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Abstract Using Hamilton’s principle the coupled non-

linear partial differential motion equations of a flying

3D Euler–Bernoulli beam are derived. Stress is treated

three dimensionally regardless of in-plane and out-of-

plane warpings of cross-section. Tension, compression,

twisting, and spatial deflections are nonlinearly cou-

pled to each other. The flying support of the beam has

three translational and three rotational degrees of free-

dom. The beam is made of a linearly elastic isotropic

material and is dynamically modeled much more accu-

rately than a nonlinear 3D Euler–Bernoulli beam. The

accuracy is caused by two new elastic terms that are lost

in the conventional nonlinear 3D Euler–Bernoulli beam

theory by differentiation from the approximated strain

field regarding negligible elastic orientation of cross-

sectional frame. In this paper, the exact strain field

concerning considerable elastic orientation of cross-

sectional frame is used as a source in differentiations

although the orientation of cross-section is negligible.
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1 Introduction

Beams are one of the most important structural ele-

ments in engineering fields. To provide the structure

with less weight makes designer choose more flexible

beams. As the flexibility of the beam increases, its dy-

namic modeling becomes more complicated in return.

Karray et al. [1] have treated the two flexible links

of space-based flexible manipulator as Euler–Bernoulli

beams, free to deform transversely in the orbital plane.

Hiller [2] has considered only three elastic degrees of

freedom for each link as an Euler–Bernoulli beam. Shi

et al. [3] have modeled a planar flexible link by an

Euler–Bernoulli beam. Chen [4] has presented a lin-

earized dynamic model for multilink planar flexible

manipulators which can include an arbitrary number

of flexible links. Flexible links are treated as Euler–

Bernoulli beams and the rotary inertia and shear de-

formation are thus neglected. Bruno and Luigi [5]

have modeled planar n-link flexible manipulators in

accordance with Euler–Bernoulli beam. Jen et al. [6]

have obtained dynamic model of a one-link flexible

robot, using planar Euler–Bernoulli beam. Zohoor and

Khorsandijou [7] have dynamically modeled a mo-

bile robot with long and short spatially flexible links

experiencing considerable and negligible elastic ori-

entation in their cross-sectional frames. They have

exposed the dynamic model of a flying manipulator

with two highly flexible links [7]. The nonlinear 3D

Euler–Bernoulli beam theory has been formulated for

large elastic orientation of cross-section [7], and has
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been indirectly improved for negligible elastic orienta-

tion of the cross-section [7].

In this paper, partial differential equations of mo-

tion of a 3D Euler–Bernoulli beam with a six DOF

flying support is obtained. The equations are more

accurate than that of a conventional nonlinear 3D

Euler–Bernoulli beam, because variation of strains and

variation of elastic potential energy are derived from

the exact strain field concerning considerable elastic

orientation of the cross-sectional frame. The elastic

orientation of the cross-sectional frame is negligible

and the equations will be finally expressed by the ap-

proximated strain field. In the motion equations, two

additional elastic terms have appeared that would per-

ish in the conventional nonlinear 3D Euler Bernoulli

beam theory. In this theory, variation of strains and

variation of elastic potential energy are derived from

approximated strain field regarding negligible elastic

orientation of beam cross-sectional frame [8].

2 Flying support of the beam

The flying support of the beam has six degrees of

freedom. In Fig. 1, the frame of the flying support

of the beam is denoted by FB . The inertial reference

frame is shown by FI , the direction of whose third axis

is in the negative direction of the gravity. Position,

variation of position, velocity, and acceleration of the

flying support are projected onto FI as expressions (1).

FB and FI are orthogonal and right-handed coordinate

reference frames and their axes are marked by 1, 2,

and 3 in the figures to indicate, the first, second, and

third axes, respectively.

b = [x y z]T, δb = [δx δy δz]T,

V
I

B = [ẋ ẏ ż]T, a
I

B = [ẍ ÿ z̈]T. (1)

Orientation of the flying support relative to inertial

reference frame is described by three Euler angles as

expression (2).

R
BI

=

⎡⎢⎣1 0 0

0 cos ψ sin ψ

0 − sin ψ cos ψ

⎤⎥⎦
⎡⎢⎣cos φ 0 − sin φ

0 1 0

sin φ 0 cos φ

⎤⎥⎦

×

⎡⎢⎣ cos θ sin θ 0

− sin θ cos θ 0

0 0 1

⎤⎥⎦ . (2)

Virtual rotations and angular velocity of the fly-

ing support that are respectively imperfect differentials

and nonintegrable time-derivatives are given in

Fig. 1 Six dependent
spatial elastic coordinates
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expressions (3).

δπ B =

⎡⎢⎣δπx

δπy

δπz

⎤⎥⎦ =

⎡⎢⎣1 0 − sin φ

0 cos ψ sin ψ cos φ

0 − sin ψ cos ψ cos φ

⎤⎥⎦
⎡⎢⎣δψ

δφ

δθ

⎤⎥⎦ ,

ωB =

⎡⎢⎣ωx

ωy

ωz

⎤⎥⎦

=

⎡⎢⎣1 0 − sin φ

0 cos ψ sin ψ cos φ

0 − sin ψ cos ψ cos φ

⎤⎥⎦
⎡⎢⎣ψ̇

φ̇

θ̇

⎤⎥⎦ . (3)

Out of the nonphysical singularity, one has the set

of Equation (4).⎡⎢⎣ψ̇

φ̇

θ̇

⎤⎥⎦ =

⎡⎢⎣1 tan φ sin ψ tan φ cos ψ

0 cos ψ − sin ψ

0 sec φ sin ψ sec φ cos ψ

⎤⎥⎦
⎡⎢⎣ωx

ωy

ωz

⎤⎥⎦ . (4)

3 Beam

The beam is made from a linearly elastic isotropic mate-

rial with uniform density and cross-sectional area. Den-

sity, cross-sectional area, and the length before elastic

deformation are shown by ρ, A, and L , respectively.

The beam is straight before elastic deformation and un-

dergoes large elastic orientations in its cross-sectional

frame.

Exact strain field is the strain field of a long beam that

is obtained from displacement field with large elastic

orientation of cross-sectional frame, and approximated

strain field is the strain field of a short beam that is ob-

tained from displacement field with small elastic orien-

tation of cross-sectional frame. This paper tries to ob-

tain motion equations of nonlinear 3D Euler–Bernoulli

beam with small elastic orientation of cross-sectional

frame and with a six DOF flying support. Rotational

elastic degrees of freedom in the approximated strain

field have been substituted with zero. Therefore, varia-

tion of strains cannot be derived from the approximated

strain field. In this paper, variation of strains are derived

from the exact strain field and then formulations are

approximated for negligible elastic orientation of cross-

sectional frame by substituting the rotational elastic

degrees of freedom with zero. This provides us with

motion equations much more accurate than that of the

conventional nonlinear 3D Euler–Bernoulli beam the-

ory that gains variation of strains and variation of elastic

potential energy from the approximated strains indicat-

ing negligible elastic orientation in the cross-sectional

frame. Two additional elastic terms have appeared that

would perish in the nonlinear 3D Euler Bernoulli beam

theory. Hence, the motion equations of this paper are

more accurate than that of the nonlinear 3D Euler–

Bernoulli beam. The two new elastic terms in the mo-

tion equations create this accuracy. This enhances the

nonlinear 3D Euler–Bernoulli beam theory that derives

variation of strains and consequently variation of elas-

tic potential energy from the approximated strain field.

In Fig. 1, FS is the cross-sectional frame after elastic

deformation which is a curvilinear orthogonal right-

handed coordinate frame whose first axis is tangent

to the curve created by cross-sectional area centers. Its

axes are marked by 1, 2, and 3 in the figures to indicate,

the first, second, and the third axes, respectively. Cross-

sectional frame before elastic deformation is shown

by FS0 . Center of cross-sectional area before and after

elastic deformation is shown by S0 and S, respectively.

Center of cross-sectional area before elastic deforma-

tion, S0, is located in distance s from B. The spatial

independent variable s denotes the distance of S from

B before deformation. It is a Lagrangian and not an

Eulerian coordinate.

Figure 1 simply expresses spatial elastic deforma-

tion of FS by six dependent coordinates of which only

four are independent. Elastic displacement vector of S
from B projected onto FB is shown by d, and elastic ro-

tation transformation matrix projecting a vector from

FB onto FS is shown by RSB in expressions (5)

d =

⎡⎢⎣u + s

v

w

⎤⎥⎦ ,

R
SB

=

⎡⎢⎣1 0 0

0 cos γ sin γ

0 − sin γ cos γ

⎤⎥⎦
⎡⎢⎣cos β 0 − sin β

0 1 0

sin β 0 cos β

⎤⎥⎦

×

⎡⎢⎣ cos α sin α 0

− sin α cos α 0

0 0 1

⎤⎥⎦ . (5)

Elastic deformation at S along the first axis of FB

due to extension or compression is shown by u. Elastic
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bending deflections at S along the second and the third

axes of FB are shown by v and w, respectively. The

first and second Euler angles, α and β, are the so-called

elastic bending rotation angles at S about the third axis

of FB and about the second axis of the updated FB by α,

respectively. The third Euler angle, γ , is the so-called

elastic twisting angle at S about the first axis of FS [7].

In some contexts these three Euler angles are called

Bryant angles [2].

To avoid lengthy expressions, the beams with cir-

cular and square cross-sections are considered only. It

implies that FS is a principal frame for the beam cross-

section and the two moments of cross-sectional area

about the second and third axes are equal as shown in

expressions (6). In Fig. 2, σ is a general point of the

beam cross-section. Position vector of σ from S pro-

jected onto FS is shown by p. It is a constant vector in

3D Euler–Bernoulli beam theory and in this paper to

neglect in-plane and out-of-plane warpings∫
A

pT pd A = 2J,

[JS] =
∫

A
− p̃ p̃d A = J

⎡⎢⎣2 0 0

0 1 0

0 0 1

⎤⎥⎦ ,

p =

⎡⎢⎣0

ŷ

ẑ

⎤⎥⎦ , p̃ =

⎡⎢⎣ 0 −ẑ ŷ

ẑ 0 0

−ŷ 0 0

⎤⎥⎦ . (6)

Fig. 2 Displacement field

3.1 Beam structural constraints

Figure 3 displays two holonomic constraints among the

six simply created elastic coordinates. By the applica-

tion of these constraints, the two excess coordinates

are eliminated. In expressions (9), the axial strain is

denoted by e. Length of a beam element is 
s before

and is (1 + e)
s after elastic deformation. In order to

study the deformation relative to beam structure the

origins of FS0 and FS coincide via translation in the

lower part of Fig. 3. Position and orientation of beam

cross-section facing S in the element after elastic de-

formation relative to beam cross-section facing S0 in

the element before deformation are related to 
u, 
v,


w, α, β and γ . Position and orientation of FS relative

to FS0 are related to u, v, w, α, β, and γ . In the fol-

lowing equations, [ ]′ refers to ∂
∂s [ ] and [ ]· to ∂

∂t [ ]. For

the two triangles in lower part of Fig. 3, one can write

expressions (7)

α = Lim

s→0

[
tan−1 
v


s + 
u

]
,

β = Lim

s→0

[
tan−1 −
w√

(
s + 
u)2 + 
v2

]
. (7)

Hence [7],

α = tan−1(v′/h), β = tan−1(−w′/r ) (8)

where

R
SB

[(
s + 
u) 
v 
w]T = [(1 + e)
s 0 0]T,

e =
√

r2 + w′2 − 1, r =
√

h2 + v′2, h =1 + u′.

(9)

Since Equation (8) are nondifferential equations,

their differentials are evidently perfect and inte-

grable. Therefore the two-beam structural constraint

Equation (8) belongs to the class of holonomic

constraints [9, 10] and can eliminate two excess or

superfluous coordinates namely α and β from the six

elastic coordinates u, v, w, α, β, and γ . Hence, the non-

linear 3D Euler–Bernoulli beam is a holonomic system

with u, v, w, and γ as its independent elastic degrees

of freedom.

In Equations (10) and (11) elastic rotation transfor-

mation matrix projecting a vector from FB onto FS and

orthogonal virtual elastic rotation vector of FS relative

to FB projected onto FS are exposed in terms of elastic
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Fig. 3 Two holonomic
constraints among elastic
coordinates [7]

degrees of freedom after elimination of the excess co-

ordinates by the constraints.

R
SB

=

⎡⎢⎣ h/(e + 1) v′/(e + 1) w′/(e + 1)

−v′ cos γ /r − w′h sin γ /r (e + 1) h cos γ /r − w′v′ sin γ /r (e + 1) r sin γ /(e + 1)

v′ sin γ /r − w′h cos γ /r (e + 1) −h sin γ /r − w′v′ cos γ /r (e + 1) r cos γ /(e + 1)

⎤⎥⎦ (10)

δ�S =

⎡⎢⎣δ�x

δ�y

δ�z

⎤⎥⎦ =

⎡⎢⎣ 1 0 w′/(e + 1)

0 cos γ r sin γ /(e + 1)

0 − sin γ r cos γ /(e + 1)

⎤⎥⎦
⎡⎢⎣δγ

δβ

δα

⎤⎥⎦ =

⎡⎢⎣1

0

0

⎤⎥⎦ δγ + C

⎡⎢⎣δu′

δv′

δw′

⎤⎥⎦ (11)

where

C =

⎡⎢⎣ −w′v′/r2(e + 1) w′h/r2(e + 1) 0

[−v′(e + 1) sin γ + w′h cos γ ]/r (e + 1)2 [h(e + 1) sin γ + v′w′ cos γ ]/r (e + 1)2 −r cos γ /(e + 1)2

[−v′(e + 1) cos γ − w′h sin γ ]/r (e + 1)2 [h(e + 1) cos γ − v′w′ sin γ ]/r (e + 1)2 r sin γ /(e + 1)2

⎤⎥⎦.

(12)

In expressions (13), Kirchhoff’s kinetic analogy can

be seen between elastic angular velocity and elastic
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normalized curvature vectors [7].

�S = [1 0 0]Tγ̇ + C[u̇′ v̇′ ẇ′]T,

κ S = [1 0 0]Tγ ′ + C[u′′ v′′ w′′]T (13)

Elimination of the excess coordinates produces a

too long formulation for the elastic angular acceleration

and variation of elastic curvature. So, it is an obligation

to expose them as Equations (14) and (15) [7].

�̇S =

⎡⎢⎣1 0 w′/(e + 1)

0 cos γ r sin γ /(e + 1)

0 − sin γ r cos γ /(e + 1)

⎤⎥⎦
⎡⎢⎣γ̈

β̈

α̈

⎤⎥⎦

+

⎡⎢⎣ −r/(e + 1) 0 0

w′ sin γ /(e + 1) r cos γ /(e + 1) − sin γ

w′ cos γ /(e + 1) −r sin γ /(e + 1) − cos γ

⎤⎥⎦

×

⎡⎢⎣α̇β̇

α̇γ̇

β̇γ̇

⎤⎥⎦ (14)

δκ S =

⎡⎢⎣1 0 w′/(e + 1)

0 cos γ r sin γ /(e + 1)

0 − sin γ r cos γ /(e + 1)

⎤⎥⎦
⎡⎢⎣δγ ′

δβ ′

δα′

⎤⎥⎦

+

⎡⎢⎣ −r/(e + 1) 0 0

w′ sin γ /(e + 1) r cos γ /(e + 1) − sin γ

w′ cos γ /(e + 1) −r sin γ /(e + 1) − cos γ

⎤⎥⎦

×

⎡⎢⎣α′δβ

α′δγ

β ′δγ

⎤⎥⎦ . (15)

4 Variation of kinetic energy

Time integration of variation of kinetic energy is

∫ t

0

δT dt =
∫ t

0

∫ L

0

∫
A

{
−ρ

[
a
B

σ
]T[

R
BI

δη
]}

d Adsdt

= −ρn

∫ t

0

∫ L

0

∫
A

{([
a
I

B
]T

R
IB

+d̈T

+ pT[�̃S�̃S − ˜̇�S
] R

SB
−2

[
ḋT− pT�̃S R

SB

]
ω̃B

+ dT[ω̃Bω̃B − ˜̇ωB
]+ pT R

SB
[ω̃Bω̃B −˜̇ωB

]
)

×
(

R
BI

δb + δd − R
BS

p̃ δ�S

+ δπ̃ B
[
d + R

BS
p
])}

d Adsdt

where δd, ḋ, and d̈ are [δu δv δw]T, [u̇ v̇ ẇ]T, and

[ü v̈ ẅ]T respectively.

Position, velocity, acceleration, and variation of po-

sition of σ projected onto FB are

R
BI

η = R
BI

b + ξ, V
B

σ = R
BI

η̇ = R
BI

V
I

B + ξ̇ + ω̃Bξ,

a
B

σ = R
BI

η̈ = R
BI

a
I

B + ξ̈ + 2ω̃B ξ̇ + ω̃Bω̃Bξ + ˜̇ωB
ξ

R
BI

δη = R
BI

δb + δd − R
BS

p̃ δ�S + δπ̃ B
(

d + R
BS

p
)

where apparent position, velocity, acceleration, and

variation of position of σ in FB are

ξ = d + R
BS

p, ξ̇ = ḋ + R
BS

�̃S p,

ξ̈ = d̈ + R
BS

[
�̃S�̃S + ˜̇�S]

p,

δξ = δd − R
BS

p̃ δ�S =

⎡⎢⎣δu

δv

δw

⎤⎥⎦ + R
BS

⎡⎢⎣ẑδ�y − ŷδ�z

−ẑδ�x

ŷδ�x .

⎤⎥⎦
Considering the following equations

δπ
S

B = R
SB

δπ B, δπ̃
S

B = R
SB

δπ̃ B R
BS

,

R
SB

[ω̃B ω̃B − ˜̇ωB
]δπ̃ B

R
BS

=
[
ω̃
S

B ω̃
S

B − ˜̇ω
S

B
]
δπ̃

S

B

and the fact that S is the center of cross-sectional area,

one can write the following:

∫ t

0

δT dt = −ρ

∫ t

0

∫ L

0

{
A
([

a
I

B
]T

R
IB

+d̈T − 2ḋTω̃B

+ dT[ω̃B ω̃B − ˜̇ωB
]
)
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×
(

R
BI

δb + δd − d̃δπ B
)

+
(∫

A
pT˜̇�S

p̃d A −
∫

A
pT�̃S�̃S p̃d A

−
∫

A
2pT�̃Sω̃

S

B p̃d A −
∫

A
pTω̃

S

Bω̃
S

B p̃d A

+
∫

A
pT˜̇ω

S

B
p̃d A

) (
δ�S + δπ

S

B
)}

dsdt.

Considering the following vector identities

pT˜̇�S
p̃� = [�̇S]T [− p̃ p̃] �,

pT�̃Sω̃
S

B p̃ �

=
{[

ω
S

B
]T

[− p̃ p̃]�̃S − (pT p)
[
ω
S

B
]T

�̃S
}
�

one can write the following:

pT˜̇�S
p̃
[
δ�S + δπ

S

B
]

= [�̇S]T
[
− p̃ p̃

][
δ�S + δπ

S

B
]

pT˜̇ω
S

B
p̃
[
δ�S + δπ

S

B
]

=
[
ω̇
S

B
]T[

− p̃ p̃
][

δ�S + δπ
S

B
]

pTω̃
S

Bω̃
S

B p̃
[
δ�S + δπ

S

B
]

=
[
ω
S

B
]T[

− p̃ p̃
]
ω̃
S

B
[
δ�S + δπ

S

B
]

pT �̃S�̃S p̃
[
δ�S + δπ

S

B
]

= [�S]T
[
− p̃ p̃

]
�̃S

[
δ�S + δπ

S

B
]

pT�̃Sω̃
S

B p̃
[
δ�S + δπ

S

B
]

=
{[

ω
S

B
]T[

− p̃ p̃
]
�̃S − (pT p)

[
ω
S

B
]T

�̃S
}

×
[
δ�S + δπ

S

B
]
.

Hence,

∫ t

0

δT dt = −ρ

∫ t

0

∫ L

0

[
ϕT

(
δd + R

BI
δb − d̃δπ B

)
+ ϕR

(
δ�S + R

SB
δπ B

)]
dsdt (16)

where

ϕR = [�̇S]T[JS] − [�S]T[JS]�̃S − 2[ωB]T R
BS

[JS]�̃S

+ 2JSP [ωB]T R
BS

�̃S − [ωB]T R
BS

[JS] R
SB

ω̃B R
BS

+ [ω̇B]T R
BS

[JS]

ϕT = A
([

a
I

B
]T

R
IB

+d̈T − 2ḋTω̃B +dT[ω̃Bω̃B − ˜̇ωB
]
)
.

(17)

The most applicable form of time integration of vari-

ation of kinetic energy is obtained by substitution of

Equation (11) into Equation (16) and integration by

part with respect to s [7]:∫ t

0

δT dt = −ρ

∫ t

0

∫ L

0

{
ϕT R

BI
δb

+
(
ϕR R

SB
−ϕTd̃

)
δπ B + ϕR

⎡⎢⎣1

0

0

⎤⎥⎦ δγ

+ [ϕT − (ϕRC)′]

⎡⎢⎣δu

δv

δw

⎤⎥⎦ }
ds dt

− ρ

∫ t

0

ϕRC

⎡⎢⎣δu

δv

δw

⎤⎥⎦ |s=L
s=0 .dt . (18)

5 Variation of gravitational potential energy

Variation of gravitational potential energy is given by

the following equation [7]:

δU g =
∫ L

0

∫
A
{[0 0 1]δη}gρd A ds

= gρ[0 0 1]

∫ L

0

∫
A

{
δb + R

IB

[
δd + R

BS
δ�̃S p

]
+ R

IB
δπ̃ B

[
d + R

BS
p
]}

d A ds

= gρ[0 0 1]

∫ L

0

(
δb

∫
A

d A + R
IB

δd
∫

A
d A

+ R
IB

R
BS

δ�̃S
∫

A
pd A + R

IB
δπ̃ Bd

∫
A

d A

+ R
IB

δπ̃ B R
BS

∫
A

pd A

)
ds.
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Since Sn is the center of cross-sectional area, it is

simplified as follows:

δU g = gρ A[0 0 1]

∫ L

0

{
δb + R

IB
δd − R

IB
d̃δπ B

}
ds

(19)

6 Variation of elastic potential energy

In Fig. 2, σ is the general point of the beam’s medium.

Vector p is assumed to be constant, implying the lack

of in-plane and out-of-plane cross-section warping in

the beams [7]. The displacement field is


 =

⎡⎢⎣
x


y


z

⎤⎥⎦ = ξ − ξ | before
elastic
deformation

=

⎧⎪⎨⎪⎩
⎡⎢⎣u + s

v

w

⎤⎥⎦ + R
BS

p

⎫⎪⎬⎪⎭ −

⎧⎪⎨⎪⎩
⎡⎢⎣ s

0

0

⎤⎥⎦ +

⎡⎢⎣1 0 0

0 1 0

0 0 1

⎤⎥⎦ p

⎫⎪⎬⎪⎭
=

⎡⎢⎣ u

v

w

⎤⎥⎦ + R
BS

⎡⎢⎣0

ŷ

ẑ

⎤⎥⎦ −

⎡⎢⎣0

ŷ

ẑ

⎤⎥⎦ .

Linear part of Green–Lagrange geometric strain ten-

sor is taken into consideration as follows:

ε̂i j = 1

2

(
∂
i

∂x j
+ ∂
 j

∂xi

)
,

∂

∂s

⎡⎢⎣
x


y


z

⎤⎥⎦ =

⎡⎢⎣u′

v′

w′

⎤⎥⎦ + R
BS

⎡⎢⎣−ŷκz + ẑκy

−ẑκx

ŷκx

⎤⎥⎦ ,

∂

∂y

⎡⎢⎣
x


y


z

⎤⎥⎦ = ∂

∂z

⎡⎢⎣
x


y


z

⎤⎥⎦ =

⎡⎢⎣0

0

0

⎤⎥⎦ .

Strains concerning large elastic orientation of cross-

sectional frame are referred to as exact strains in this

paper and are presented in Equation (20) as follows:

ε̂xx = u′ + ŷ

[
v′κx

r
sin γ − h

1 + e

(
κz + w′κx

r
cos γ

)]
+ ẑ

[
v′κx

r
cos γ + h

1 + e

(
κy + w′κx

r
sin γ

)]

ε̂xy = v′

2
− ŷ

2

[
hκx

r
sin γ + v′

1 + e

(
κz + w′κx

r
cos γ

)]
− ẑ

2

[
hκx

r
cos γ − v′

1 + e

(
κy + w′κx

r
sin γ

)]
ε̂xz = w′

2
+ ŷ

2

[−w′κz + rκx cos γ

1 + e

]
+ ẑ

2

[
w′κy − rκx sin γ

1 + e

]
ε̂yy = ε̂zz = ε̂yz = 0. (20)

The motion equations will be approximated for a

beam with negligible elastic orientation in its cross-

sectional frame, but variation of strains used in varia-

tion of elastic potential energy must be derived from

the strains regarding large elastic orientation of cross-

sectional frame. This is an enhancement for the con-

ventional nonlinear 3D Euler–Bernoulli beam theory.

Using Hook’s law for a linearly elastic isotropic

beam gives the stress tensor as follows:

τi j = 2με̂i j + λ(ε̂xx + ε̂yy + ε̂zz)δi j ,

μ = G = E

2(1 + ν)
,

λ = G(2G − E)

E − 3G
= νE

(1 + ν)(1 − 2ν)
. (21)

Variation of elastic potential energy is

δU e =
∫ L

0

∫
A
{τxxδε̂xx + τyyδε̂yy + τzzδε̂zz

+2τxyδε̂xy + 2τxzδε̂xz + 2τyzδε̂yz}d A ds

=
∫ L

0

∫
A
{τxxδε̂xx + 2τxyδε̂xy + 2τxzδε̂xz}d A ds.

(22)

The variation of elastic potential energy of ex-

pression (22) is formulated by performing mathemat-

ical operations such as substitution of stresses from

(21), substitution of variation of strains, simplifica-

tions for beams with circular or square cross-sections

and substitution of all variations with the variations of

independent elastic degrees of freedom. This formu-

lation is too long to be exposed [7]. Since the beam

experiences negligible elastic orientation in its cross-

sectional frame, the limit of the formulation is exposed
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when α, β, and γ tend toward zero [7]. Hence, one may

write the following:

v′ ≈ 0, w′ ≈ 0, r ≈ 1 + u′, e ≈ u′,

δe ≈ δu′, κx ≈ γ ′, κy ≈ −w′′

h
, κz ≈ v′′

h

δκx ≈ v′′

h2
δw′ + δγ ′,

δκy ≈ v′′

h
δγ + w′′

h2
δu′ + u′′

h2
δw′ − 1

h
δw′′,

δκz ≈ w′′

h
δγ − v′′

h2
δu′ − u′′

h2
δv′ + 1

h
δv′′

R
BS

≈

⎡⎢⎣1 0 0

0 1 0

0 0 1

⎤⎥⎦ ,

δ R
BS

≈

⎡⎢⎣ 0 −δ�z δ�y

δ�z 0 −δ�x

−δ�y δ�x 0

⎤⎥⎦ , δ�S ≈

⎡⎢⎣δγ

δβ

δα

⎤⎥⎦ .

Equation (23) is a correct formulation for variation

of elastic potential energy of a beam with circular or

square cross-section [7]:

δU e =
∫ L

0

{ (1 − ν)E

(1 + ν)(1 − 2ν)

[
Au′ − J

v′′2 + w′′2

h3

]
δu′

+ 2G Jγ ′δγ ′ + J
(1 − ν)E

(1 + ν)(1 − 2ν)

v′′

h2
δv′′

+J
(1 − ν)E

(1 + ν)(1 − 2ν)

w′′

h2
δw′′

−J

[
(1 − ν)E

(1 + ν)(1 − 2ν)

(
u′′v′′

h
+ γ ′w′′

)
− Gγ ′w′′

]
1

h2
δv′ + J

[
(1 − ν)E

(1 + ν)(1 − 2ν)

×
(

γ ′v′′ − u′′w′′

h

)
+ Gγ ′v′′

]
1

h2
δw′

}
ds.

(23)

Equation (23) can also be rewritten as Equation (24)

for easier comparison with variation of elastic poten-

tial energy in the nonlinear 3D Euler–Bernoulli beam

theory (25).

δU e =
∫ L

0

{
(1 − ν)E

(1 + ν)(1 − 2ν)
[Aeδe + Jκzδκz

+ Jκyδκy] + G2Jκxδκx

+J

[
(1 − ν)E

(1 + ν)(1 − 2ν)
− G

]
κxκy

r
δv′

+ J

[
(1 − ν)E

(1 + ν)(1 − 2ν)
− G

]
κxκz

r
δw′

}
ds.

(24)

In nonlinear 3D Euler–Bernoulli beam theory, the

variation of strains are derived from the approximated

strain field concerning negligible elastic orientation of

the cross-section frame, whereas it should have been

derived from the exact strains corresponding to large

elastic orientation of the cross-section frame. As a con-

sequence, the nonlinear 3D Euler–Bernoulli beam the-

ory loses two terms of the variation of elastic poten-

tial energy, Equation (25), compared to Equation [7].

In nonlinear 3D Euler–Bernoulli beam theory [8], one

has

ε̂xx = e − ŷκz + ẑκy, ε̂xy = −1

2
κx ẑ,

ε̂xz = 1

2
κx ŷ, ε̂yy = ε̂zz = ε̂yz = 0

τxx = (1 − ν)E

(1 + ν)(1 − 2ν)
(e − ŷκz + ẑκy),

τyy = τzz = νE

(1 + ν)(1 − 2ν)
(e − ŷκz + ẑκy)

τxy = −G κx ẑ, τxz = G κx ŷ, τyz = 0

and the incorrect variation of strains [8]:

δε̂xx = δe − ŷδκz + ẑδκy, δε̂xy = −1

2
ẑδκx ,

δε̂xz = 1

2
ŷδκx , δε̂yy = δε̂zz = δε̂yz = 0

and finally Equation (25), the incorrect variation of

elastic potential energy of a beams with circular or

square cross-section:

δU e =
∫ L

0

{
(1 − ν)E

(1 + ν)(1 − 2ν)
[Aeδe + Jκzδκz

+Jκyδκy] + G 2Jκxδκx

}
ds. (25)

Springer



226 Nonlinear Dyn (2008) 51:217–230

Using Equation (26) that show integrations by part

with respect to s, Equation (23) has been reformu-

lated for a uniform beam with circular or square cross-

section. One can seek it in the coming section under

the title of Motion equations.∫
Fδu′ds = Fδu −

∫
F ′δu ds,∫

Fδu′′ds = Fδu′ − F ′δu +
∫

F ′′δu ds. (26)

7 Motion equations

Nonlinear partial differential equations of motion of a

beam with negligible elastic orientation of its cross-

sectional frame are obtained via Hamilton’s principle.

The beam can tolerate compression, tension, torsion,

and two spatial bendings. Regardless of nonconserva-

tive forces and moments that produce damping and ex-

citing terms, one may write the Hamilton’s principle as

Equation (27).∫ t

0

(δT − δU g − δU e)dt = 0. (27)

Therefore, by substitution of Equations (17), (18),

(19), and (23) into Equation (27) and using Equa-

tion (26), one can write:

∫ t

0

{ ∫ L

0

(
A1δx + A2δy + A3δz + A4δπx + A5δπy

+ A6δπz + A7δγ + A8δu + A9δv + A10δw) ds

+ (B7δγ + B8δu + B9δv + B10δw + B̄8δu′

+B̄9δv
′ + B̄10δw

′)|s=L
s=0

}
dt = 0

that is simplified as Equation (28).

(∫ L

0

A1 ds

)
δx +

(∫ L

0

A2 ds

)
δy +

(∫ L

0

A3 ds

)
δz

+
(∫ L

0

A4 ds

)
δπx +

(∫ L

0

A5 ds

)
δπy

+
(∫ L

0

A6 ds

)
δπz

+
∫ L

0

(A7δγ + A8δu + A9δv+ A10δw) ds

+ (B7δγ + B8δu + B9δv + B10δw

+B̄8δu′ + B̄9δv
′ +B̄10δw

′) |s=L
s=0 = 0 (28)

This equation indicates that four partial differen-

tial Equations (29) should be solved under boundary

conditions (30) and should satisfy six partial differen-

tial Equations (31).

A7 = 0, A8 = 0, A9 = 0, A10 = 0 (29)

(B7δγ + B8δu + B9δv + B10δw + B̄8δu′

+B̄9δv
′ + B̄10δw

′)|s=L
s=0 = 0 (30)∫ L

0

A1 ds = 0,

∫ L

0

A2 ds = 0,

∫ L

0

A3 ds = 0,∫ L

0

A4 ds = 0,

∫ L

0

A5 ds = 0,

∫ L

0

A6 ds = 0.

(31)

The agent variables A7, . . . , A10, A1, . . . , A6,

B7, . . . , B10, B̄8, . . . , B̄10 are exposed as follows:

A7 = 2G Jγ ′′ − ρ
(

[�̇S]T[JS] − [�S]T[JS]�̃S

− 2[ωB]T R
BS

[JS]�̃S + 2JSP [ωB]T R
BS

�̃S

− [ωB]T R
BS

[JS] R
SB

ω̃B R
BS

+ [ω̇B]T R
BS

[JS]
)

[1 0 0]T = 0

[A8 A9 A10]

= −gρ A[0 0 1] R
IB

−ρ
{

A
([

a
I

B
]T

R
IB

+d̈T

− 2ḋTω̃B + dT
[
ω̃B ω̃B − ˜̇ωB])

− 〈(
[�̇S]T[JS] − [�S]T[JS]�̃S − 2[ωB]T R

BS
[JS]�̃S

+ 2JSP [ωB]T R
BS

�̃S − [ωB]T R
BS

[JS] R
SB

ω̃B R
BS

+[ω̇B]T R
BS

[JS]
)
C

〉′}

+ (1 − ν)E

(1 + ν)(1 − 2ν)

(
Au′′ − J

〈
v′′2 + w′′2

(1 + u′)3

〉′)
[1 0 0]
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+
{
− (1 − ν)EJ

(1 + ν)(1 − 2ν)

(〈
v′′

(1 + u′)2

〉′′

+
〈

u′′v′′

(1 + u′)3
+ γ ′w′′

(1 + u′)2

〉′)
+ G J

〈
γ ′w′′

(1 + u′)2

〉′} [
0 1 0

]
+

{
− (1 − ν)EJ

(1 + ν)(1 − 2ν)

(〈
w′′

(1 + u′)2

〉′′

+
〈

u′′w′′

(1 + u′)3
− γ ′v′′

(1 + u′)2

〉′)
+ G J

〈
γ ′v′′

(1 + u′)2

〉′}
[0 0 1] = [0 0 0]

[∫ L

0

A1 ds
∫ L

0

A2 ds
∫ L

0

A3 ds

]
= −ρ A

∫ L

0

{[
a
I

B
]T

+ (d̈T − 2ḋTω̃B + dT[ω̃B ω̃B − ˜̇ωB
]) R

BI

}
ds

− gρ AL[0 0 1] = [0 0 0]

[∫ L

0

A4 ds
∫ L

0

A5 ds
∫ L

0

A6 ds

]
= gρ A[0 0 1] R

IB

∫ L

0

d̃ ds +

− ρ

∫ L

0

〈
− A

([
a
I

B
]T

R
IB

+d̈T − 2ḋTω̃B

+ dT[ω̃B ω̃B − ˜̇ωB
]
)

d̃

+ (
[�̇S]T[JS] − [�S]T[JS]�̃S − 2[ωB]T R

BS
[JS]�̃S

+ 2JSP [ωB]T R
BS

�̃S − [ωB]T R
BS

[JS] R
SB

ω̃B R
BS

+ [ω̇B]T R
BS

[JS]
)

R
SB

〉
ds = [0 0 0]

B7 = −2G Jγ ′

B8 = −ρ
(
[�̇S]T[JS] − [�S]T[JS]�̃S

−2[ωB]T R
BS

[JS]�̃S + 2JSP [ωB]T R
BS

�̃S

−[ωB]T R
BS

[JS] R
SB

ω̃B R
BS

+[ω̇B]T R
BS

[JS]
)
C

⎡⎢⎣1

0

0

⎤⎥⎦
− (1 − ν)E

(1 + ν)(1 − 2ν)

[
Au′ − J

v′′2 + w′′2

(1 + u′)3

]
B9 = −ρ

(
[�̇S]T[JS] − [�S]T[JS]�̃S

−2[ωB]T R
BS

[JS]�̃S + 2JSP [ωB]T R
BS

�̃S

−[ωB]T R
BS

[JS] R
SB

ω̃B R
BS

+[ω̇B]T R
BS

[JS]

)
C

⎡⎢⎣1

0

0

⎤⎥⎦
+ (1 − ν)EJ

(1 + ν)(1 − 2ν)

(
γ ′w′′

(1 + u′)2
+

〈
v′′

(1 + u′)2

〉′

+ u′′v′′

(1 + u′)3

)
− G J

γ ′w′′

(1 + u′)2

B10 = −ρ
(
[�̇S]T[JS] − [�S]T[JS]�̃S

−2[ωB]T R
BS

[JS]�̃S + 2JSP [ωB]T R
BS

�̃S

−[ωB]T R
BS

[JS] R
SB

ω̃B R
BS

+[ω̇B]T R
BS

[JS]
)
C

⎡⎢⎣0

0

1

⎤⎥⎦ − (1 − ν)EJ

(1 + ν)(1 − 2ν)

×
(

γ ′v′′

(1 + u′)2
−

〈
w′′

(1 + u′)2

〉′
− u′′w′′

(1 + u′)3

)
−G J

γ ′v′′

(1 + u′)2

B̄8 = 0, B̄9 = − (1 − ν)EJ

(1 + ν)(1 − 2ν)

v′′

(1 + u′)2
,

B̄10 = − (1 − ν)EJ

(1 + ν)(1 − 2ν)

w′′

(1 + u′)2
.

8 Verification of the motion equations

The validity of Equations (29) and (31) has been veri-

fied for three simpler cases.

8.1 Case I: Flying rigid body under gravitational

force

For negligible elastic deformation, the motion

Equations (29) and (31) are simplified to the motion
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equations of a flying rigid prism with circular or

square cross-section. Since the elastic degrees of free-

dom, u, v, w, γ , and their derivatives are zero, one

has:

d =

⎡⎢⎣s

0

0

⎤⎥⎦ , d̃ =

⎡⎢⎣0 0 0

0 0 −s

0 s 0

⎤⎥⎦ ,

R
SB

=

⎡⎢⎣1 0 0

0 1 0

0 0 1

⎤⎥⎦ , �S = �̇S =

⎡⎢⎣0

0

0

⎤⎥⎦ ,

C =

⎡⎢⎣0 0 0

0 0 −1

0 1 0

⎤⎥⎦ , e = 0, r = h = 1.

Using Equations (1)–(3), and (6), the motion Equa-

tions (29) and (31) are simplified as follows:

∫ L

0

A1 ds = ρ AL
[ − ẍ + (L/2)

(
ω2

z + ω2
y

)
× cos φ cos θ − (L/2)(ωxωy + ω̇z)

× (− cos ψ sin θ + sin ψ sin φ cos θ )

+ (L/2)(−ωxωz + ω̇y)

× (sin ψ sin θ + cos ψ sin φ cos θ )]

= 0∫ L

0

A2 ds = ρ AL[−ÿ + (L/2)
(
ω2

z + ω2
y

)
× cos φ sin θ − (L/2)(ωxωy + ω̇z)

× (cos ψ cos θ + sin ψ sin φ sin θ )

+ (L/2) (−ωxωz + ω̇y)

× (− sin ψ cos θ + cos ψ sin φ sin θ )]

= 0∫ L

0

A3 ds = ρ AL[−(z̈ + g) − (L/2)
(
ω2

z + ω2
y

)
sin φ

− (L/2) (ωxωy + ω̇z) sin ψ cos φ +
+ (L/2) (−ωxωz + ω̇y) cos ψ cos φ

]
= 0∫ L

0

A4 ds = −ρ J L2ω̇x = 0

∫ L

0

A5 ds = ρ AL (L/2)

× [ẍ(sin ψ sin θ + cos ψ sin φ cos θ )

+ ÿ(− sin ψ cos θ + cos ψ sin φ sin θ )

+ (z̈ + g) cos ψ cos φ] − ρ AL(L2/3)

× (ω̇y − ωxωz) − ρL J (ω̇y + ωxωz)

= 0∫ L

0

A6 ds = ρ AL
L

2

× [ẍ (+ cos ψ sin θ − sin ψ sin φ cos θ )

+ÿ(− cos ψ cos θ − sin ψ sin φ sin θ )

− (z̈ + g) sin ψ cos φ] − ρ AL(L2/3)

× (ω̇z + ωxωy) − ρL J (ω̇z − ωxωy)

= 0.

These equations are the motion equations of a fly-

ing rigid prism with circular or square cross-section.

They are the same as what obtained from rigid body

dynamics Equations (32)

Fext = ma
I

C ,

Mext B = ḢB + m r × a
B

B = ḢC + m ra
B

C

= [IC ]ω̇B + ω̃B[IC ]ωB + m r × R
BI

a
I

C (32)

where

m = ρ AL , r = L

2

⎡⎢⎣1

0

0

⎤⎥⎦ , Fext = −mg

⎡⎢⎣0

0

1

⎤⎥⎦ ,

[
IC

] =⎡⎢⎣m2J/A 0 0

0 m J/A + mL2/12 0

0 0 m J/A + mL2/12

⎤⎥⎦

R
BI

=

⎡⎢⎣ cφcθ cφsθ −sφ

−cψsθ+sψsφcθ cψcθ+sψsφsθ sψcφ

sψsθ + cψsφcθ −sψcθ + cψsφsθ cψcφ

⎤⎥⎦,
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R
IB

=

⎡⎢⎣cφcθ −cψsθ + sψsφcθ sψsθ + cψsφcθ

cφsθ cψcθ + sψsφsθ −sψcθ + cψsφsθ

−sφ sψcφ cψcφ

⎤⎥⎦

sψ = sin ψ, sφ = sin φ, sθ = sin θ, cψ = cos ψ,

cφ = cos φ, cθ = cos θ

a
I

C = a
I

B + R
IB

(ω̃Bω̃B + ˜̇ωB
)r =

⎡⎢⎣ẍ

ÿ

z̈

⎤⎥⎦

+ L

2
R
IB

⎡⎢⎣−(
ω2

z + ω2
y

)
ωxωy + ω̇z

ωxωz − ω̇y

⎤⎥⎦ ,

Mext B = r × R
BI

⎡⎢⎣ 0

0

−mg

⎤⎥⎦ = mg
L

2

⎡⎢⎣ 0

cψcφ

−sψcφ

⎤⎥⎦

[IC ]ω̇B + ω̃B[IC ]ωB

= m

⎡⎢⎣ 2J
/

Aω̇x

(J/A + L2/12)ω̇y + (J/A − L2/12)ωxωz

(J/A + L2/12)ω̇z − (J/A − L2/12)ωxωy

⎤⎥⎦

r × R
BI

a
I

C = L

2

⎡⎢⎣ 0

−ẍ (sψsθ + cψsφcθ ) − ÿ (−sψcθ + cψsφsθ ) − z̈cψcφ − (L/2)(ωxωz − ω̇y)

ẍ(−cψsθ + sψsφcθ ) + ÿ (cψcθ + sψsφsθ ) + z̈sψcφ + (L/2)(ωxωy + ω̇z)

⎤⎥⎦ .

8.2 Case II: Enhanced nonlinear 3D short

Euler–Bernoulli beam with a fixed support

Substitution of Equation (33) into Equations (29) and

(31) fixes the flying support of the beam and gives

Equations (34)–(37). Equations (34)–(37) are the mo-

tion equations of enhanced nonlinear 3D short Euler–

Bernoulli beam with a fixed support. The term short

is to indicate that the elastic orientation of the beam

cross-sectional frame is negligible.

δb = V
I

B = a
I

B = δπ B = ωB = ω̇B = [
0 0 0

]T
,

ψ̇ = φ̇ = θ̇ = ψ̈ = φ̈ = θ̈ = 0 (33)

A7 = 2G Jγ ′′ − ρ([�̇S]T[JS]

−[�S]T[JS]�̃S)
[
1 0 0

]T = 0 (34)

A8 =−ρ Aü+ρ〈([�̇S]T[JS] − [�S]T[JS]�̃S)C〉′
⎡⎢⎣1

0

0

⎤⎥⎦
+ (1 − ν)E

(1 + ν)(1 − 2ν)

(
Au′′− J

〈
v′′2 + w′′2

(1 + u′)3

〉′)
=0

(35)

A9 = −ρ Av̈ + ρ〈([�̇S]T[JS]

−[�S]T[JS]�̃S
)

C〉′[0 1 0]T

− (1 − ν)EJ

(1 + ν)(1 − 2ν)

(〈
v′′

(1 + u′)2

〉′′

+
〈

u′′v′′

(1 + u′)3
+ γ ′w′′

(1 + u′)2

〉′)
+ G J

〈
γ ′w′′

(1 + u′)2

〉′
= 0 (36)

A10 = −gρ A − ρ Aẅ + ρ
〈(

[�̇S]T[JS]

−[�S]T[JS]�̃S
)

C
〉′ [

0 0 1
]T +

− (1 − ν)EJ

(1 + ν)(1 − 2ν)

(〈
w′′

(1 + u′)2

〉′′

+
〈

u′′w′′

(1 + u′)3
− γ ′v′′

(1 + u′)2

〉′)
+ G J

〈
γ ′v′′

(1 + u′)2

〉′
= 0 (37)

Equation (24) has two more elastic terms than

Equation (25) that is the variation of elastic potential

energy of the nonlinear 3D Euler–Bernoulli beam the-

ory [8]. Consequently, the additional elastic terms in

Equations (36) and (37) are the terms (38) and (39), re-

spectively. These two terms improve the nonlinear 3D

Springer
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Euler–Bernoulli beam theory.

+
〈

J

[
− (1 − ν)E

(1 + ν)(1 − 2ν)
+ G

]
γ ′w′′

(1 + u′)2

〉′
(38)

+
〈

J

[
(1 − ν)E

(1 + ν)(1 − 2ν)
− G

]
γ ′v′′

(1 + u′)2

〉′
. (39)

8.3 Case III: Linear 3D short Euler–Bernoulli beam

with a fixed support

Motion equations of a linear 3D short Euler–Bernoulli

beam with a fixed support are obtained by neglecting

Poisson’s effect and nonlinear terms in Equations (34)–

(37). Therefore, one has:

(�̇T[JS] − �T[JS]�̃)[1 0 0]T ≈ 2J γ̈ ,

A7 = 2G Jγ ′′ − ρ2J γ̈ = 0,

A8 = −ρ Aü + E Au′′ = 0,

A9 = −ρ Av̈ − EJ 〈v′′〉′′ = 0,

A10 = −gρ A − ρ Aẅ − EJ 〈w′′〉′′ = 0

that can be simplified as follows:

G

ρ

∂2

∂s2
γ = ∂2

∂t2
γ,

E

ρ

∂2

∂s2
u = ∂2

∂t2
u,

EJ

ρ A

∂4

∂s4
v + ∂2

∂t2
v = 0,

EJ

ρ A

∂4

∂s4
w + ∂2

∂t2
w = −g. (40)

The linear partial differential Equations (40) are the

well-known equations for torsional, longitudinal, and

two transverse vibrations of a uniform beam.

9 Conclusions

Nonlinear partial differential equations of motion of a

3D Euler–Bernoulli beam with six-DOF flying support

are exposed. The beam experiences compression, ten-

sion, torsion, and two spatial bendings elastically while

negligible elastic orientation is produced in its cross-

sectional frame. The motion equations involve two new

elastic terms that had been lost in the traditional nonlin-

ear 3D Euler–Bernoulli beam theory by differentiation

from the approximated strain field regarding negligible

elastic orientation of cross-sectional frame. The differ-

entiation should have been derived from the exact strain

field concerning large elastic orientation of the cross-

sectional frame. These two elastic terms have given

the resulting motion equations a higher accuracy than

that of the nonlinear 3D Euler–Bernoulli beam theory.

They account for the enhancement of the nonlinear 3D

Euler–Bernoulli beam theory.
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