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Abstract

A numerical study on the free vibration analysis for laminated conical and cylindrical shell is presented. The analysis is carried out
using Love’s first approximation thin shell theory and solved using discrete singular convolution (DSC) method. Numerical results in
free vibrations of laminated conical and cylindrical shells are presented graphically for different geometric and material parameters.
Free vibrations of isotropic cylindrical shells and annular plates are treated as special cases. The effects of circumferential wave
number, number of layers on frequencies characteristics are also discussed. The numerical results show that the present method is
quite easy to implement, accurate and efficient for the problems considered.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Laminated composite materials are increasingly used in aerospace, mechanical and civil engineering structures.
With the increasing use of fiber-reinforced composites as structural elements, studies including the linear and nonlinear
vibration of composite material shell are receiving considerable attention. This arises from the fact that, by taking
advantage of its anisotropic material properties and light weight with high strength, the materials can be used very
efficiently [2,32]. Because of the practical importance of the free vibration analysis of the composite laminated conical
shell in structural, aerospace, nuclear, petrochemical, submarine hulls, and mechanical applications, a few investigators
have made efforts to deal with free vibration analysis of this type of structures. Various methods for analyzing free
vibrations of the conical shell such as the finite element method, Ritz method, Galerkin method, the other numerical
approximate methods and the differential quadrature method have been tried. Unsymmetric free vibration of orthotropic
sandwich shells of revolution has been made by Bacon and Bert [1]. Siu and Bert [36] analyzed the free vibration of
isotropic and orthotropic conical shells by using the Rayleigh–Ritz technique. Irie et al. [10,11] developed a transfer-
matrix approach for free vibration of conical shells with constant and variable thickness. Using the finite element
method, Sivadas and Ganesan [37] analyzed the free vibration of conical shells with uniform thickness. Yang [55]
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adopted the integration method in the vibration analysis of orthotropic conical shells. Tong [39–41], in a series of
papers, examined the vibration and buckling analysis of isotropic, orthotropic and laminated conical shells by the
power series expansion method. More recently, Shu [33,34], Shu and Du [35], Hua [7,8], Hua and Lam [9] and Lam
and Hua [13] presented the differential quadrature method to study the free vibration of orthotropic and laminated
rotating conical shells. Liew et al. [19] also studied the effects of initial twist and thickness variation on the vibration
behavior of shallow conical shells. Lim and Kitipornchai [22] proposed the effects of subtended and vertex angles of the
free vibration of open conical shell and panels. Vibration characteristics of conical shell panels with three-dimensional
flexibility have been given in detail [16]. Some selected works in this research topic includes those of Liew et al.
[21,17,20], Liew and Lim [18], Lim and Liew [25–27], Lim et al. [29,28,24], Lam and Loy [14], Wu and Wu [54],
Leissa [15], Soedel [38] and Civalek [4–6]. More detailed information can be found in a recent review paper by Chang
[3] and Kapania [12].

The focus in this work is on the application of the DSC method to the differential equation, which governs the free
vibration analysis of laminated conical and cylindrical shells.

2. Governing equations

Consider a laminated conical shell of thickness h, cone semivertex angle � and cone length L as shown in Fig. 1. R1
and R2 are the radii of the cone at its small and large edges. The conical shell is referred to a coordinate system (x, �, z)

as shown in Fig. 1. The components of the deformation of the conical shell with references to this given coordinate
system are denoted by u, v, w in the x, � and z directions, respectively. The equilibrium equation of motion in terms
of the force and moment resultants can be written as [40]

�Nx

�x
+ 1

R(x)

�Nx�

��
+ sin �

R(x)
(Nx − N�) = �h

�2u

�t2 , (1)

�Nx�

�x
+ 1

R(x)

�N�

��
+ cos �

R(x)

�Mx�

�x
+ cos2 �

R2(x)

�M�

��
+ 2

sin �

R(x)
Nx� = �h

�2v

�t2 , (2)

�2Mx

�x2 + 2

R(x)

�2Mx�

���x
+ 1

R2(x)

�2M�

��2 + 2 sin �

R(x)

�Mx

�x

− 1

R(x)

(
sin �

�M�

�x
+ cos �N�

)
= �h

�2w

�t2 , (3)

where
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here � and �a are, respectively, the density and density per unit length. Moment resultants and in-surface force can be
obtained by

N = (Nx, N�, Nx�)
T =

∫ h/2

−h/2
(�x, ��, �x�)

T dz, (6)

M = (Mx, M�, Mx�)
T =

∫ h/2

−h/2
(�x, ��, �x�)

Tz dz, (7)

where the stress vector field is defined by (�)T ={�x, ��, �x�}. The stress vector of the kth layer for laminated composite
conical shells in which each layer is orthotropic is

{�k} = [Q∗
ij ]{�∗k}, (8)
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Fig. 1. Geometry and notation of laminated conical shell.

where {�∗k}T={�x, ��, �x�} is the strain vector. Based on the Love’s first approximation theory [30], the strain components
of this vector are defined as linear functions of the normal (thickness) coordinate z, namely

�x = �1 + z�1, �� = �2 + z�2, �x� = � + 2z	, (9)

where {�}T = {�1, �2, �} and {�}T = {�1, �2, 2	} are, respectively, the strain and curvature vectors of the reference
surface. They are defined by
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For a thin and generally orthotropic layer, the stresses defined in Eq. (8) are given by⎧⎨
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where the transformed reduced stiffness matrix of the kth layer is defined by

[Q∗
k] = [T ][Qk][T ]−1, (12)
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where
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in which [T ] is the transformation matrix between the material principal coordinate of the kth layer and the geometric
coordinate of the laminated composite conical shell; 
 is the angle between these two coordinate directions. The force
and moment resultants are given in terms of displacements u, v and w by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
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where i = 1, 2 and j = 3 + i. Aij , Bij and Dij are the extensional, coupling and bending stiffnesses and calculated
from the following equations:

(Aij , Bij , Dij ) =
∫ h/2

−h/2
Q∗

ij (1, z, z2) dz. (16)

For an arbitrarily laminated composite shell, these stiffnesses can be given as
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where NL is the number of total layers of the laminated conical shell, Q
(k)
ij , the element of the transformed reduced

stiffness matrix for the kth layer, and hk and hk−1 denote distances from the shell reference surface to the outer and inner
surfaces of the kth layer. By substituting Eq. (14) into Eqs. (1)–(3), governing equations for the linear free vibration
analysis of composite laminated conical shells are obtained:
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where Lij are the differential operators. These are given in Appendix A. The displacement terms are taken as

u = U(x) · cos(n�) · cos(�t), (19a)

v = V (x) · sin(n�) · cos(�t), (19b)

w = W(x) · cos(n�) · cos(�t). (19c)

Substituting Eqs. (19) into Eqs. (18), the governing equations can be written as
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where Gijk are the constant coefficients defined in Appendix B. In this study, the following three type main boundary
conditions and four subclasses boundary conditions for clamped edge are considered. These are defined as

Simply supported edge (S):

V = 0, W = 0, Nx = 0, Mx = 0. (23a)
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Clamped edge (C):

U = 0, V = 0, W = 0 and Wx = 0. (23b)

Free edge (F):

Vx = 0, Mx = 0, Nx = 0, Sx� = 0. (23c)

Type-1 Clamped boundary (C–C1):

W = 0, Nx = 0, Nx� = 0, Wx = 0. (23d)

Type-2 Clamped boundary (C–C2):

W = 0, U = 0, Nx� = 0, Wx = 0. (23e)

Type-3 Clamped boundary (C–C3):

W = 0, V = 0, Nx = 0, Wx = 0. (23f)

Type-4 Clamped boundary (C–C4):

U = 0, V = 0, W = 0, Wx = 0. (23g)

Wei et al. [51] and Zhao and Wei [58] proposed a practical method to incorporate the boundary conditions. More
recently, Zhao et al. [57] applied the iteratively matched boundary method to impose the free boundary conditions for
solid mechanic problem.

3. Discrete singular convolution (DSC)

Discrete singular convolutions (DSC) algorithm introduced by Wei [43] in 1999. As stated by Wei [47,48,45] singular
convolutions (SC) are a special class of mathematical transformations, which appear in many science and engineering
problems, such as the Hilbert, Abel and Radon transforms. In fact, these transforms are essential to many practical
applications, such as computational electromagnetics, signal and image processing, pattern recognition, tomography,
molecular potential surface generation and dynamic simulation. It is the most convenient way to discuss the singular
convolution in the context of the theory of distributions. It not only provides a rigorous justification for a number
of informal manipulations in physical science and engineering, but also opens a new area of mathematics, which in
turn gives impetus in many other mathematical disciplines, such as operator calculus, differential equations, functional
analysis, harmonic analysis and transformation theory [48,49]. In fact, the theory of wavelets and frames, a new
mathematical branch developed in recent years, can also find its root in the theory of distributions [44].

Wei and his co-workers first applied the DSC algorithm to solve solid and fluid mechanics problem [52,53,46,50].
Zhao et al. [59,60] analyzed the high-frequency vibration of plates and plate vibration under irregular internal support
using DSC algorithm. Zhao and Wei [58] adopted the DSC in the vibration analysis of rectangular plates with nonuni-
form boundary conditions. Numerical solution of unsteady incompressible flows using DSC is given by Wan et al. [42].
A good comparative accuracy of DSC and generalized differential quadrature methods for vibration analysis of rectan-
gular plates is presented by Ng et al. [31]. Yunshan [56] presented the DSC-Ritz method for the free vibration analysis
of Mindlin plates.

More recently, Lim et al. [23] proposed the DSC-Ritz method for high-mode frequency analysis of thick shallow
shells. It is emphasized that the DSC algorithm work very well for the vibration analysis of plates, especially for high-
frequency analysis of plates and shells. Furthermore, it is also concluded that the DSC algorithm has global methods’
accuracy and local methods’ flexibility for solving differential equations in applied mechanics. The mathematical
foundation of the DSC algorithm is the theory of distributions and wavelet analysis. Consider a distribution, T and �(t)

as an element of the space of the test function. A singular convolution can be defined by

F(t) = (T ∗ �)(t) =
∫ ∞

−∞
T (t − x)�(x) dx, (24)
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where T (t − x) is a singular kernel. For example, singular kernels of delta type

T (x) = (n)(x), (n = 0, 1, 2, . . . , ). (25)

Kernel T (x)= (x) is important for interpolation of surfaces and curves, and T (x)= (n)(x) for n > 1 are essential for
numerically solving differential equations. Since these kernels are singular, they are not suitable for directly digitized
in computers. In order to avoid this difficulty, Wei [43] suggested a new form for sequence of approximations (T�) of
the distribution T as

lim
�→�0

T�(x) → T (x), (26)

in which �0 is a generalized limit. With a sufficiently smooth approximation, it is more effective to consider a discrete
singular convolution

F�(t) =
∑

k

T�(t − xk)f (xk), (27)

where F�(t) is an approximation to F(t) and {xk} is an appropriate set of discrete points on which the DSC (24) is well
defined.

3.1. Regularized Shannon’s delta kernel (RSDK)

More recently, the use of some new kernels and regularizer such as delta regularizer [47] was proposed to solve
applied mechanics problem. The Shannon’s kernel is regularized as

�,�(x − xk) = sin[(�/�)(x − xk)]
(�/�)(x − xk)

exp

[
− (x − xk)

2

2�2

]
, � > 0, (28)

where � is the grid spacing. It is also known that the truncation error is very small due to the use of the Gaussian
regularizer, the above formulation given by Eq. (28) is practically and has an essentially compact support for numerical
interpolation. In fact, Shannon’s delta sequence kernel can be derived from the generalized Lagrange interpolation
formula

Sk(x) = G(x)

G′(xk)(x − xk)
, (29)

where G(x) is an entire function given by

G(x) = (x − x0)
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k=1

(
1 − x

xk

) (
1 − x

x−k

)
(30)

and G′ denotes the derivatives of G. If {xk}k∈Z are limited to a set of points on a uniform infinite grid (xk =k�=−x−k),
Eq. (30) can be simplified

G(x) = x

∞∏
k=−∞,k �=0

(
1 − x

k�

)
= x

∞∏
k=1

(
1 − x2

k2�2

)
= �

sin[(�/�)x]
�

. (31)

Since G′(xk) reduced to G′(xk) = (−1)k for uniform grid, Eq. (31) gives rise to

Sk(x) = G(x)

G′(xk)(x − xk)
= (−1)k sin[(�/�)x]

(�/�)(x − k�)
= sin[(�/�)(x − xk)]

(�/�)(x − xk)
, (32)
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Eq. (28) can also be used to provide discrete approximations to the singular convolution kernels of the delta type

f (n)(x) ≈
M∑

k=−M

(n)
�,�(x − xk)f (xk), (n = 0, 1, 2, . . . , ) (33)

or

f (n)(x) ≈
M∑

k=−M

�(x − xk)f (xk), (34)

where �(x −xk)=��(x −xk) and superscript (n) denotes the nth-order derivative, and 2M +1 is the computational
bandwidth which is centered around x and is usually smaller than the whole computational domain.When the regularized
Shannon’s delta kernel (RSDK) is used, the detailed expressions for �,�(x), (1)

�,�(x), (2)

�,�(x), (3)

�,�(x) and (4)

�,�(x)

can be easily obtained. Detailed formulations on these coefficients are found in [23,43,47]. First-order derivative, for
example, are given as
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In this stage, consider an operator O having a differential part D and a function part of F :

O = D + F . (36)

In the DSC approach, it is convenient to choose a grid representation for the coordinate so that the function part of F

of the operator is diagonal. Hence, its discretization is simply given by a direct interpolation on the grid

F(x) → F(xk)m,k . (37)

For solution of differential equations, approximation to derivatives is required. Such approximation can be constructed
by using DSC kernels of the delta type with n �= 0. Let us consider a one dimensional, nth order DSC kernel of delta
type

(n)

�,�(x − xk), (n = 0, 1, 2, . . . , ). (38)

Here (0)

�,�(x − xk) = �,�(x − xk) is the DSC kernel described in Eq. (34). The differential part of the operator on the
coordinate grid is then represented by functional derivatives

D =
∑
n=1

dn(x)
dn

dxn
→

∑
n=1

dn(xm)(n)
�,�(xm − xk), (39)

where dn(x) is a coefficient and (n)
�,�(xm − xk) is analytically given by

(n)
�,�(xm − xk) =

[(
d

dx

)n

�,�(xm − xk)

]
x=xm

. (40)

Thus, the full DSC-matrix representation for the operator, O, is given by [47]

O(xm − xk) =
∑
n

dn(xm)(n)
�,�(xm − xk) + F(xm)m,k . (41)

To approximate the derivative of a given function with respect to a space variable at a given discrete point, the DSC is
usually uses a weighted linear combination of the function values at 2M + 1 points (M points to the left and M points
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to the right) in the direction of the space variable, where M is the known as the half bandwidth. The nth derivative of
a function f (x) at the ith point, xi , is then approximated as

f (n)(xi) ≈
M∑

j=−M

W
(n)
i,j f (xi+j ); i = 0, 1, . . . , N − 1, (42)

where W
(n)
i,j can be obtained using the some known DSC kernels. Therefore, the discretized forms of Eqs. (23)
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where (n)
�,� is the coefficients of the regualrized Shannon’s kernel, given in Eq. (38). Thus, the governing equations

are spatially discretized by using the DSC algorithm. From the above procedures, one can derive the general form of
eignvalue equation as follows:

GU = �BU , (44)

where U is the displacement vector defined as follows:

U = [Uijk Vijk Wijk]T. (45)

In Eq. (44), G and B are the matrices derived from the governing equations described by (43), and the boundary
conditions considered in Eq. (23). In the above eigenvalue equation, W is the nondimensional frequency parameter.

4. Numerical applications

The utility and robustness of the proposed method is illustrated by a number of numerical examples in this section.
In order to simplify the presentation S, F, and C represent simply supported, free, and clamped supports, respectively.
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Table 1
Comparison of fundamental frequency parameters of annular isotropic plates

Boundary conditions R1/R2 HDQ (present study (N = 15)) FEM Ref. [4] (N = 18) Leissa Ref. [15] DSC

N = 9 N = 11 N = 16 N = 21

S–S 0.1 14.42 14.38 14.44 19.36 15.61 14.50 14.48
0.2 16.89 17.11 17.39 23.85 16.78 17.41 17.38
0.3 21.24 20.84 21.10 26.32 23.54 21.07 21.06

C–S 0.1 17.76 18.01 17.85 24.11 19.26 17.86 17.86
0.2 22.81 23.42 22.79 28.74 23.99 22.80 22.78
0.3 29.98 31.17 30.05 36.03 32.73 30.06 30.06
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Fig. 2. Comparison of percentage errors with grid numbers for different approach.

In this section some numerical results are presented for the free vibration analysis of isotropic, orthotropic, and laminated
conical and cylindrical shells with different geometric and material parameters under different boundary conditions.
Free vibrations of annular isotopic plates are treated as special cases.

4.1. Numerical results for annular plates (� = �/2)

To check whether the purposed formulation and programming are correct, an isotropic annular plate is analyzed first.
In Table 1, the DSC results are compared with those given by Leissa [15] and Civalek [4] for isotropic annular plates.
The DSC results were obtained 16 grid points. It can be seen from the table that, the present DSC results agree very
well with those of Leissa [15]. By comparing with the results of Leissa [15], the DSC results using 16 uniform grid
points are very accurate. When the number of grid points is larger than 16, the DSC results are independent of grid. The
results given by Civalek [4] are also listed in this table. The results given by Civalek [4] are obtained using the finite
element method (FEM). From Table 1, it is shown that the convergence of DSC results is very good for only 16 grid
points. The DSC results are generally in agreement with the results produced from the harmonic differential quadrature
(HDQ) [5] and finite element method (FEM) [4]. The FEM results are found using the program developed by Civalek
[4]. The present numerical solutions are in close agreement with the HDQ [5], FEM [4] and analytical solutions [15]
available in the literature. The percentage errors of the frequencies between the DSC and the references data of Leissa
[15] are displayed in Fig. 2. The variation of the error with the number of grid points was also shown in Fig. 2 for
the HDQ and FEM methods. For comparison purpose the HDQ solution also obtained by author using the computer
program developed by author in her Ph.D. thesis is used [25]. It was found that as the number of grid points increases,
the percentage error is decreases. However, a reasonably converged solution may be achieved for M =16. It is observed
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Table 2
Frequency parameters of S–S cylindrical shells (h/R = 0.002)

n L/R = 1 L/R = 5

Ref. [14] Ref. [20] Present Ref. [14] Ref. [20] Present

1 1.061284 1.061284 1.061283 0.248635 0.268635 0.268633
2 0.804054 0.804052 0.804052 0.107203 0.107202 0.107200
3 0.598331 0.598327 0.598328 0.055087 0.055086 0.055085
4 0.450144 0.450138 0.450141 0.033790 0.033786 0.033788
5 0.345253 0.345244 0.345246 0.025794 0.033786 0.033792
6 0.270754 0.270742 0.270753 0.025877 0.025872 0.025878

that by increasing the number of grid points within the range 9�M �21, the DSC results approach monotonically
the corresponding Leissa [15] results. The known boundary conditions are easily incorporated in the DSC as well as
the other numerical methods such as HDQ. A good comparative accuracy of differential quadrature (DQ) and DSC
methods for vibration analysis of plates is presented by Ng et al. [31]. More detailed information can be found in this
reference.

4.2. Numerical results for isotropic cylindrical shells

To validate the purposed approach, comparisons of DSC results with available published data were made for isotropic
cylindrical shell. The present analysis is applicable to laminated cylindrical shells by letting � = 0 in the relevant
formulation. The numerical results for the laminated cylindrical shells are given by the dimensionless frequency
parameter �. This parameter is given by

� = 2�R

√
�h

A11
�,

where � is referred to as the frequency parameter. In the first test example, the free vibration of cylindrical shells is
considered. S–S boundary conditions are taken into account. Results are presented in Table 2. Results from the present
DSC method are compared with the results of Lam and Loy [14] and Liew et al. [20]. It is seen that the frequencies
obtained by the DSC method are in good agreement with the analytical and numerical solutions in the literature.

The relationship between the frequency parameter � and circumferential wave number n are shown in Fig. 3. The
results are presented for four different boundary conditions. The frequency parameter � first decreases rapidly (n�4)

and then increases with increasing circumferential wave number n (n > 4). The C–C cylindrical shell has the highest
frequency parameter �, followed by the S–C, S–S, and C–F shells. It is shown that, the differences amongst the
frequency parameters of the three boundary conditions are large for smaller circumferential wave number n (n�6).
In other words, the effect of boundary conditions is significant for small circumferential wave number. With the
increase of circumferential wave number n (n > 6), the effect of the boundary conditions on the frequency parameter
is insignificant.

4.3. Numerical results for isotopic conical shells

Table 3 shows the convergence of computed frequency parameters � for an isotropic F–S conical shell with
L sin �/R2 = 0.75, h/R2 = 0.01 for two different cone angle. From Table 3, it is shown that the convergence of
DSC results is very good. By comparing with the results of Irie et al. [10], the DSC results are very accurate. It is
observed that a good agreement between the present calculated results and the results of literature [10,5] has been
obtained. Effect of the L sin �/R2 ratio on frequencies of conical shells for different cone angles are show in Fig. 4.
With the increase of cone angle, frequency parameter � increases gradually. Influence of cone angles is significant at
small r ratio.
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Table 3
Frequency parameters of F–S conical shells (� = 0.3, h/R2 = 0.01)

Circumferential wave number (n) L sin �/R2 = 0.75

� = 30◦ � = 60◦

Present DSC HDQ Ref. [5] Ref. [10] Present DSC HDQ Ref. [5] Ref. [10]

0 0.0875 0.0876 0.0877 0.1370 0.1372 0.1369
1 0.0761 0.0761 0.0762 0.1790 0.1788 0.1787
2 0.0780 0.0782 0.0779 0.1491 0.1490 0.1489
3 0.1553 0.1555 0.1551 0.1945 0.1947 0.1946
4 0.1918 0.1919 0.1917 0.2408 0.2410 0.2408
5 0.2182 0.2183 0.2181 0.2690 0.2691 0.2691
6 0.2542 0.2544 0.2543 0.3089 0.3090 0.3088
7 0.2997 0.3001 0.2995 0.3614 0.3615 0.3614
8 0.3532 0.3533 0.3533 0.4251 0.4253 0.4250
9 0.4155 0.4154 0.4153 0.4981 0.4983 0.4982

4.4. Numerical results for laminated cylindrical shells

The present analysis can be applied to the laminated cylindrical shells by letting R1 = R2 in Fig. 1. In other words,
by holding the value of R1 and vanishing the value of �, the conical shell will degenerate to a cylindrical shell. So,
the present analysis is applicable to laminated cylindrical shells by letting � = 0 in the relevant formulation. The
elementary material parameters of each layer are given as: �12 = 0.25, �22 = 0.3, E11/E22 = 40, G12/E22 = 0.5,
where subscripts 1 and 2 denote the directions parallel and transverse to the fiber direction, respectively. Since there
is an infinite complexity of the class of cross-ply laminates, only a regular antisymmetric cross-ply laminated shell is
considered in this example. For this type of laminated composite, the coefficients in Eqs. (17) can be simplified as:

A11 = A22 = h(Q11 + Q22)/2, A12 = Q12h, A66 = Q66h,

B11 = −B22 = h2(Q11 − Q22)/4NL, B11 = 0, B66 = 0,

D11 = B22 = h3(Q11 + Q22)/24, D12 = h3(Q12)/12, D66 = h3(Q66)/12.
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Table 4
Fundamental frequency parameters of an antisymmetric cross-ply laminated cylindrical shell with the S–C boundary condition (�=0.3, h/R2 =0.01)

h/R L/R Present DSC results CST Ref. [35] DQM Ref. [54]

Maximum Without Maximum Without Maximum Without
coupling NL = 2 coupling (NL = ∞) coupling NL = 2 coupling (NL = ∞) coupling NL = 2 coupling (NL = ∞)

0.01 1 0.6585 0.7729 0.6440 0.8044 0.6725 0.8003
2 0.3802 0.4463 0.3750 0.4545 0.3742 0.4534
5 0.1849 0.2186 0.1858 0.2193 0.1852 0.2187

10 0.1014 0.1195 0.1030 0.1223 0.1027 0.1217
20 0.0477 0.0628 0.0496 0.0641 0.0494 0.0639

0.02 1 0.8002 0.9803 0.8557 1.0944 – –
2 0.4604 0.5584 0.4764 0.5769 – –
5 0.2191 0.2715 0.2293 0.2752 – –

10 0.1111 0.1429 0.1238 0.1487 – –
20 0.0632 0.0632 0.0683 0.0886 – –

0.05 1 1.1406 1.4803 1. 3201 1.8327 1.2820 1.6531
2 0.6228 0.7474 0.6518 0.8146 0.6432 0.7975
5 0.2785 0.3502 0.2886 0.3615 0.2876 0.3562

10 0.1663 0.1956 0.1745 0.2021 0.1733 0.2015
20 0.0771 0.0787 0.0875 0.0886 0.0870 0.0881

For the antisymmetric cross-ply laminates, the extension–bending coupling terms reach their maximum values with two
layers (NL = 2) and become zero with an infinite number of layers (NL = ∞). The fundamental frequency parameters
� for an antisymmetric cross-ply laminated circular cylindrical shell with the S–C boundary condition are shown in
Table 4. This table shows the fundamental frequency parameters based on the classical shell theory (CST) [35] and
present DSC formulation. The results given by Wu and Wu [54] are also listed in this table for the purpose of comparison.
Wu and Wu [54] used the differential quadrature method (DQM) in their study. The present numerical solutions are in
close agreement with the DQM and CST solutions available in the literature. It is also shown from these results given in
Table 4 that the results of two layers (NL = 2) are always less than that of infinite layers (NL =∞). As a consequence,
it may be concluded that the fundamental frequency parameters decrease as the coupling rigidity terms increase.
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Table 5
Fundamental frequency parameters of an antisymmetric cross-plied laminated conical shell with the S–S boundary condition (�= 30, L sin �/R2 =
0.25)

h/R2 Present DSC results Tong [41] GDQ [33]

Maximum Without Maximum Without Maximum Without
coupling NL = 2 coupling (NL = ∞) coupling NL = 2 coupling (NL = ∞) coupling NL = 2 coupling (NL = ∞)

0.01 0.1785 0.1980 0.1769 0.1978 0.1799 0.1976
0.02 0.2128 0.2353 0.2119 0.2355 0.2153 0.2351
0.03 0.2402 0.2671 0.2360 0.2671 0.2397 0.2667
0.04 0.2607 0.2994 0.2578 0.2992 0.2620 0.2987
0.05 0.2816 0.3307 0.2794 0.3308 0.2841 0.3303
0.06 0.3024 0.3611 0.3010 0.3606 0.3061 0.3602
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Fig. 6. Effect of extension–bending coupling on frequency parameter for C–C1 conical shells: (a) � = 30◦; (b) 45◦.
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The variation of the frequency parameter �; with L/R ratio is shown in Fig. 5. It is concluded that from these figures,
the frequency parameter is uniformly decrease when the ratio L/R increases.

4.5. Numerical results for orthotropic laminated conical shells

It is noted that the extension bending coupling terms reach their maximum values with two plies (NL=2) and become
zero with an infinite number of plies (NL =∞). Thus the case of NL =2 is referred to as “maximum coupling” and the
case of NL = ∞ is referred to as “without coupling”. The fundamental frequency parameters � for an antisymmetric
cross-plied laminated conical shell with the S–S boundary condition are shown in Table 5. A detailed comparison
between the differential quadrature results [33] and those of Tong [41] for various h/R2 ratios is listed in this table.
It may be concluded that increasing the h/R2 ratio will always result in increased frequency. It is also shown that the
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frequency parameters of two layers (NL = 2) are always less than that of infinite layers (NL = ∞). As a consequence,
it may be concluded that the fundamental frequency parameters decrease as the coupling rigidity terms increase.

The effect of extension-bending coupling on frequency response with circumferential wave number is shown in
Figs. 6–9 for antisymmetric cross-ply laminated conical shell. Two different semivertex angles such as 30◦ and 45◦ and
four different boundary conditions are taken into consideration. It is shown that the frequency parameters of infinite
layers (NL =∞) are always greater than that of two layers (NL = 2). It is concluded that, the values of frequencies for
the four classes of boundary conditions rank consecutively in the following sequence C–C4>C–C2>C–C1>C–C3.
It is also observed that the frequency parameters under the C–C1 boundary conditions are nearly equal to that under
C–C3. Similarly, the frequency parameters under the C–C2 boundary conditions are nearly equal to that under C–C4.
Furthermore, the extension–bending coupling becomes large as the circumferential wavenumber increases.

For ratio L/R2 =0.5, the influence of geometric ratio h/R2 on the relation between frequency parameter � is shown
in Fig. 10 for four different cone angle, �. It can be concluded that the influence of h/R2 ratio on the relation between
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frequency parameter � and the cone angle is significant. It is shown that the increasing value of � always increases the
frequency parameter �. It is also observed that the influence of boundary condition on the frequency parameter � with
h/R2 is significant.

5. Conclusions

The numerical solution of partial differential equations plays a considerable role in the areas of engineering. Therefore,
an effective numerical technique for the solution of partial equations is very desirable. In seeking a more efficient
numerical method that requires fewer grid points yet achieves acceptable accuracy, the method of DSC was introduced
by Wei [43].

The work presented here concerns the use of DSC method for the vibration analysis of laminated conical and
cylindrical shells. Results were compared with existing solutions showing excellent performance. It is found that the
convergence of DSC approach is very good and the results agree well with those obtained by other researchers. Thus,
the DSC method provides an accurate, efficient means of solving problems for orthotropic laminated conical and
cylindrical shells.
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Appendix A

Differential operators Lij in Eqs. (18) are defined as follows:

L11 = A11
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sin �
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Appendix B

The coefficients in Eq. (43) are given by:
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2 + 2B66n
2 + B22 sin2 �) sin �

R3(x)
,

G312 = −A12 cos �

R(x)
− (−B12n

2 + 2B66n
2 + B22 sin2 �)

R2(x)
,

G313 = 2B11 sin �

R(x)
,

G314 = B11,

G321 = − (A22n cos �)

R2(x)
+ (−D22n

2 + 2D12 sin2 � + 2D22 sin2 � + 8D66 sin2 �)n cos �

R4(x)

+ (−B22n
2 − B22 cos2 � + B22 sin2 � + 2B66 sin2 �)n

R3(x)
,

G322 = (−D22 + 2D12 + 8D66)n cos � sin �

R3(x)
− (−B22 + 2B66)n sin �

R2(x)
,

G323 = (B12 + 2B66)n

R(x)
+ (D12 + 4D66)n cos �

R2(x)
,

G331 = − A22 cos2 �

R2(x)
+ (−2n2 + sin2 �)B22 cos �

R3(x)

+ (−D22n
2 + 2D12 sin2 � + 2D22 sin2 � + 8D66 sin2 �)n2

R4(x)
,
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G332 = − (D22 sin2 � + 2D12n
2 + 8D66n

2) sin �

R3(x)
,

G333 = 2B12 cos �

R(x)
+ 2D12n

2 + 4D66n
2 + D22 sin2 �

R2(x)
,

G334 = −2D11

R(x)
sin �, G335 = −D11. (B.1)
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