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A B S T R A C T

In-plane soil-structure-interaction of a shear wall on a rigid circular foundation embedded in a linear elastic half-
space, excited by an incident plane SV wave, is solved by relaxing the zero-stress boundary conditions on the
ground surface. An approximate solution of this model was previously presented for the cylindrical approx-
imation of the ground surface. This paper formally neglects such boundary conditions, and as a result, the
complexity of the formulation is significantly reduced. Solutions for foundation and building motions in fre-
quency space are compared to the previous results and it is shown that the present approximate solution pro-
vides excellent and almost identical results. The objective of this paper is to provide further insight on the role
and the effects of surface boundary conditions for this type of problem.

1. Introduction

The study of soil-structure interaction (SSI) during seismic excita-
tion by means of elementary models is an area that attracts continuing
interest in earthquake engineering. In addition to solving such problems
by numerical simulations such as finite elements, finite differences, and
boundary integral methods, analytic approaches based on wave-func-
tion expansion have also shown to be successful in cases of simple
foundation and building geometries. In addition to ease of computation,
closed-form solutions help explore the underlying physics of the pro-
blem and serve as a reference to check the accuracy of numerical si-
mulations. Among two-dimensional problems, cases of an incident
plane SH wave was solved earliest by the method of images [1,2],
which helps to satisfy the boundary condition on the ground surface
through setting up wave functions that form the mirror symmetry with
respect to this boundary. However, the image method does not work in
cases of incident plane P or SV waves because of the coupled boundary
conditions and the mode conversion between the two. As such, ap-
proximate analytic solutions based on the large circular approximation
(LCA) – i.e. treating the ground surface as a surface of a large cylinder –
has been the main early approach for analyzing in-plane motions. Ex-
amples of the LCA approach can be found in [3,4], and [5] in which the
structure is modeled by a shear wall, or [6] in which the structure is
represented by a single degree-of-freedom oscillator. More recently,
studies based on relaxing (neglecting) the surface boundary conditions
have been considered because of the expectation that results may be
similar to those of the LCA [7]. Without resorting to the LCA, the
methods of integral transform and conformal transform have been used

in models of surface and subsurface topographies and inclusions [8,9].
This paper presents a closer look at the model previously studied by [3]
for the case of an incident plane SV wave. Solution procedures based on
relaxing surface boundary conditions will be presented. It is expected
that results on the comparison between “relaxed solutions” and LCA
solutions will contribute to the library of solutions that address the
problems discussed in [7]. For the present model with a rigid and cir-
cular foundation and for the flat half-space surface, it will be shown
that relaxing the stress-free boundary conditions for the waves scattered
from the foundation can lead to very good approximation, thereby
suggesting that the effects caused by the presence of a half-space on
cylindrical scattered waves should be small. For more irregular foun-
dational geometries, and for nonlinear soil response in the foundation
vicinity, such an approximation will cease to be useful [10–12].

2. Model and free-field

The model in Fig. 1 consists of a shear wall supported by a rigid
circular foundation embedded in a semi-infinite half-space. The defi-
nition of parameters and coordinate systems used to describe the shear
wall, foundation, and the half-space are as follows. The rectangular
shear wall, referred to as the building, has width W, height H, and mass
per unit length mb. It consists of a uniform, linear, elastic medium with
mass density ρb, Lame constants μ λ( , )b b , Poisson ratio νb, longitudinal
wave speed cα b, , and shear wave speed cβ b, . The foundation has a cir-
cular cross section, width a2 , depth h, and a radius of curvature b at the
circular portion, and the center of curvature is located at point O1. The
distance between O1 and the center of the building base O is d. The
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depth h lies in the range of < ≤h a0 . The foundation material is as-
sumed to be rigid and uniform, with mass per unit length mf , and
moment of inertia Io

f( ) about point O. The half-space, representing the
soil, is a uniform, linear, elastic medium with mass density ρs, Lame
constants μ λ( , )s s , Poisson ratio ν, longitudinal wave speed cα, and shear
wave speed cβ. Contact between the half-space and the foundation is
assumed to be continuous with no relative slippage. An inertial co-
ordinate system − −O x z with origin O located at the center of the
building base, and an inertial coordinate system − −O x z1 1 1 with the
origin located at O1, are used to describe the motion of the half-space.
The polar variables in each of these coordinate systems are r θ( , ) and
r θ( , )1 1 , respectively. Also, an inertial coordinate system − −O x ξ , and
a non-inertial coordinate system ′ − ′ − ′O x ξ that attaches to and moves
with the building base are used to describe the motion of the building.
The contact surface between the half-space and the foundation is de-
noted by Σ : =r b1 , − ≤ ≤θ θ θ0 1 0 with = −θ a bsin ( / )0

1 .
The steady state displacements of the foundation is

= −Δ t Δ e( ) ,iωt
0 (1a)

= −V t V e( ) ,iωt
0 (1b)

= −ϕ t ϕ e( ) iωt
0 (1c)

with horizontal translation Δ0, vertical translation V0, and clockwise
rotation about point O, ϕ0 to be determined. The building moves as a
shear wall where its horizontal and vertical displacements u ξ t( , )b ,
v ξ t( , )b satisfy the wave equation with velocities cβ b, and cα b, , respec-
tively. With the condition that the base of the shear wall moves with the
foundation, and the top of the shear wall is stress free, u ξ t( , )b and
v ξ t( , )b can be solved. The generalized force (per unit length) with
which the building is acting on the foundation to first order in foun-
dation displacements is then
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where the superscript bf( ) is used to denote the force components that
the building is exerting onto the foundation, and Mo is the clockwise
moment about point O. The matrices ×K[ ]b( )

3 3, ×C[ ]g
b( )

3 3 are both real.
The relative response of the building is defined by

= − +u ξ t u ξ t Δ t ϕ t ξ( , ) ( , ) ( ( ) ( ) ),b
rel

b (3)

= +v ξ t v ξ t V t( , ) ( , ) ( ).b
rel

b (4)

The incident wave is a monochromatic plane SV wave whose pro-
pagation vector lies in the −x z plane with incident angle θβ, harmonic
frequency ω, wave number =k ω c/β β, and incident amplitude ψ0. The
presence of the half-space surface results in reflected SV and P waves.
Together with the incident wave, the potentials are

= − −ψ x z t ψ eIncident SV-wave: ( , , ) ,i ik x θ z θ iωt( )
0

( sin cos )β β β (5a)

= + −ψ x z t ψ K eReflected SV-wave: ( , , ) ,r ik x θ z θ iωt( )
0 2

( sin cos )β β β (5b)

= + −φ x z t ψ K eReflected P-wave: ( , , ) ,r ik x θ z θ iωt( )
0 1

( sin cos )α α α (5c)

where =k ω c/α α is the wave number of the reflected P wave, θα is the
angle of the reflected P wave and satisfies

=θ κ θsin sin ,α β (6)

where = =κ c
c

k
k

α
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β

α
is the ratio of speeds of the longitudinal to the shear

wave. The ratios of the reflected to incident amplitudes are

=
+

=
−
+

K
κ θ θ

θ θ κ θ

K
θ θ κ θ
θ θ κ θ

2 sin 2 cos 2
sin 2 sin 2 cos 2

,

sin 2 sin 2 cos 2
sin 2 sin 2 cos 2

.

β β

α β β

α β β

α β β

1

2

2 2

2

2 2

2 2 (7)

The free-field potentials now consist of

=
= +

φ φ
ψ ψ ψ

,
.

ff r

ff i r

( )

( ) ( ) (8)

The harmonic time dependence −e iωt will be associated with all steady-
state wave potentials and omitted in subsequent equations.

3. Solution of the problem

The presence of the foundation induces scattered waves. The re-
presentations of scattered P and SV potentials are given by the Fourier-
Hankel series:
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for some numerical order N. The 4 sets of scattered wave coefficients
=A{ }n n

N
0, =B{ }n n

N
0, =C{ }n n

N
0, and =D{ }n n

N
0 are to be determined by boundary

conditions between the half-space and the foundation.
Unlike the case of an incident P wave, the reflected P wave ϕ r( ) for

an SV incident wave here can be either a body wave or a surface wave
depending on the incident angle. The critical angle

=θ
κ

sin 1
cr (10)

separates these two cases. If the incidence is below critical angle
( <θ θβ cr), θα is real-valued and φ r( ) is a plane-traveling wave. In this
case, the Fourier-Bessel expansion of the free-fields can be represented
as follows:
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with the free-field coefficients

= −a ψ ε i K e nθsin ,n n
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α0 1
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If the incidence is beyond critical angle ( >θ θβ cr), θα is complex-
valued. Let

Fig. 1. The model.
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=k k θsinx β β (13)

be the apparent wave number, then =θ k ksin /α x α. Using the fact that
φ r( ) satisfies the Helmholtz equation: ∇ + =φ k φ 0ff

α
ff2 2 , it can be de-

duced that =θ iγ kcos /α α with the following definition:

≡ − >γ k k 0.x α
2 2 (14)

In terms of the two real numbers kx and γ , φ r( ) can then be rewritten as

= −φ x z ψ K e( , ) ,r ik x γz( )
0 1 x (15)

and (15) represents a surface wave with exponentially decaying am-
plitude into the half-space >z 0.

The solution procedures for incidence beyond critical angle will be
different when the incidence is below critical. Since the Fourier-Bessel
series of φ r( ) in (11a), (12a), and (12b) are no longer valid in such a
case, (15) will be used directly to derive the P-wave portion of the
displacements and stresses at the contact surface Σ before the series
expansions are made. In terms of coordinate system r θ( , )1 1 , (15) is equal
to

=φ r θ ψ K e e( , )r γd f θ r
1 1 0 1

( )1 1 (16)

with a complex function of θ1

= −f θ ik θ γ θ( ) sin cos .x1 1 1 (17)

Each of the displacement and stress components can be grouped ac-
cording to the contribution from either the P or SV potential:
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Substituting (16) as φ into (20) and (21) and evaluating at Σ yields
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for all − ≤ ≤θ θ θ0 1 0. To apply the boundary conditions, it is necessary
to obtain the Fourier θ1-expansion of each function in (22) and (23),
which requires the definition of these functions above the physical
domain of Σ . Due to the exponentially growing magnitude of φ r( ) above
the half-space, direct extensions of the existing definitions of (22) and
(23) to above the physical domain are not appropriate, nor are simple
truncations that incur Gibbs phenomena. Let the extensions be z θ( )i ext, 1 ,
= …i 1, ,4 so that the full-range definitions are
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The z θ( )i ext, 1 's are thus constructed so that they make ur
P( )
1 , uθ

P( )
1
, τr r

P( )
1 1, and

τr θ
P( )
1 1 continuous periodic functions of θ1 with comparable magnitudes

everywhere in− ≤ ≤π θ π1 , and also to produce the proper asymptotic
behavior at the zero frequency limit. More specifically, zi ext, 's are taken
to be functions of θ1 and η of the form

= + − = …z θ η w η z θ η w η L θ η i( , ) ( ) ( , ) (1 ( )) ( , ), 1, , 4,i ext i i, 1 1 1 (28)

where z θ η( , )i 1 's are the same functions as those defined within ≤θ θ| |1 0
in (24) through (27), L θ η( , )i 1 's are 4 linear functions of θ1 jointing the
two edge values =z z θ η( , )i r i, 0 , = −z z θ η( , )i l i, 0 of z θ η( , )i 1 :
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and w η( ) is a linear transition function of η:
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0, 0.5 (30)

making each z θ η( , )i ext, 1 gradually evolve from z θ η( , )i 1 at =η 0 to
L θ η( , )i 1 at =η 0.5 and beyond. In other words, each extension evolve
from the corresponding direct extension to a linear extension as fre-
quency increases between 0 and 0.5. Since the transition function is also
continuous, the resulting full-range definition is continuous in θ1 at all
frequencies.

The finite Fourier series of (24) through (27) are
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The summations in (33), (34), (35), (36) are over the space of the
N2 f -discretized θ1:
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Similarly, the total stresses at the contact surface become
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The remaining derivations are the same as in the case of an incident P
wave: the scattered coefficients are first eliminated through the dis-
placement boundary conditions on Σ when deriving equations of the
generalized forces with which the half-space is acting on the founda-
tion. Thereafter, through the requirement that the foundation itself
satisfies the dynamic equilibrium, the foundation displacements can be
solved. Consequently, the end equation is
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with the modified definitions
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4. Numerical results

A dimensionless frequency = =η a
λ

ωa
πc

2
β β

, and the flexibility para-

meter of the building =ε
c H
c a

β

β b,
will be used in the figures showing the

results. For all computations, the fixed parameters are =m m/ 0.2f s ,
= −10g

c π H a( / 2 )
4

β b, 2 , and ν is slightly adjusted to the value

= ≲ν 0.3333 1/3, which gives the critical angle of = ° ≳ °θ 30.0025 30cr .
The amplitude of the incident SV wave is taken to be =ψ a k/ β0 . These
choices are adopted to facilitate comparison of the results with those in
[3].

In Figs. 2–9, the amplitude spectra of the foundation displacements
(Δ0, ϕ0, V0) and the relative responses of the building (u H( )b

rel , v H( )b
rel )

are plotted in the range < ≤η0 2 for 4 different geometries of the
model, with angles of incidence = °θ 0β , °30 , °45 , °60 , and °85 of the
incoming SV wave. Figs. 2–5 show the case of a shallow foundation,
while Figs. 6–9 a semi-circular foundation. Figs. 2, 3, 6 and 7 are shown
for a “square” shear wall. Figs. 4, 5, 8 and 9 correspond to a tall shear
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wall. It can be seen that the response spectra corresponding to a semi-
circular foundation, as well as a shallow foundation with below critical
incidence ( <θ θβ cr) are all in good agreement with the results presented
in [3]. Results for a shallow foundation for wave incidence beyond
critical angle ( >θ θβ cr) are not presented in [3] because of the lack of
convergence described by the authors. The convergent issues do not
exist here because of the less complicated mathematical form of the
closed-form solution, thus the corresponding results are also shown in
Figs. 2–5.

When frequency η approaches zero, the half-space motion is uni-
form, thus the translational amplitudes of the foundation approach the
displacement amplitudes of the free-field on the ground surface, and the
rotation of the foundation approaches zero. As η increases across each
of the fixed-base natural frequencies of the building's horizontal/ver-
tical oscillation, due to the singularity of the shear wall matrix K[ ]b( ) ,
the horizontal/vertical response spectra of the foundation and building
experience rapid changes with local maxima or minima. Since rotation
is coupled to horizontal motion, ϕ| |0 experiences resonant behavior at

horizontal fixed-base natural frequencies.
Away from the fixed-base natural frequencies, it can be seen that

because of the filtering effect of the rigid foundation, the translational
response Δ| |0 and V| |0 decrease gradually from their zero-frequency limit
as η increases from zero for most incident angles. The opposite trends
are for Δ| |0 at = °θ 45β and for V| |0 at = °θ 30β . These two cases both
correspond to a nearly zero response at zero-frequency limit ( →Δ| | 00
at = °θ 45β and →V| | 0.04150 at = °θ 30β ), because the horizontal free-
field displacement amplitude on the ground surface ( =u z| ( 0)|x

ff ) is zero
at = °θ 45β , and the vertical free-field displacement amplitude on the
ground surface ( =u z| ( 0)|z

ff ) is small with = =u z| ( 0)| 0.0415z
ff at

= °θ 30β . The gradual increases of Δ| |0 and V| |0 beyond zero frequency
show that the interaction between the incident wave and the founda-
tion can create additional motions. Nevertheless, at higher frequencies,
especially when η is approaching 2, the filtering effect of the foundation
becomes dominant, and thus Δ| |0 and V| |0 either saturate or begin to
decrease.

For rotation spectra ϕ| |0 , it can be seen that two very different

Fig. 2. Spectra of foundation displacements from ”relaxed” solutions. =a h/ 2, =W H/ 1,
=H a/ 2, =m m/ 4b f , and =ε 4.

Fig. 3. Spectra of relative displacements of the shear wall from ”relaxed” solutions.
=a h/ 2, =W H/ 1, =H a/ 2, =m m/ 4b f , and =ε 4.

Fig. 4. Spectra of foundation displacements from ”relaxed” solutions. =a h/ 2,
=W H/ 0.25, =H a/ 8, =m m/ 16b f , and =ε 4.

Fig. 5. Spectra of relative displacements of the shear wall from ”relaxed” solutions.
=a h/ 2, =W H/ 0.25, =H a/ 8, =m m/ 16b f , and =ε 4.
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profiles that separate the case of <θ θβ cr and >θ θβ cr are exhibited,
particularly in Figs. 2 and 6. For = °θ 0β and = °θ 30β , in addition to the
large response with high peak values near the first few natural fre-
quencies (due to the coupling with the large horizontal translation of
the foundation Δ| |0 at these two incident angles), ϕ| |0 do not grow as fast
as in the cases of = °θ 45β and = °θ 60β . In between the natural fre-
quencies, the foundation rotations are significant when = °θ 45β and
= °θ 60β , with the local maxima at around ≈η 0.5 in Figs. 2 and 6. At
= °θ 85β , despite the smaller values at all frequencies, ϕ| |0 also has si-

milar behavior as = °θ 45β and = °θ 60β . The differences between these
two types of behavior become less apparent for a taller shear wall as
shown in Figs. 4 and 8, in which it can be seen that the local maxima of
ϕ| |0 for = °θ 45β and = °θ 60β occur near ≈η 1.1.

In the range where η is smaller than the first horizontal/vertical
resonant frequencies, Δ| |0 and u H| ( )|b

rel are larger when the incident
angle makes =u z| ( 0)|x

ff larger; similarly, V| |0 and v H| ( )|b
rel are larger

when the incident angle makes =u z| ( 0)|z
ff larger. This order starts to

change beyond the first resonant frequency due to the interplay

between the foundation filtering effect and the interactions previously
described. The order change is especially prominent for V| |0 when η is
approaching 2 in Figs. 2, 4, 6 and 8.

Comparing the spectra of a taller shear wall with those of the square
wall (comparing Figs. 8 and 9 with Figs. 6 and 7, or Figs. 4 and 5 with
Figs. 2 and 3), it can be seen that for the taller shear wall, the first peaks
of Δ| |0 and ϕ| |0 shift more toward lower frequencies with the slightly
higher peak value for Δ| |0 . The most dramatic changes for the taller
shear wall are in the spectra of u H| ( )|b

rel : the first few peak values are
considerably reduced from the corresponding square shear wall, with
the first peak being more than 5 times smaller. In between natural
frequencies in the range from ≈η 0.8 to ≈η 1.4, the value of u H| ( )|b

rel

can be larger than the first few peak values in the same spectrum. This
region also corresponds to a relatively larger ϕ| |0 compared with other
frequencies away from resonance.

Comparing the results with a shallow foundation to those of a semi-
circular foundation (comparing Figs. 2 and 3 with Figs. 6 and 7 for the
square shear wall, or Figs. 4 and 5 with Figs. 8 and 9 for the tall shear

Fig. 6. Spectra of foundation displacements from ”relaxed” solutions. =a h/ 1, =W H/ 1,
=H a/ 2, =m m/ 2b f , and =ε 4.

Fig. 7. Spectra of relative displacements of the shear wall from ”relaxed” solutions.
=a h/ 1, =W H/ 1, =H a/ 2, =m m/ 2b f , and =ε 4.

Fig. 8. Spectra of foundation displacements from ”relaxed” solutions. =a h/ 1,
=W H/ 0.25, =H a/ 8, =m m/ 8b f , and =ε 4.

Fig. 9. Spectra of relative displacements of the shear wall from ”relaxed” solutions.
=a h/ 1, =W H/ 0.25, =H a/ 8, =m m/ 8b f , and =ε 4.
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wall), it can be seen that for a shallower foundation depth with = °θ 0β
and = °θ 30β , Δ| |0 decreases in a slower rate as η increases for the whole
frequency range < ≤η0 2. However, u H| ( )|b

rel and v H| ( )|b
rel are smaller

at lower frequencies with the smaller peak values, and the first peak of
v H| ( )|b

rel at = °θ 30β even disappears as can be seen in Figs. 3 and 7. As
for rotation, the change of ϕ| |0 highly depends on the incident angle: at
= °θ 45β and = °θ 60β , ϕ| |0 grows to a larger local maxima (the ap-

proximate location of the local maxima are unchanged: at around
≈η 0.5 for square shear wall; ≈η 1.1 for tall shear wall) as η increases

from zero; but at = °θ 30β , regardless of the larger response at the
second resonance near =η 0.375, ϕ| |0 is smaller beyond ≈η 0.8 away
from resonant frequencies.

5. Summary

This paper presents results based on an approximate analytic pro-
cedure for solving the 2-dimensional, soil-structure-interaction problem
excited by an incident plane SV wave. The approximation is based on
relaxing the zero-stress boundary conditions on the half-space surface.
It is shown that under such conditions, the wave function expansion
becomes simple, and only half of the series representation for the
scattered waves is required. Also, the closed-form solution depends only
on finite-dimensional matrices and is easy to compute.

For cases of semi-circular foundation and shallow foundation when
the incidence is below critical, numerical results on foundation dis-
placements and shear wall responses agree well with those of [3]. For
cases of shallow foundation when incident angles are beyond critical,
numerical results are presented here for the first time. The agreement
between the cases presented in this paper and those in [3] suggest that
the free-surface boundary conditions are indeed not as essential as other
conditions that govern the solution (the continuity of displacements
along the contact surface between the half-space and foundation, and

the dynamic equilibrium of the foundation). This result also supports
the results of [7], which suggests that the solution to the model ob-
tained from relaxed surface conditions may be similar to the solution in
which a cylindrical approximation of the ground surface is made.

References

[1] Enrique Luco J. Dynamic interaction of a shear wall with the soil. J. Eng. Mech. Div.
1969;95:333–46.

[2] Trifunac MD. Interaction of a shear wall with the soil for incident plane SH waves.
Bull. Seismol. Soc. Am. 1972;62(1):63–83.

[3] Todorovska MI. Trifunac MD. Analytical Model for in Plane Building-Foundation-
Soil Interaction: Incident P-, SV-, and Raleigh Waves, Report No. 90-01, Dept. of
Civil Engrg, Univ. of Southern California, pp. 122 (1990).

[4] Todorovska MI, Trifunac MD. In-plane foundation-soil interaction for embedded
circular foundations. Soil Dyn. Earthq. Eng. 1993;12:283–97.

[5] Todorovska Maria I, Trifunac MD. Effects of the wave passage and the embedment
depth for in-plane building-soil interaction. Soil Dyn. Earthq. Eng. 1993;12:343–55.

[6] Todorovska MI. Effects of the depth of the embedment on the system response
during building-soil interaction. Soil Dyn. Earthq. Eng. 1992;11:111–23.

[7] Todorovska Maria I, Rjoub Yousef Al. Plain strain soil-structure interaction model
for a building supported by a circular foundation embedded in a poroelastic half-
space. Soil Dyn. Earthq. Eng. 2006;26:694–707.

[8] Lin Chi Hsin, Lee Vincent W, Todorovska Maria I, Trifunac Mihailo D. Zero-stress,
cylindrical wave functions around a circular underground tunnel in a flat, elastic
half-space: incident P waves. Soil Dyn. Earthq. Eng. 2010;30(10):879–94.

[9] Zhang Chao, Liu Qijian, Deng Peng. Surface motion of a half-space with a semi-
cylindrical canyon under P, SV, and Rayleigh waves. Bull. Seismol. Am.
2017;107(2):1–13.

[10] Gičev Vlado, Trifunac Mihailo D, Orbović Nebojša. Translation, torsion, and wave
excitation of a building during soil-structure interaction excited by an earthquake
SH pulse. Soil Dyn. Earthq. Eng. 2015;77:391–401.

[11] Gičev Vlado, Trifunac Mihailo D, Orbović Nebojša. Two-dimensional translation,
rocking, and waves in a building during soil-structure interaction excited by
earthquake P-wave pulse. Soil Dyn. Earthq. Eng. 2016;90:454–66.

[12] Gičev Vlado, Trifunac Mihailo D, Orbović Nebojša. Two-dimensional translation,
rocking, and waves in a building during soil-structure interaction excited by a plane
earthquake SV-wave pulse. Soil Dyn. Earthq. Eng. 2016;88:76–91.

Y. Cai et al. Soil Dynamics and Earthquake Engineering 105 (2018) 224–230

230

http://refhub.elsevier.com/S0267-7261(17)30968-5/sbref1
http://refhub.elsevier.com/S0267-7261(17)30968-5/sbref1
http://refhub.elsevier.com/S0267-7261(17)30968-5/sbref2
http://refhub.elsevier.com/S0267-7261(17)30968-5/sbref2
http://refhub.elsevier.com/S0267-7261(17)30968-5/sbref3
http://refhub.elsevier.com/S0267-7261(17)30968-5/sbref3
http://refhub.elsevier.com/S0267-7261(17)30968-5/sbref4
http://refhub.elsevier.com/S0267-7261(17)30968-5/sbref4
http://refhub.elsevier.com/S0267-7261(17)30968-5/sbref5
http://refhub.elsevier.com/S0267-7261(17)30968-5/sbref5
http://refhub.elsevier.com/S0267-7261(17)30968-5/sbref6
http://refhub.elsevier.com/S0267-7261(17)30968-5/sbref6
http://refhub.elsevier.com/S0267-7261(17)30968-5/sbref6
http://refhub.elsevier.com/S0267-7261(17)30968-5/sbref7
http://refhub.elsevier.com/S0267-7261(17)30968-5/sbref7
http://refhub.elsevier.com/S0267-7261(17)30968-5/sbref7
http://refhub.elsevier.com/S0267-7261(17)30968-5/sbref8
http://refhub.elsevier.com/S0267-7261(17)30968-5/sbref8
http://refhub.elsevier.com/S0267-7261(17)30968-5/sbref8
http://refhub.elsevier.com/S0267-7261(17)30968-5/sbref9
http://refhub.elsevier.com/S0267-7261(17)30968-5/sbref9
http://refhub.elsevier.com/S0267-7261(17)30968-5/sbref9
http://refhub.elsevier.com/S0267-7261(17)30968-5/sbref10
http://refhub.elsevier.com/S0267-7261(17)30968-5/sbref10
http://refhub.elsevier.com/S0267-7261(17)30968-5/sbref10
http://refhub.elsevier.com/S0267-7261(17)30968-5/sbref11
http://refhub.elsevier.com/S0267-7261(17)30968-5/sbref11
http://refhub.elsevier.com/S0267-7261(17)30968-5/sbref11

	In-plane soil-structure interaction excited by incident plane SV waves
	Introduction
	Model and free-field
	Solution of the problem
	Numerical results
	Summary
	References




