is assumed concave, g ′′ will be everywhere
non-positive. If the conditional covariance between ℱ and X c is
consistently of one sign in some region of U values where f · g ′′

̸=

0, and the product of the covariance and f · g ′′ is zero elsewhere,
then E2 will take on the same sign. If the conditional covariance
takes on both signs, then the sign of E2 will depend on the relative
weightings provided by f 2 · g ′′.

From now on, in any discussion of allocation, we will assume
that the premises of Theorem 3 hold.

3.1. Example exposure gradient ofℱ

Consider the example Z = 𝒵(d)[X] of equation block (4), differ-
entiating on the first exposure component. We need to express the
new random variable:

Z1 ≡
∂

∂ν1
𝒵(d)

(ν1 · X1, X2)

=
∂

∂ν1
max(0,min(ν1 · X1 + X2 − Qα [ν1 · X1 + X2] ,

Qβ [ν1 · X1 + X2] − Qα [ν1 · X1 + X2])).

(13)

The partial derivative when the contract has not attached (pay-
off has not started) is zero. When it has exhausted (reached its
maximum), the partial derivative is

Z1 =
∂

∂ν1

(
Qβ [ν1 · X1 + X2] − Qα [ν1 · X1 + X2]

)
= E

[
X1|U = Qβ

]
− E [X1|U = Qα] (14)

where on the right hand side the notation has been simplified in an
obvious manner. See Tasche (2001) for the gradient of a quantile.

The derivative in the interior range is given by:

Z1 =
∂

∂ν1
(ν1 · X1 + X2 − Qα [ν1 · X1 + X2])

= X1 − E [X1|U = Qα] . (15)

Putting the pieces together,

Z1 =

⎧⎨⎩
0, U < Qα

X1 − E [X1|U = Qα] , Qα ≤ U < Qβ

E
[
X1|U = Qβ

]
− E [X1|U = Qα] , Qβ ≤ U .

(16)

It can easily be verified that this is an allocation: Z1 + Z2 = Z .

3.2. The E2 term

In general, the E2 term is rather complex. There are a few things
that can be said, however.

Theorem4 (E2 is Zero Sum). The sum of the E2 allocation components
is zero.

Proof. Summing Eq. (12) across components c , we see that in
collecting the covariance terms, we obtain cov[ℱ,U |U] which
equals zero because U is constant given U . ■

This implies that the first term of Eq. (11), across c , does indeed
form an allocation, but it only happens to be the Aumann–Shapley
allocation if the corresponding E2 terms are all zero.

Here are some situations where the E2 term will vanish.

Theorem 5 (Sufficient Conditions for E2 = 0). The following are
sufficient conditions for E2 = 0:

(a) ℱ = ℋ ◦𝒰, that is,ℱ(X) can be expressed asℋ(U) operating
on U = X1 + · · · + XC alone.

(b) The conditional distribution of each X c on U consists of a degen-
erate distribution (i.e., X c is a deterministic function of U).

(c) Each X c is conditionally (on U) uncorrelated with ℱ(X). (This
generalizes item b.)

Proof. Referring to Eq. (12), in case (a),ℱ(X) = ℋ(U) conditional
on U is constant, and therefore the covariance term is zero. In case
(b) it isX c in the covariance termwhich is constant. Case (c) directly
implies the covariance is zero. ■

Case (a) is likely to occur when ℱ represents aggregate rein-
surance. Case (b) is unlikely to occur in ‘‘natural’’ settings. Case (c)
might occur with a component X c whenℱ does not involve X c and
X c is independent of the other components; however, it is not likely
to occur over all components simultaneously.

It should be noted that case (b) occurs with high probability in
a Monte Carlo setting where the distribution of U has a density
everywhere (no mass points) except possibly at U = 0 (where
all X c must also be zero). In this situation, the probability of two
realizations of U taking on the same nonzero value is effectively
zero,3 and so the conditional distribution of X c onU is represented
by one realization (or realizations of zero). This is not a fact to be
celebrated; it is to be lamented. Without some extra work, a naïve
Monte Carlo simulation will not provide a consistent estimate of
the coherent allocation ofℱ. This is the subject of the next section.

For all the examples of equation block (4), E2 = 0 because case
(a) applies.

An example where E2 is not zero is given by:

𝒵e [X] = max (0,min (X1 + X2 − Qα [X1 + X2] ,
min

(
X1,Qβ [X1 + X2] − Qα [X1 + X2]

)))
. (17)

This differs from𝒵(d) of equation block (4) in that the limit has
been replaced by the minimum of X1 and the previous limit term
Q β − Q α . The payoff is still based on the excess of X1 + X2 over
a threshold, but it is limited to not exceed the loss of X1 by itself.

3 Assuming sufficient machine precision.
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Clearly, it is homogeneous. For a givenU = X1+X2 >Q β , there are
two possibilities. If X1 >Q β − Q α , then Z is constantly Q β − Q α;
otherwise Z = X1. This gives Z a nonzero (and nontrivial) condi-
tional covariance with X1 for those values of U . These conditional
covariances will not, in general, integrate to zero over the entire
expectation of Eq. (12).

3.3. Sub-allocation

Wecan look at a1 = A1
H [X] = E

[
X1 · g ′ (S (U))

]
in twoways. On

the one hand, it is the component-one allocation of the distortion
measure EH[U]. On the other hand, we can consider it the distorted
measure EH,P [X] of the projection derivative P(X) = X1. In the
second interpretation, we can ask, per Theorems 2 and 3, how
do we allocate EH,P [X]? This is equivalent to asking, in the first
interpretation, how do we further allocate, or sub-allocate, a1?

Because a1 is homogeneous, it can be allocated using Theorem3.
In general, however, one will find that E2 ̸=0, and so, for example,
the allocation of a1 to the first component does not equal a1.
This might seem paradoxical. Should not all of a1, which, after all,
belongs to the first component, go to the first component upon
suballocation? Not necessarily. Suballocation, following Aumann–
Shapley logic, considers the marginal impact each component has
on a1. Since the distortion measure EH[] is affected by all compo-
nents through their influence on SU (U), it is to be expected that
they all influence a1.

Fortunately, this does not result in an inconsistent appraisal of
the first component’s share of EH[U]:

Theorem 6 (Sub-allocations Add up from the First Level). Let ℱ be a
homogeneous financial derivative operator whose distorted measure
allocations Ac

H,ℱ [X] all have E2 = 0. Assume that the partial deriva-
tive operatorsℱc [X] are themselves homogeneous and that allℱi,j[X]
are continuous. Then

Ac
H,ℱ [X] =

∑
i

Ac
H,ℱi

[X] . (18)

Proof. See Appendix B. ■

Remark. While the first-level allocation to component c , Ac
H,ℱ [X],

is, on the second level, sub-allocated to other components, the
other first-level components are also being sub-allocated, in part,
to component c . The sum of those second-level allocations to com-
ponent c equals the original first-level allocation. Fig. 1 illustrates
this.

4. Analytical case study

This section presents an example of a distortedmeasure applied
to a homogeneous financial derivative and its allocation to the
underlying components. Formulas are suitable for implementation
in a spreadsheet.

4.1. The underlying

Consider the underlying random variable X = (X1, X2) dis-
tributed as a bivariate normal with mean vector µ and covariance
matrix Σ, its p.d.f. being

φ (X, µ,Σ) =
1

2 · π ·
√
det (Σ)

· exp
(

−
1
2

· (X − µ)′ · Σ−1
· (X − µ)′

)
. (19)

The aggregate loss U = X1 + X2 is therefore distributed as a
normal with mean µU = µ1 +µ2 and variance σ 2

U = σ 2
1 + 2 · ρ ·

σ1 · σ2 + σ 2
2 . Define S(U) = 1 − FU (U).

Fig. 1. Sub-allocations into component 1 sum up to equal the first-level allocation.

4.2. The distortion

Consider the Wang transform distortion measure. This trans-
forms an arbitrary cumulative distribution function F into H:

H (U) = Φ
(
Φ−1 (F (U)) − λ

)
. (20)

In the case of the normal FU , the c.d.f. H is also normal, with the
same variance σ 2

U and shifted mean µU + ∆U where ∆U = λ · σU.
This leads to

g ′ (S (U)) = exp
(

∆U

σ 2
U

·

(
U − µU −

∆U

2

))
. (21)

It can be shown that

φ (X, µ,Σ) · g ′ (S (X1 + X2)) = φ (X, η,Σ) (22)

where η = µ+ β · ∆U and β are the regression coefficients of X on
U:(

β1

β2

)
=

1
σ 2
U

·

(
(σ1 + ρ · σ2) · σ1

(ρ · σ1 + σ2) · σ2

)
. (23)

This means that with the distribution of X, distorted expecta-
tions of the form E[Θ · g ′(S(U))] can be obtained as EH[Θ], the
expectation after a change of measure, shifting the mean by β ·∆U.

4.3. The financial derivative

Consider the aggregate excess-of-loss contract on U defined by
the attachment and exhaustion parameters Att and Exh (them-
selves defined as particular quantiles of U):

AX (U) = max (0,min (U − Att, Exh − Att)) . (24)

This is an instance of𝒵(d) from equation block 4. The distorted
expectation of AX is given by

EH [AX (U)] =
(
µ′

− Att
)
· (Φ (e) − Φ (a))

− σU · (φ (e) − φ (a))
+ (Exh − Att) · (1 − Φ (e)) (25)

whereµ′
= µU+∆U, a = (Att −µ′)/σU, and e = (Exh−µ′)/σU. This

follows from the well-known properties of the truncated normal
distribution.

4.4. Coherent allocation

Per Theorem 3 there are two terms to the allocation of EH[AX]
to X1, but per Theorem 5 part (a) the E2 term is zero:

A1
H,AX [X] = EH

[
∂

∂ν1
AX (ν ∗ X)

⏐⏐⏐⏐
ν=(1,...,1)

]
. (26)



J.A. Major / Insurance: Mathematics and Economics 79 (2018) 82–91 87

The first gradient component of AX was presented in Eq. (16) as
Z1, so:

A1
H,AX [X] =

∫∫
Att<U<Exh

Z1 · φ (x, η,Σ) dx1dx2

+

∫∫
Exh<U

Z1 · φ (x, η,Σ) dx1dx2. (27)

Change variables to (x1, U) and factor the joint distribution into
conditional and marginal:

A1
H,AX [X] =

∫ Exh

Att
fU (U) ·

∫
∞

−∞

Z1 · fX1|U (x1,U) dx1dU

+ (E [X1 |U = Exh ] − E [X1 |U = Att ])
· (1 − Φ (e)) .

(28)

The conditional expectations of X given U for this bivariate
normal example are given by the regression:

E [X|U] = µ+ β · (U − µU ) . (29)

Substituting into Z1, evaluating conditional expectations, and
simplifying, we arrive at

A1
H,AX [X] = β1 ·

∫ Exh

Att
(U − Att) · fU (U) dU

+ β1 · (Exh − Att) · (1 − Φ (e)) . (30)

Finally,

A1
H,AX [X] = β1 · EH [AX (U)] . (31)

4.5. Numerical instantiation

If we take µ = (7, 11), σ = (1, 1.5), ρ = −0.4, then µU = 18,
σU = 1.432, and β = (0.195, 0.805). If we further set Att = Q 0.5 =

18, Exh = Q 0.9 = 19.835, and ∆U = 1, then the following results
are obtained: (undistorted) E[AX] = 0.503, and (distorted) EH[AX]
= 0.957. The allocation vector of E[AX] to the two components is
(0.098, 0.405) and the allocation of EH[AX] is (0.187, 0.770).

5. Evaluating and allocating distortion measures by Monte
Carlo

This section presumes the existence of a sample of N real-
izations X(ω), (ω = 1, . . . ,N) of the joint distribution of the
portfolio component losses X = (X1, . . ., XC ), each with associated
probability p(ω) summing to 1. As before, the aggregate loss U =

𝒰(X) is the sum of the component losses. The realizations are
assumed sorted so that U (ω) <U (ω + 1). Analytical formulas
for the distortion function g() and its second derivative g ′′() are
assumed as given.

Define the survival function:

S (ω) =

N∑
i=ω

p (i) . (32)

Let Z (ω) be the realization of Z = ℱ(X) atω and let Z c(ω) be the
realization ofℱc [X] =

∂
∂νc

ℱ [ν ∗ X] atω. The following are offered
without proof. Interested readers are referred to Hammersley and
Handscomb (1964) or Rubinstein and Kroese (2016).

A consistent estimator for EH,ℱ [X] is:

⌢
EH,ℱ [X] =

N∑
ω=1

Z (ω) · (g (S (ω)) − g (S (ω + 1))) (33)

where S(m) form >N is understood to be zero.

A consistent estimator for the allocation of EH,ℱ [X] to the cth
component (per Theorem 3) is:

Âc
H,ℱ [X] =

N∑
ω=1

Zc (ω) · (g (S (ω)) − g (S (ω + 1))) +
⌢
E2 (34)

where

Ê2 = −

N∑
ω=1

(
Z (ω) −

⌢
E (Zc |U (ω))

)
·
(
Xc (ω) −

⌢
E (Xc |U (ω))

)
·

⌢
f U (U (ω))

· g ′′ (S (ω)) · p (ω) . (35)

In Eq. (35), the three ‘‘hatted’’ terms need to be defined. Inside
the first two factors (the covariance product) are conditional ex-
pectation operators

⌢
E (•|U (ω)). Thesemaybe estimatedby locally

weighted regression (loess) (Loader, 1999) or splines (Green and
Silverman, 1994). The probability density f U may be estimated by
kernel smoothing methods (Wand and Jones, 1994). The example
in Section 5 discusses implementation in the R programming lan-
guage.

It should be noted that in some cases the realizations Z c(ω)
may not be known in closed-form. This is the case with excess-
of-loss financial derivatives whose gradients involve conditional
expectations where the underlying distribution is only known
through simulation. In such a case, locally weighted regression or
splines might be used to provide a consistent estimator.

6. Numerical example

In this section we address the numerical estimation of EHℱ[X]
for four homogeneous financial derivatives and the allocation
thereof to primitive portfolio components.

6.1. Preliminaries

The underlying consists of (X1, X2) distributed as bivariate nor-
mal with means of 7 and 11, respectively, standard deviations of 1
and 1.5, respectively, and correlation coefficient −0.4.

The four financial derivatives are described in Table 1.
In terms of previous discussion in the paper, ‘‘U’’ is 𝒰(X) from

the remark after Definition 1, ‘‘AX’’ is an instance of 𝒵(d) from
equation block (4), ‘‘SX’’ is the sum of two such instances, and ‘‘VX’’
is an instance of𝒵(e) from Eq. (17).

The method is straightforward Monte Carlo simulation. The R
code implementing these calculations is available from the author.
Onemillion samples of (X1, X2) are drawn. The sample statistics are
given in Table 2.

Despite the fact that quantiles of a normal distribution are
readily calculated, functions were defined to compute quan-
tiles from the sample via smoothing splines, using R’s built-in
smooth.spline( ) function. These were used to compute the
quantiles specified in Table 1. The sample (U, X1, X2) vectors were
then augmented with the associated values of AX, SX, and VX.

Equal-probability sampling was used, so the weight p = 10−6

was associated with each draw. After sorting the samples in de-
scending value of U, the exceedance probability S (Eq. (32)) was
computed as the cumulative sum of p.

6.2. Distortion measure

For this example, the distortion function g (s) =
√
s was used.

Values of EH,ℱ[X]were computed according to Eq. (33). The results
are in Table 3.

As expected, the distorted measures of the payouts are larger
than their mean values.
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Table 1
Target financial derivatives.

Symbol Name Description

U Portfolio gross loss U = X1+ X2
AX Aggregate XOL Payoff of U in excess of Q50%(U); exhausts at Q90%(U)
SX Silo XOLs Sum of individual payoffs: X1 in excess of Q50% up to Q90% , plus X2 in

excess of Q80% up to Q95% .
VX Variable limit XOL Payoff of U in excess of Q0.1%(U); exhausts at Q99.37%(U), but payoff

limited to X1 .

Table 2
Summary statistics of N = 1,000,000 bivariate normal draws.

Variable Mean Standard deviation

U 18.0028 1.4304
X1 7.0010 1.0002
X2 11.0018 1.4992

Correlation coefficient: −0.4008.

Table 3
Distorted measures.

Quantity U AX SX VX

Mean 18.003 0.50283 0.48761 4.4965
EH 19.009 0.93645 0.76571 5.3605

Table 4
Aumann–Shapley allocations by definition.

Quantity U AX SX VX

EH 19.009 0.93645 0.76571 5.3605
A1
H 7.196 0.18412 0.51364 2.0765

A2
H 11.813 0.75242 0.25217 3.2844

EH - (A1
+ A2) 0.00002 −0.00009 −0.00010 −0.0004

Approx σ (A) 0.002 0.01 0.002 0.02

6.3. Allocation by definition

Because all of these financial derivatives are homogeneous,
their Aumann–Shapley allocations are defined by Theorem 2
(Eq. (10)). This was implemented by a secant approximation to the
gradient. For example, consider the allocation to the component
c = 1. Replace all X1 values by 1.01 · X1, and recalculate all of the
other variables, including S, in a new sort order. Compute the EH
values corresponding to Table 3. Repeat using 0.99 · X1. Take the
difference between the two EH values and divide by (2 · 0.01). The
result is the estimate of the allocation defined in Eq. (10).

The results are shown in Table 4. While the two allocation
components should sum to the original measure, there is a slight
numerical discrepancy which is also shown. Being sample-based
estimates, these figures are themselves subject to sampling error.
A separate Monte Carlo study suggested the standard deviations of
the A figures posted in the last row.

Clearly, the estimators for A1
H and A2

H are highly negatively
correlated.

6.4. Allocation by formula, without E2

The first term of Eq. (11) was computed for the four financial
derivatives. This required expressions for the gradients (with re-
spect to component exposures) of the cash flows themselves. These
were programmed following the logic laid out in Section 3.1. The
‘‘E1’’ terms were calculated according to the first term of Eq. (34).
‘‘Shortfall’’ is defined as Ac

− Ec . A separate Monte Carlo study
estimated the sampling variability of the shortfalls. The results are
presented in Table 5.

In Table 5, the shortfalls represent an estimate of E2 (Eq. (12)).
By Theorem 5 part (a), the shortfalls for U and AX should be zero.
The shortfalls in SX andVX should not be expected to be zero. These

Table 5
Allocation E1 shortfalls.

Quantity U AX SX VX

A1
H 7.196 0.18412 0.51364 2.0765

A2
H 11.813 0.75242 0.25217 3.2844

E1
1 7.196 0.18273 0.43698 1.9721

E2
1 11.813 0.75371 0.32873 3.3883

Shortfall1 −1.6E−06 0.00139 0.07666 0.1043
Shortfall2 −2.1E−05 −0.00130 −0.07656 −0.1039
Approx σ (sf) 3E−5 0.006 0.002 0.01

Table 6
E2 vs. E1 shortfall.

Quantity U AX SX VX

Shortfall1 −1.6E−06 0.00139 0.07666 0.1043
Shortfall2 −2.1E−05 −0.00130 −0.07656 −0.1039
E1
2 −5.1E−11 −2.0E−08 0.08038 0.1235

E2
2 5.1E−11 2.0E−08 −0.08038 −0.1235

Approx σ (E2) 7E−12 1E−7 0.0045 0.0046
E1
2 - Shortfall1 1.6E−06 −0.00139 0.0037 0.0192

E2
2 - Shortfall2 2.1E−05 0.00130 −0.0038 −0.0196

Approx σ (E2-sf) 3E−05 0.006 0.005 0.009

expectations are confirmed by the following facts: The measured
shortfalls for U and AX are less than 1% of their smaller allocations
and fall within 0.7 standard deviations of zero; those of SX and VX
are greater than 3% of their larger allocations and aremore than 10
standard deviations away from zero.

6.5. E2

This section shows the results of calculating the E2 term
(Eqs. (12) and (35)). The R function density() was used to con-
struct a 512-element estimate of the marginal density of U and
then smooth.spline()was used to create a function that would
interpolate the density at any U value. Conditional expectations
were computed using smooth.spline(). Results are shown in
Table 6.

Theoretically, the E2 values should equal the E1 allocation short-
falls; for U and AX they should all be zero and for SX and AX
they should be material. The computed E2 values for U and AX are
closer to zero than the measured shortfalls, which were already
statistically indistinguishable from zero. The fact that they appear
to be statistically significant is not material. The computed E2
values for SX and VX are within 5% and 19%, respectively, of the
measured shortfalls. These are approximately 1 and 2 standard
deviations, respectively, away from equality.

7. Conclusion

This paper reviewed the basic mathematics of distortion risk
measures – the only law-invariant comonotonic additive coherent
risk measures – and the coherent allocation of such to portfolio
components. It argued that since financial derivatives must have
the portfolio risk measure allocated to them in the same way
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that portfolio components have – via ‘‘co-measure’’ distorted ex-
pectation – then that expectation is also a suitable definition for
the ‘‘distorted’’ measure of a financial derivative ‘‘with respect to’’
(i.e., in the context of evaluating) an underlying portfolio. Exam-
ples of nonlinear homogeneous financial derivatives, motivated by
reinsurance, were given.

The coherent allocation of a homogeneous financial derivative’s
distorted risk measure to portfolio components, via Aumann–
Shapley, was found to include an additional term beyond the
gradient co-measure distorted expectation, involving conditional
covariance. Sufficient conditions for this additional term to vanish
were provided. Amethod for numerical evaluation of the distorted
measure and its allocation in a Monte Carlo simulation setting was
proposed and exhibited.
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Appendix A

This section derives Theorem 3, Eqs. (11) and (12) for the case
c = 1 and C = 2. This is sufficient to prove the general case of
C ≥ 2 because, with Aumann–Shapley allocations, whether one
decomposesU = X1+· · ·+XC orU = X1+Y whereY = X2+· · ·+

XC , the same allocation for X1 will be obtained. The labeling of
c = 1 is, of course, arbitrary and without loss of generality.

Start with EH,ℱ[X] per Definition 3, Eq. (8):

EH,ℱ [X] ≡

∫
∞

−∞

∫
∞

−∞

ℱ (x1, x2)

· g ′ (SU (x1 + x2)) · f (x1, x2) dx1dx2 (A.1)

where f is the joint distribution function of (X1, X2). Perturbing by
the factor ν produces:

EH,ℱ [ν ∗ X] =

∫
∞

−∞

∫
∞

−∞

ℱ (ν1 · x1, ν2 · x2)

· g ′ (Sν · X (ν1 · x1, ν2 · x2))
· f (x1, x2) dx1dx2. (A.2)

The definition of Aumann–Shapley allocation in the special case
of homogeneous functions is the partial derivative of the function
(of ν): A1

H,ℱ [X] =
∂

∂ν1
EH,ℱ [ν ∗ X]. Taking the first partial deriva-

tive, moving the derivative inside the integrals, and applying the

product rule, we get:

A1
H,ℱ [X] =

∫
∞

−∞

∫
∞

−∞

(
∂

∂ν1
ℱ (ν1 · x1, ν2 · x2)

)
· g ′ (S (ν1 · x1 + ν2 · x2)) · f (x1, x2) dx1dx2

+

∫
∞

−∞

∫
∞

−∞

ℱ (ν1 · x1, ν2 · x2)

·

(
∂

∂ν1
g ′ (S (ν1 · x1 + ν2 · x2))

)
· f (x1, x2) dx1dx2.

(A.3)

Calling the second term E2, and evaluating the first term at ν
= (1, 1) we obtain Eq. (11).

Applying the chain rule, we get another version of E2:

E2 =

∫
∞

−∞

∫
∞

−∞

ℱ (x1, x2)

· g ′′ (S (x1, x2)) ·

(
∂

∂ν1
S (ν1 · x1 + ν2 · x2)

)
· f (x1, x2) dx1dx2. (A.4)

Examining the derivative term, note that:

S (ν1 · x1 + ν2 · x2) ≡

∫∫
ν1 ·z1+ν2 ·z2≥

ν1 ·x1+ν2 ·x2

f (z1, z2) dz1dz2

=

∫
∞

−∞

∫
∞

ν1 ·x1+ν2 ·x2−ν2 ·z2
ν1

f (z1, z2) dz1dz2.
(A.5)

Fig. A.1 illustrates the situation.

∂

∂ν1

∫
∞

−∞

∫
∞

ν1 ·x1+ν2 ·x2−ν1 ·z1
ν2

f (z1, z2) dz2dz1

=

∫
∞

−∞

(
∂

∂ν1

∫
∞

z2=
ν1 ·x1+ν2 ·x2−ν1 ·z1

ν2

f (z1, z2) dz2

)
dz1

=

∫
∞

−∞

(
−f
(
z1,

ν1 · x1 + ν2 · x2 − ν1 · z1
ν2

)
·

∂

∂ν1

ν1 · x1 + ν2 · x2 − ν1 · z1
ν2

)
dz1

=

∫
∞

−∞

(
−f
(
z1, x2 +

ν1

ν2
· (x1 − z1)

)
·

∂

∂ν1

(
x2 +

ν1

ν2
· (x1 − z1)

))
dz1

=
1
ν2

·

∫
∞

−∞

(z1 − x1) · f
(
z1, x2 −

ν1

ν2
· (z1 − x1)

)
dz1

=

∫
∞

−∞

(z1 − x1) · f (z1, x1 + x2 − z1) dz1.

In the last step, the expression is evaluated at ν = (1, 1). Fig. A.2
illustrates the result.

Rewrite the joint distribution as the product of conditional and
marginal:

f (z1, x1 + x2 − z1) = fU (x1 + x2) · f X1|U ( z1| x1 + x2) . (A.6)

Substitute into Eq. (A.4):

E2 =

∫
∞

−∞

∫
∞

−∞

ℱ (x1, x2) · g ′′ (S (x1 + x2))

·

(∫
∞

−∞

(z1 − x1) · fU (x1 + x2) · f X1|U ( z1| x1 + x2) dz1

)
· f (x1, x2) dx1dx2.

(A.7)
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Fig. A.1. Visual interpretation of S(ν · x).

Fig. A.2. Visual interpretation of ∂S/∂ν1 .

Since the marginal density term is independent of z1, it can be
factored out of the inner integral:

E2 =

∫
∞

−∞

∫
∞

−∞

ℱ (x1, x2) · g ′′ (S (x1 + x2)) · fU (x1 + x2)

·

(∫
∞

−∞

(z1 − x1) · f X1|U ( z1| x1 + x2) dz1

)
· f (x1, x2) dx1dx2.

(A.8)

Reinterpreting the inner integral as an expectation:

E2 =

∫
∞

−∞

∫
∞

−∞

fU (x1 + x2)

· {ℱ (x1, x2) · E [X1 − x1|U = x1 + x2]}

· g ′′ (S (x1 + x2)) · f (x1, x2) dx1dx2. (A.9)

Reinterpreting the outer integral as an expectation:

E2 = EX
[
fU (U) · {ℱ (X) · (E [X1|U] − X1)} · g ′′ (S (U))

]
. (A.10)

Rewriting EX [·] as EU [EX1[·|U]] (a change of variables with Jaco-
bian determinant of one):

E2 = EU
[
fU (U) ·

{
EX1 [ℱ (X) · (E [X1|U] − X1)|U]

}
· g ′′ (S (U))

]
. (A.11)

Noting that EX1 [E [X1|U] − X1|U] = 0, we can recognize the
term in braces as being equal to the covariance of ℱ and −X1,
resulting in:

E2 = −EU
[
fU (U) · cov [ℱ (X) , X1|U] · g ′′ (S (U))

]
. (A.12)

This is the c = 1 equivalent of Eq. (12). ■

Appendix B

This section derives Theorem 6, Eq. (18). Let ℱ be a homo-
geneous financial derivative operator whose distorted measure
allocations Ac

H,ℱ [X] all have E2 = 0. Assume that the random

variables ℱc [X] are themselves homogeneous and that all ℱi,j[X]
are continuous.

From Theorem 3, we have

Ac
H,ℱi

[X] = E
[

∂

∂νc
ℱi (ν ∗ X) · g ′ (S (U))

]
− EU

[
fU (U) · cov [ℱi (X) , Xc |U] · g ′′ (S (U))

]
. (B.1)

Using the notation for second-order exposure differentiation,

Ac
H,ℱi

[X] = E
[
ℱc,i (X) · g ′ (S (U))

]
− EU

[
fU (U) · cov [ℱi (X) , Xc |U] · g ′′ (S (U))

]
. (B.2)

A pointwise application of the Clairaut–Schwarz theorem
shows that ℱi,j[X] = ℱj,i[X] for all i, j. Applying this to the first
term,

Ac
H,ℱi

[X] = E
[
ℱi,c (X) · g ′ (S (U))

]
− EU

[
fU (U) · cov [ℱi (X) , Xc |U] · g ′′ (S (U))

]
. (B.3)

Therefore,∑
i

Ac
H,ℱi

[X] = E

[∑
i

ℱi,c (X) · g ′ (S (U))

]

− EU

[
fU (U) · cov

[∑
i

ℱi (X) , Xc

⏐⏐⏐⏐⏐U
]

· g ′′ (S (U))

]
≡ T1 + T2.

(B.4)

Consider the T2 term first. Because ℱ is homogeneous,
Theorem 1 applies and

∑
iℱi [X] = ℱ [X]. This makes T2 equal to

the E2 term of Ac
H,ℱ [X] which is zero by assumption. So T2 = 0.

Expanding the T1 term, we have∑
i

Ac
H,ℱi

[X] = E

[∑
i

∂

∂νi
ℱc (ν ∗ X) · g ′ (S (U))

]
. (B.5)

Because ℱc is assumed homogeneous, Theorem 1 applies and
so∑

i

Ac
H,ℱi

[X] = E
[
ℱc (X) · g ′ (S (U))

]
= Ac

H,ℱ [X] (B.6)

which is Eq. (18). ■
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