
Performance of Multithreaded Chip Multiprocessors And
Implications for Operating System Design

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Fedorova, Alexandra, Margo Seltzer, Christopher Small, and
Daniel Nussbaum. 2005. Performance of Multithreaded Chip
Multiprocessors And Implications for Operating System Design.
Harvard Computer Science Group Technical Report TR-09-05.

Accessed November 19, 2016 2:55:16 PM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:24829606

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/24829606&title=Performance+of+Multithreaded+Chip+Multiprocessors+And+Implications+for+Operating+System+Design&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=null,34a14f410557d3889114000953dd62d7,e8bf8b77232d753b2e44b52dfd0113eb,null&department=Engineering+and+Applied+Sciences
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

���������	��

������������� �����������������! ��� #"$���&%
� ���'���(%����)����*+*,����*.-/�� 102
3%��(�4���5���4�6��*87��	�

9 %:�����5���&��;=<?>@*2����
 AB��*��4;	�DC

E�FHGJI!KML!NPOQKSRPG+N!TMOUT�VWKPX
Y KWO[Z�T8\�G+F^]U_+G`O+X

acb OUdfeg]QTMh b G`O�\jikKWFfF
KML!N

l KML!d^G,F)mon!eUeqp�KMn!i

r�sctvuxw�tvu�y

a Txi8h�n5]UG`O�\jz`dHG+L!z`G|{�OUTxnPh
} K~O[VWK~OQNB��L!d�V�G+OUe[d^]v�

a KMi�p!OQdHNPZxGMX Y KMe[eQKWz b n!eqG2][]�e

Performance of Multithreaded Chip Multiprocessors And Implications
For Operating System Design

Alexandra Fedorova†‡, Margo Seltzer†, Christopher Small‡ and Daniel Nussbaum‡
†Harvard University, ‡Sun Microsystems

Abstract

An operating system’s design is often influenced by the architecture of the target hardware. While uni-
processor and multiprocessor architectures are well understood, such is not the case for multithreaded chip
multiprocessors (CMT) – a new generation of processors designed to improve performance of memory-intensive
applications. The first systems equipped with CMT processors are just becoming available, so it is critical that we
now understand how to obtain the best performance from such systems.

The goal of our work is to understand the fundamentals of CMT performance and identify the implications for
operating system design. We have analyzed how the performance of a CMT processor is affected by contention for
the processor pipeline, the L1 data cache, and the L2 cache, and have investigated operating system approaches to
the management of these performance-critical resources. Having found that contention for the L2 cache can have the
greatest negative impact on processor performance, we have quantified the potential performance improvement that
can be achieved from L2-aware OS scheduling. We evaluated a scheduling policy based on the balance-set
principle and found that it has a potential to reduce miss ratios in the L2 by 19-37% and improve processor
throughput by 27-45%. To achieve a similar improvement in hardware requires doubling the size of the L2 cache.

1. INTRODUCTION
An operating system provides a layer of

abstraction between the hardware and the software. Its
job is to expose the power of the hardware to
applications, while hiding its complexities. It is no
surprise that the architecture of the hardware influences
the design of the operating system. The subject of
operating system design for conventional processors has
been addressed in the past. This paper begins to
investigate the area of operating system design for a
new family of processors: multithreaded chip
multiprocessors (CMT).

CMT processors combine chip multiprocessing
(CMP) and hardware multithreading (MT) – today’s
architectural trends designed to improve processor
utilization by offering better support for thread-level
parallelism. A CMP processor includes multiple
processor cores on a single chip, which allows more
than one thread to be active at a time and improves
utilization of chip resources. An MT processor
interleaves execution of instructions from different
threads. As a result, if one thread blocks on a memory
access, other threads can make forward progress.
Numerous studies have demonstrated the performance
benefits of CMP and MT [4-7, 13, 23, 29, 36].

Thanks to improvement in chip densities, it has
become possible to combine these two approaches in
CMTs. The goal of CMTs is to improve performance of
an important class of modern applications, such as web

services, application servers, and on-line transaction
processing systems. These applications are notorious for
poor utilization of the CPU pipeline – they usually
include multiple threads of control executing short
sequences of integer operations, with frequent dynamic
branches. Such structure decreases cache locality and
branch prediction accuracy and causes frequent
processor stalls [11, 30, 31, 32]. Modern superscalar
processors, using speculative and out-of-order
execution, can wring instruction-level parallelism (ILP)
from scientific workloads, but can do little for branch-
heavy transaction processing-style workloads. Even
some SPEC CPU benchmarks yield processor pipeline
utilizations as low as 19% [14]. This means that the
majority of the time, the processor pipeline is being
unused. CMT processors are designed to address this
problem.

Systems equipped with CMT processors are
beginning to become available at the time of the writing.
IBM released its POWER 5 CMT chip in the summer of
2004 [18]; Sun Microsystems and Intel plan to ship their
commercial CMT processors in 2005 [8, 9].

CMTs differ from conventional processors in a
fundamental way: they are equipped with dozens of
simultaneously active thread contexts (e.g., Sun’s
Niagara processor will have eight cores, each with four
thread contexts [8]), and, as a result the competition for
shared resources is intense. This carries new
implications for operating system designs targeted at

2

such processors. We have studied how contention for
the processor pipeline, the L1 data cache and the L2
cache affects system performance, with the objective of
understanding which of these shared resources are most
likely to become performance bottlenecks so that we
can adapt operating systems to compensate for these
bottlenecks. We have found that the latency resulting
from a poor hit rate in the L1 cache can be effectively
hidden by hardware multithreading, but that high
contention for the L2 can significantly hurt the overall
processor performance. This result drove us to
investigate how much potential there is in using the OS
scheduling to improve L2 (and subsequently overall
processor) performance.

We have considered an OS scheduling algorithm
based on the balance-set principle [21] and found that it
has the potential to reduce the L2 cache miss ratios by
19-37%, yielding a performance improvement of 27-
45% – an improvement that could have been achieved
in hardware only by doubling the size of the L2 cache.

While this result is encouraging, it is not yet clear
what fraction of this potential can be realized by an
implementation; at the conclusion of this paper we
present a research agenda for implementing this
algorithm and discuss the challenges involved in
performing this task.

The major contributions of our work include:
quantifying the effects of contention for various
components of CMT processors on the overall
performance, the design of a new scheduling algorithm
that yields better L2 performance, an evaluation of this
algorithm, and an adaptation of an existing model for
cache miss ratios to make it work with multithreaded
workloads (this was necessary for evaluation of the
balance-set scheduling algorithm).

Using software mechanisms to best exploit
existing hardware helps us build systems that can
continue to provide good performance as applications
evolve. While hardware designers do their best to make
processors work well with present-day workloads,
accurately predicting the future is a black art. Since
hardware cannot adapt as quickly as applications
change, it is important to design operating system
software that will keep systems running well as
applications evolve.

The rest of this paper is structured as follows: in
Section 2 we provide background on CMT systems,
describe the CMT model that we are using, and discuss
our simulation technology. In Section 3, we analyze
shared resources on a CMT processor to identify the
performance bottlenecks and conclude that performance
optimizations targeted at the L2 cache are likely to have
the greatest impact. In Section 4 we investigate
potential performance gains from balance-set

scheduling for improving the L2 performance. We
present the challenges involved in implementing such a
scheduler and lay out a future research agenda in
Section 5. We discuss related work in Section 6 and
conclude in Section 7.

2. BACKGROUND AND SIMULATOR
The systems addressed in this study have multiple

processor cores on a chip (chip multiprocessing [36])
and multiple hardware thread contexts on each
processor (hardware multithreading).

There are several ways to implement hardware
multithreading, and they can be broadly categorized as
coarse-grained, fine-grained, and simultaneous. The
main difference between these categories is how the
processor switches among thread contexts.

Coarse-grained multithreading switches to a new
thread when a thread occupying the processor blocks on
a memory request or other long-latency operation [5].
While performance benefits of this architecture have
been demonstrated for multithreaded workloads [23], it
has also been shown that performance is limited on such
architectures by the high cost of context switching [6].

This problem is addressed on fine-grained
multithreaded, or interleaved, architectures, which
switch threads on every cycle [6].

Simultaneous multithreading (SMT) architectures
add multi-context support to multiple-issue, out-of-order
processors. Unlike conventional multiple-issue
processors, they can issue instructions from different
instruction streams on each cycle for improved
instruction-level parallelism [7, 14].

Our model of a multithreaded processor core is
based on the concept of fine-grained multithreading
(interleaving), proposed by Laudon et al. [6]. An MT
core has several hardware thread contexts (usually two,
four, or eight), where each context consists of a set of
registers and other thread state. Such a processor
interleaves execution of instructions from the threads,
switching between contexts on each cycle. When one or
more threads are blocked, the system continues to
switch among the remaining available threads.

For the purposes of our study we built a CMT
system simulator toolkit [16] as a set of extensions to
the Simics simulation toolkit [15]. Simics provides full-
system simulation of several popular hardware
platforms. Our simulator is based on an UltraSPARC
II® machine. Simics can bootstrap the simulated
machine with the Solaris™ operating system and
standard Unix environment. All the simulations
described in this paper are execution-driven and include
both user-level and OS code.

Our toolkit models systems with multiple
multithreaded CPU cores. The number of CPU cores per

3

chip and the degree of hardware multithreading are
configurable.

Our simulated CPU core has a simple RISC
pipeline with one set of functional units. We have
decided to simulate a simple, classical RISC core, as
opposed to a complex out-of-order processor, because
we believe that this is a viable architecture for future
CMT processors with a large number of processor cores
on a chip. Allowing each core to be simple, allows
placing more multithreaded cores on a chip – and this is
an attractive design option for OLTP and server
workloads, since such workloads typically have a high
degree of application-level parallelism and benefit little
from complex super-scalar pipeline designs. Moreover,
a previous study has shown that for such workloads,
core complexity should be traded off for an increased
number of hardware contexts [24]. Additionally, we
believe that the results of our study that concern the
memory hierarchy are applicable to a wide range of
multithreaded architectures, since the architecture of the
memory hierarchy does not depend on the architecture
of the pipeline.

Our simulator accurately simulates pipeline
contention, the L1 cache, bandwidth limits on crossbar
connections between the L1 and L2 caches, the L2
cache, and bandwidth limits on the path between the L2
cache and memory. We do not simulate a shared TLB;
our measurements have shown that the TLB is not a
highly contended resource for the benchmarks we ran.
Our simulator is configured with one to four processor
cores, depending on the experiment. Each core includes
four hardware contexts, an 8KB L1 data cache and a
16KB L1 instruction cache (both 4-way set-associative).
We simulate a unified 12-way set-associative L2 cache,
shared among all cores on a chip, whose size we vary
depending on the experiment. We chose cache sizes to
be similar to those used in the hyper-threaded Pentium
IV, a one-core multithreaded processor that is
commercially available at the time of this writing [13].

3. SOURCES OF PERFORMANCE
BOTTLENECKS

In this section we analyze processor pipeline and
on-chip caches, L1 data cache and the L2 cache, as
potential performance bottlenecks on CMT processors.
Based on our experience, other shared resources such as
the TLB or the L1 instruction cache are not likely to
become performance bottlenecks for the workloads we
consider, and, therefore, we do not address them in this
study.

Multithreaded processors are specifically designed
to hide memory latency experienced by applications
when the processor cache hit rate is poor. When
memory latency can be hidden by hardware

multithreading, the processor pipeline becomes a
performance bottleneck. However, when memory
latency is too high to be hidden, the on-chip caches
become the performance bottleneck.

This section consists of two parts: first, in Section
3.1, we consider the scenario when the processor
pipeline is the performance bottleneck. We propose an
OS scheduling technique designed to better manage
pipeline contention. In Section 3.2 we investigate the
scenario when the processor caches are the performance
bottleneck. Specifically, we explore under which
conditions the L1 data cache (Section 3.2.1) or the L2
cache (Section 3.2.2) become performance bottlenecks.
We conclude that while hardware multithreading does
an excellent job of hiding latency resulting from faults
in the L1 data cache, its capability to hide latencies
resulting from poor performance in the L2 is much more
limited. In Section 4 we propose an OS scheduling
algorithm designed to manage L2 contention.

3.1. Processor pipeline
Operating system approaches to managing pipeline

contention in multithreaded processors have been
proposed before [1, 2, 12]. As we elaborate in Section
6, we were concerned that the applicability of these
approaches is limited for CMT processors because they
will not scale well in systems with several dozens of
hardware contexts. We investigated an approach with
better scalability properties.

They key observation is that threads differ in how
they use the processor pipeline. Compute-intensive
threads with predictable branch targets, such as
scientific workloads, issue instructions frequently and
utilize the pipeline intensively. Threads that exhibit
poor locality of memory reference, such as database
applications, frequently stall while waiting for a
response from the memory hierarchy: such threads are
memory-intensive.

This observation suggests how to better manage
pipeline contention. By co-scheduling compute-
intensive threads with memory-intensive threads on the
same processor core the scheduler can balance the
demand for pipeline resources across cores. A compute-
intensive thread can use the pipeline while the memory-
intensive thread is blocked on memory. This idea is
similar to paired gang scheduling [33], a technique for
scheduling on parallel supercomputers that matches
compute-intensive and I/O intensive jobs for optimal
resource utilization.

A scheduler can identify compute-intensive and
memory-intensive threads by measuring the workload’s
CPI (cycles per instruction) metric. Workloads with low
CPIs (those nearing 1 on our simple pipeline) have high
pipeline utilization, and vice versa. Using CPI as a

4

heuristic for scheduling is especially attractive on a
CMT processor: CPI can be easily measured, nicely
captures the workloads’ pipeline utilization, and enables
scheduling decisions based on local information.

We have qualified the potential performance
improvement from such a scheduling policy, by running
the following experiment. We constructed
microbenchmarks with the following single-threaded
CPI’s: 1, 6, 11, and 16, to simulate compute-intensive
and progressively more memory-intensive workloads.
Then, on a machine with four processor cores and four
thread contexts on each processor, we tried several ways
to schedule 16 threads: four each with CPIs of 1, 6, 11
and 16. To assign threads to a particular processor, we
use a processor_bind() system call, available on
Solaris™. Each thread assigned to a particular core is
bound to its own hardware context. The processor
interleaves instructions issued on processors’ contexts.
Therefore, all threads run in parallel and get equal
shares of processor issue slots. We start the
measurement at the main loop of the benchmarks and
stop the measurement whenever any thread finishes.

Table 1 illustrates four different schedules that we
evaluated. Schedules (a) and (b) match compute-
intensive threads with memory-intensive threads, and
are expected to perform better than schedules (c) and (d)
that place compute-intensive threads on the same core.

Core 0 Core 1 Core 2 Core 3

(a) 1, 6, 11, 16 1, 6, 11, 16 1, 6, 11, 16 1, 6, 11, 16

(b) 1, 6, 6, 6 1, 6, 11, 11 1, 11, 11, 16 1, 16, 16, 16

(c) 1, 1, 6, 6 1, 1, 6, 6 11, 11, 11, 11 16, 16, 16, 16

(d) 1, 1, 1, 1 6, 6, 6, 6 11, 11, 11, 11 16, 16, 16, 16

Table 1: Assignment of threads to cores for schedules (a)-(d).
Numbers in cells show the single-threaded CPIs of threads
assigned to this core.

Figure 1 shows the IPC (instructions per cycle)
achieved by each schedule, broken down by CPU. As
expected, schedules a) and (b) achieve the best
performance1. The difference in IPC between schedule
(d) and schedules (a) and (b) is a factor of two. The IPC
breakdown by CPU indicates that the reason for better
performance for schedules (a) and (b) is that they
produce a more balanced utilization of processor
resources.

While the potential performance improvement
from this scheduling technique is dramatic, to achieve it,

1 Schedule (b) performs slightly better than schedule (a) because
workloads with CPI 16 that dominate core 3 in schedule (b) have a
smaller I-cache footprint and achieve a better I-cache hit rate.

it was necessary to have threads with a wide range of
CPIs. To determine whether real workloads can benefit
from this scheduling technique in the same way we
measured single-threaded CPIs for a number of standard
integer benchmarks: SPEC CPU (int), SPEC JVM,
SPEC JBB and SPEC Web. We saw a very small
variation in CPIs across the benchmarks. For most
benchmarks, the CPI howers around 4. The smallest
average CPI that we saw was 2.37 for 164.gzip, the
largest – 5.11 for 181.mcf. The dynamic instruction mix
also shows little variation across the benchmarks. If
these benchmarks are characteristic of real workloads,
these data show that there is little variation in pipeline
utilization. Therefore, there is little potential for
performance gains from exploiting this variation. Our
experiments with the SPEC benchmarks confirmed that
performance gains from CPI-based scheduling are
modest (about 5%) for such workloads.

Figure 1. IPC achieved by each schedule, broken down by
CPU.

While the benefits of CPI-based scheduling for
SPEC workloads are small with our simulated pipeline,
they may be greater on an SMT system. Recall that
SMT systems have multiple functional units and a
multiple-issue pipeline. The range of single-threaded
CPIs for the integer workloads may be greater on such
machines. Since our simulator does not have the ability
to simulate a super-scalar pipeline, we could not
confirm that this is the case. But this is an interesting
area for future exploration.

3.2. Processor caches

3.2.1. The L1 data cache
Multithreaded processors are typically configured

with small L1 data caches, e.g., the L1 data cache on
Intel's hyper-threaded Pentium IV is 8KB [13]. We were
concerned that this would result in high latencies

0

0.5

1

1.5

2

2.5

3

3.5

4

(a) (b) (c) (d)

IP
C

Core 3

Core 2

Core 1

Core 0

 5

associated with handling cache faults, which the multi-
threaded processor would not be able to hide. The
latency-hiding ability depends on the degree of
multithreading in the processor’s core. We use four for
the degree of multithreading, which has been shown to
work best for the architecture we are simulating [6].
For the experiments in this section, the simulator has
been configured with a single core: since there is an L1
data cache on each core, simulating a single core was
sufficient.
 We measured cache miss ratios for several cache
sizes for the following workloads: SPEC CPU’s
186.crafty, 164.gzip, 175.vpr (place), Berkeley DB and
SPEC JBB. For each experiment, we ran four copies of
the same benchmark on a single-core machine – the
threads running the workload shared the core’s data
cache. Benchmarks did not share any data. We
experimented with several cache sizes, from 8KB (this
would be a typical cache size used on a CMT core) to
128 KB.

As Figure 2 shows, for small cache sizes, cache
miss ratios are way above what is considered acceptable
for conventional single-threaded processors. For SPEC
JBB, the miss ratio is high even when the cache size is
128 KB.

Figure 2. D-cache miss ratios as the cache size changes.

However, as we can see from Figure 3, the

processor performance is immune to such poor cache
behavior. Even when cache miss ratios are above 20%,
the IPC2 (instructions per cycle) is between 0.7 and 0.9,
and it does not change much as cache size changes.
This suggests that hardware multithreading does a good
job of hiding the latency associated with faulting in the
L1 data cache. The implication of this result is that
operating system policies targeted at improving
performance in the L1 data cache are not likely to bring

2
 Our simple pipeline issues at most one instruction each cycle. The

highest IPC it is able to obtain is one.

significant performance improvements (and we have
confirmed this experimentally), because the hardware
already masks poor cache performance.

Figure 3. Pipeline utilization as D-cache size changes.

3.2.2. The L2 cache

The L2 cache has a greater potential for becoming
a performance bottleneck when the miss ratio is high,
because the latency between the L2 and main memory is
significantly greater than that between the L1 and L2.
For example, on the hyper-threaded Pentium IV, a trip
from L1 to L2 takes 18 processor cycles, while a trip
from L2 to main memory takes 360 cycles [13]. These
latencies are set at 20 and 120 cycles in our model.
Penalties from faulting in the L2 are further increased
due to competition for main memory bandwidth.

To evaluate the effect of L2 performance on
processor IPC, we used a dual-core MT machine with
four thread contexts per core, an 8KB L1 data cache and
L2 caches of varying sizes.

Our workload consists of nine benchmarks from
the SPEC CPU 2000 suite (164.gzip, 175.vpr (place),
175.vpr (route), 176.gcc, 179.art, 186.crafty, 188.ammp,
197.parser, 255.vortex). We chose these particular
benchmarks, because we wanted our workload to
include programs with both good and poor cache
locality. We run two copies of each benchmark, giving
us an 18-thread workload (each benchmark is a single-
threaded process that runs in its own thread).

As explained in Section 2, our simulations are
execution-driven, and the benchmarks are run in the
Solaris™ 9 operating environment. Solaris™ 9 does
not include special support for CMT processors. From
the point of view of the OS, our simulated dual-core
four-way multithreaded machine looks like a
conventional eight-way multiprocessor. The Solaris™
scheduler assigns threads to hardware contexts as if it
were assigning them to processors on a multiprocessor
system, picking eight threads at a time to schedule on

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

8KB 32KB 64KB 128KB
D-cache size

D
-c

ac
h

e
m

is
s

ra
tio

crafty

gzip

vpr-place

BerkeleyDB

SPEC JBB

(log scale)

0

0.2

0.4

0.6

0.8

1

8KB 32KB 64KB 128KB

L1 data cache size

IP
C

crafty

gzip

vpr-place

BerkeleyDB

SPEC JBB

(log scale)

 6

the eight hardware contexts during each scheduling time
slice. We vary the size of the L2 cache and show how
this affects L2 performance and processor IPC. The
hyper-threaded Pentium IV has a 256 KB L2 cache. We
simulated both larger and smaller caches to explore
effects of light and heavy cache contention on
performance, without having to vary the workload. We
fast-forward the simulation until all running threads
reach the main loop, and then perform a detailed
simulation for one billion cycles.

Figure 4. IPC for the 18-process SPEC workload. Processor
IPC is sensitive to the size of the L2.

Figure 5. L2 miss ratios for the 18-process SPEC workload.
The L2 miss ratio falls as the L2 size increases.

Figure 4 shows the processor IPC resulting from

running this SPEC workload. Performance degradation
is evident as the L2 cache becomes smaller. Figure 5
shows that the reason for performance degradation is
high miss ratios for small L2 sizes.
 This result suggests that multithreaded processors
are limited in their ability to hide high latency resulting
from handling faults in the L2. Since modern
applications exhibit a dangerous trend of becoming
progressively more data-intensive, it is possible that
CMT processors equipped with a sufficiently large L2

cache for today’s workloads will fail to satisfy the needs
of applications in the near future. Since changing
software is easier than changing hardware, it is wise to
equip the operating system with the ability to handle
resource shortages when the hardware fails to do so.
The next section quantifies the potential performance
improvement that can be achieved from better OS
scheduling.

4. BALANCE-SET SCHEDULING

Balance-set scheduling has been proposed by
Denning [20] as a way of improving the performance of
virtual memory. We evaluated the effectiveness of this
approach for the L2 cache. The idea behind balance-set
scheduling is as follows. Separate all runnable threads
in subsets, or groups, such that the combined working
set of each group fits in the cache. Then, schedule a
group at a time for the duration of the scheduling time
slice. By making sure that the working set of each
scheduled group fits in the cache, this algorithm is
designed to reduce cache miss ratios.

However, we found that working set size was not a
good indicator of the workload's cache behavior. When
we used a model based on the working set principle [22]
to estimate cache miss ratios of SPEC workloads, the
estimates were often inconsistent: a workload with a
large working set would produce lower miss ratios than
a workload with a small working set, and vice versa.
Further investigation [39] revealed that the working set
is a good indicator of a workload’s cache miss ratio only
if the program accesses its working set uniformly – this
assumption of uniform access is the premise underlying
Denning's original work on balance-set scheduling [21].
As we learned, this assumption does not hold for
standard benchmarks (SPEC CPU, SPEC Web, SPEC
JBB).

We needed to find a better way to assess a
workload’s cache behavior, so we searched for a model
that would accurately estimate cache miss ratios based
on some characteristics of a workload.

In Section 4.1 we describe the model for cache
miss ratio that we used and how we adapted this model
so that it could be used with balance-set scheduling. In
Section 4.2 we evaluate the potential performance gains
from the balance-set scheduling algorithm based on this
model.

4.1. A model for cache miss ratios
 Berg and Hagersten developed a model for
estimating cache miss ratios based on reuse distances
[19]. A reuse distance is the amount of time3 that passes

3
 Time is measured in terms of memory references.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

48KB 96KB 192KB 384KB 768KB 1.5MB
L2 cache size

L
2

 m
is

s
ra

tio

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

48KB 96KB 192KB 384KB 768KB 1.5MB

L2 cache size

IP
C

(log scale)

(log scale)

 7

between successive references to the same memory
location. The model bases the probability of a cache hit
on the reuse distance. The smaller the reuse distance,
the greater the probability that the reference results in a
hit. Using this model, Berg and Hagersten estimated
cache miss ratios of SPEC workloads to within about
5% of actual values.
 Figure 6 shows an example of a reuse-distance
histogram (a non-normalized reuse-distance
distribution) for 188.ammp – a benchmark from the
SPEC CPU 2000 suite. A significant fraction of the
reuse distances are large – this is an indication of poor
locality. Our experiments confirmed that this
benchmark has exceptionally high cache miss ratios.

 The input necessary for this model, a reuse-
distance histogram, can be built at runtime by
monitoring memory references, using the standard
hardware watchpoint mechanism [19].

Figure 6. Reuse distance distribution for 188.ammp.

 The reuse-distance model estimates cache miss
ratios for a single workload. For balance-set
scheduling, we need to decide which threads produce
the lowest miss ratios when scheduled to run together
and access the cache concurrently. Therefore, we need
to estimate cache miss ratios for groups of threads. To
do this, we build individual reuse-distance histograms
for threads, and then combine these histograms to
estimate miss ratios for groups of threads.
 We developed three methods for estimating group
miss ratios: COMB, COMB+IPC, and AVG. COMB
combines individual reuse distance histograms into a
single histogram and uses this histogram to predict the
miss ratio for the group. COMB+IPC improves on
COMB by making adjustments for relative differences
in the speeds of the running threads. AVG estimates
miss ratios for each thread in a group as if it ran with a
dedicated partition of a smaller cache and then averages
the resulting ratios. We will now describe these methods
in detail and then evaluate their accuracy.

4.1.1. Method #1: COMB
To combine several histograms into one, we use

the following two-step algorithm:
1. For each reuse distance, sum the number of
references falling within this distance for all
histograms.
2. Multiply the value of each reuse distance
appearing in the histogram by N or N-1, where N
is the number of combined histograms (i.e., the
number of threads). See Figure 7.

Step 2 is necessary because when several threads share
the cache using fine-grained multithreading, the reuse
distance for each memory re-reference will be
increased. For example, if a thread running on its own
re-referenced a memory location within one time step,
when it runs with three other threads, before it re-
references that memory location, the other threads could
intervene with their own memory references. As a
result, the original reuse distance of one, for instance,
could become anywhere between one and four. We
have experimented with adjusting the reuse distance by
multiplying it by coefficients from 1 to N, where N is
the number of histograms (number of threads) being
combined. We found that using a coefficient of N-1
worked better for larger caches, and a coefficient of N
worked better for smaller caches.

Histogram A Histogram B Histogram

A+B
R.dist # ref. R.dist # ref. R.dist # ref.

1 90 1 30 2 120
10 50 10 46 20 96
20 78 20 27 40 105
… … … … … …
100 14 100 18 200 32

Figure 7. Combining reuse-distance histograms.

 Our next method, COMB+IPC, deterministically
calculates this coefficient, by taking into account the
different rates at which threads issue memory
references.

4.1.2. Method #2: COMB + IPC
 When several threads share a cache, the cache
access patterns of slower threads will have a smaller
effect on the overall cache miss ratio than those of fast
threads, because slower threads will issue memory
references at a slower rate. It is necessary to account for
these differences when combining reuse-distance
histograms.
 The memory reference rate, number of references
per cycle, can be decomposed into two components,

0

5

10

15

20

25

30

10 40 16
0

64
0

25
60

10
24

0

40
96

0

2E
+0

5

7E
+0

5

3E
+0

6

1E
+0

7

4E
+0

7

reuse distance

n
u

m
b

e
r

o
f r

e
fe

re
n

ce
s

(m
ln

.)

 8

references per instruction and instructions per cycle
(IPC):

Refs. per cycle = Refs per instr. * IPC.

 To account for relative differences in references
per instruction, we collect the data for reuse-distance
histograms over the same window of instructions for all
threads.
 To understand how we adjust for relative
differences in instructions per cycle (IPC), consider the
following example:

Suppose FastThread runs twice as fast as
SlowThread – their respective IPCs are 1 and 0.5. When
these two threads run together, about half of
FastThread’s references will be interspersed with
SlowThread’s references. Therefore, for FastThread,
half of the reuse distances will remain the same, and the
other half will increase by a factor of two. (See Figure
8.) To reflect this, we multiply the reuse distances in
FastThread’s histogram by the following coefficient:
(0.5 * 1 + 0.5 * 2) = 1.5

SlowThread, however, will not be so lucky: all of
its memory references will be interspersed with the
references made by FastThread. In fact, each reference
that SlowThread makes will be interspersed with two
memory references made by FastThread. Therefore, all
reuse distances will increase by a factor of three.

FastThread: SlowThread:

A B A C A E ... F ... F

FastThread and SlowThread:

A E B A F C A F

Figure 8. Illustration of how reuse distances change when
threads with unequal speeds run in parallel.

 These observations lead us to the following
formula for DIST_COEFF, a coefficient by which we
adjust the values of reuse distances of each thread:

 DIST_COEFFi = i

n

j
j IPCIPC /

1








∑

=
 ,

where i is the index of the thread whose coefficient we
are computing and n is the total number of threads in the
group.
 Finally, we need to make an adjustment to the
number of references that fall within each reuse-
distance: a slow thread will be issuing memory
references more slowly than a fast thread, so we need to
scale the number of references that fall within each

reuse-distance accordingly. This produces the following
formula to compute REFS_COEFF – the corresponding
scaling coefficient:

 REFS_COEFFi = IPCi / MAX_IPC,

where i is the index of the thread whose coefficient we
compute and MAX_IPC is the largest IPC in the
combination of threads.
 Once we adjust each reuse distance histogram by
multiplying reuse distances by DIST_COEFF and the
number of references by REFS_COEFF, we simply
merge all reuse distance histograms (See Figure 9).

Histogram A
(IPC = 1)

 Histogram B
(IPC = 0.5)

 Histogram
A+B

R.dist # ref. R.dist # ref. R.dist # ref.

1.5 90 3 15 1.5 90
15 50 30 23 3 15
30 78 60 14 15 50
… … … … … …
150 14 300 9 300 9

Figure 9. Combining adjusted reuse-distance histograms.
Note that we use the same histograms as in the example in
Figure 7, and make the adjustments to them according to the
method described in this section.

 The drawback of a combination-based approach
such as this one is that it is too computationally
expensive to implement in a real system. Imagine a
machine with 32 thread contexts and 100 threads. The

scheduler has to potentially combine 





32

100
 histograms,

and estimate the miss ratios. Although this computation
does not have to be performed often (as we explain in
Section 6), it still adds to the overhead. The approach
we describe next is more practical.

4.1.3. Method #3: AVG
 The intuition behind AVG is to pretend that each
thread runs with its own dedicated partition of a cache.
AVG estimates miss ratios for each thread as if it ran
with a smaller cache, of size TOTAL_CACHE /
NUMBER_OF_THREADS. Then, to predict the miss
ratio for a group of threads, it averages the estimated
ratios of the individual threads. We found that
predictions based on this method are just as accurate as
those based on combination-based methods, and are
significantly less expensive to produce.

The miss ratio estimate has to be computed once
for each workload, and then, to project miss ratios for
multiple workloads, the scheduler needs only to average

 9

several values. Furthermore, the scheduler can
remember averages for small groups of threads, and
then predict the miss ratio for a larger group by merging
the known averages.

4.1.4. Evaluating Model Accuracy

To test the effectiveness of the model, we used the
18-benchmark SPEC CPU2000 workload described in
Section 3.2.2. We estimated miss ratios for all possible
groups consisting of eight threads, for four L2 cache
sizes, using COMB, COMB+IPC and AVG. We
validated the estimated miss ratios for those thread
groups that produced the best schedule for the balance-
set scheduling algorithm, for each cache size. (We
explain how such groups were selected in the next
section.)

To validate the estimated miss ratios for the
groups, we simulated each group on a machine with two
cores and four hardware contexts per core for 100
million cycles after fast-forwarding the simulation past
the benchmark initialization phase.

Figure 10. Actual vs. predicted miss ratios.

Figure 10 shows the actual and predicted miss
ratios obtained using the three methods for various
cache sizes. The displayed miss ratios are the averaged
quantities for the thread groups producing the best
schedule for each cache size (standard deviation is
small). Our estimated miss ratios are, on average, within
17% of the actual miss ratios. Errors are expected, given
that we applied the model to a multi-program workload,
simulated a set-associative cache (the reuse-distance
model assumes a fully-associative cache), and used a
window size of 500 million instructions when collecting
data for reuse-distance histograms (Berg and Hagesten
suggest using smaller windows in order to avoid
spanning different phases in behavior of a program).

Although error rates are high, reducing them is not
critical for us: what is important is that the model is

accurate enough to distinguish between thread groups
that produce high miss ratios and those that produce low
miss ratios. And, as we demonstrate in the next section,
this is precisely what we need to improve the
performance of the default scheduler.

4.2. Balance-set scheduling

The ability to predict cache miss ratios for groups
of threads makes it possible to identify the thread
groups that produce low cache miss ratios. We leverage
this in the balance-set scheduling algorithm. Before
implementing the algorithm, we wanted to quantify the
performance improvement that could be expected from
using it. This section describes how we evaluated the
potential of this algorithm for reducing L2 contention
and improving processor performance by emulating its
actions. First, we describe the scheduling algorithm, and
then explain how we emulated it. In Section 4.3 we
present performance results and offer analysis. We
discuss implementation challenges and potential
runtime costs in Section 5.

4.2.1. Scheduling Algor ithm
Step 1 – Choosing the L2 miss ratio threshold
(Performed periodically, as the set of threads running on
the system changes):

The job of the scheduler will be to keep the L2
miss ratios below this threshold. The goal is to set
the miss ratio threshold to be as low as possible,
but not too low so as to starve some threads. The
scheduler first identifies the most cache-greedy
thread, because it is this thread that runs the danger
of being starved. Miss ratios obtained from
analysis of individual reuse-distance histograms
are used to identify this thread.
Next, once the scheduler has analyzed the miss
ratios for all groups of threads, it examines the
estimated miss ratios for the groups that include
the greediest thread, and picks the smallest miss
ratio. This miss ratio is the smallest that can be
achieved without starving the greediest thread, and
it is this miss ratio that is chosen as the threshold.

Step 2 – Miss ratio analysis to identify the thread
groups that will produce low cache miss ratios
(Performed periodically, as the set of threads running on
the system changes):

From the entire pool of runnable threads, construct
thread groups, such that the number of threads in
each group is equal to the number of the available
hardware contexts. Estimate L2 miss ratios for all
groups, using the reuse-distance model and the
histogram-combining method AVG. Discard those
groups whose estimated miss ratio is above the

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

48KB 96KB 192KB 384KB

L2 cache size

L
2

 m
is

s
ra

tio

AVG

COMB

COMB+IPC

ACTUAL

(log scale)

 10

threshold. The remaining groups are candidate
groups.

Step 3 – Scheduling decision (performed every time a
scheduling time slice expires):

Choose a group from the set of candidate groups.
Schedule the threads in the group to run during the
current time slice. (Note that a thread may belong
to more than one group.) Keep track of how much
processor time each thread has received. On the
next time slice, make a selection from candidate
groups that contain threads that previously
received little or no processor time.

4.2.2. Emulating the scheduler
In this section we first explain how we emulated

the process of making a scheduling decision and then
how we simulated the resulting schedule. We use the
18-thread SPEC workload described in Section 3.2.2
and the CMT processor with two cores and four
hardware contexts on each core. We instrumented our
simulator to collect the data for reuse-distance
histograms and built reuse-distance histograms for all
the threads off-line.

4.2.2.1. Making the scheduling decision

 First, we examine all 





8

18
combinations of threads

– we have a total of 18 threads, but only eight can be
scheduled at a time on the processor’s eight hardware
contexts. We compute group miss ratios for all groups,
and sort the groups in ascending order by miss ratio.
Next, we pick the miss ratio threshold as described in
Step 1 of the scheduling algorithm (Section 4.2.1). The
groups whose estimated miss ratio is below the
threshold form the candidate set.
 From the candidate set we pick several groups that
will form the final schedule. Because each group has
eight threads, and the total workload has 18 threads, a
schedule needs to include at least three groups, to make
sure that each of the 18 threads gets to run. The idea is
that each group in a schedule will run for a scheduling
time slice; once all groups in the schedule have run, the
schedule repeats.
 To pick thread groups for a schedule we
experimented with two policies: performance-oriented
(PERF), and fairness-oriented (FAIR).
 With PERF, we select from the candidate set the
group with the lowest miss ratio and containing threads
have not yet been selected. We repeat this process until
each thread is represented in the schedule.
 With FAIR, we attempt to equalize the CPU share
of each workload: as we select groups of threads we
keep track of how many times each thread had been

selected. Each time we make a selection, we pick the
group that contains the greatest number of the least
frequently selected threads.
 We evaluate how these policies compare in terms
of performance and fairness in Section 4.3.
 We repeated the above schedule-construction
process for four L2 cache sizes from 48KB to 384KB.

4.2.2.2. Simulation
 Once we construct schedules for all cache sizes
and policies, we simulate each schedule to measure its
performance. For a given schedule, we simulate each of
its groups for a time slice (100 million cycles) after fast-
forwarding the simulation past the benchmark
initialization phase. To obtain the IPC for the schedule
we average the IPCs achieved by the groups in that
schedule (the standard deviation is small, typically
within 5% of the mean). In the same way we compute
the L2 miss ratio for the schedule.
 Recall that each group contains eight threads – one
for each hardware context on the machine. By running a
workload of eight CPU-intensive threads on a machine
with eight hardware contexts and with nothing else
running on that machine, we ensured that each thread
ran on its own hardware context. In this way, we
emulated the action of a real scheduler that would
specifically assign each thread to its own hardware
context for a time slice.
 Because each thread was assigned to its proper
context, and the machine issued instructions from each
context in a round-robin fashion, we assured that all
threads simulated as a group were given equal shares of
processor issue slots and made forward progress.

To measure IPC and L2 miss ratio for the default
scheduler, we ran the 18-benchmark workload on the
simulated machine, for one billion. cycles, after fast-
forwarding the benchmarks past the initialization phase.
Threads were dynamically assigned to hardware
contexts by the Solaris™ scheduler (recall the
explanation in Section 3.2.2).
 .
4.3. Results

Figure 11 presents the IPC for each schedule. In all
cases, the balance-set scheduler outperforms the default
scheduler. The performance gain from the scheduler
using the PERF policy is from 27% (384KB L2) to 45%
(48KB L2). With the FAIR policy, the performance
gain is from 7% (384KB L2) to 34% (48KB L2). As
cache pressure becomes greater, there is more benefit to
be reaped from the balance-set scheduling approach. As
cache contention decreases, there is less performance
benefit: if the performance achieved with the default
scheduler is already good, there is less room for
improvement.

11

Figure 12 shows the corresponding L2 miss ratios.
With balance-set scheduling we were able to reduce the
L2 miss rates by 19-37% when using the PERF policy
and by 9-18% when using the FAIR policy. It is
interesting to place this result into perspective by
evaluating the means that would be necessary to achieve
similar improvements in hardware. With a 48KB L2
cache, the balance-set PERF scheduler achieves the L2
miss ratio of 12%. To achieve a similar miss ratio with
the default scheduler, the L2 cache size would have to
be 96KB – twice as large. This ratio holds for the
remaining cache sizes.

Figure 11. IPC achieved with the default scheduler, and the
balance-set scheduler using PERF and FAIR policies.

Figure 12. L2 cache miss ratios achieved with the default
scheduler, and the balance-set scheduler using PERF and
FAIR policies.

The performance improvement that we got
resulted from the fact that we have constructed thread
groups so that they would share the cache amiably,
producing a low L2 miss ratio, and achieving high IPC
as a result. Our miss ratio analysis, which preceded
schedule construction, helped us avoid scheduling

groups of threads that would induce thrashing and waste
processor cycles on endless trips to memory.

While this shows that balance-set scheduling has
potential to decrease cache contention and improve
performance, it is important to address the following
questions: Are these results achievable for any
workload? Does fairness have to be sacrificed? We
provide discussion of these questions in the following
section.

4.3.1 Discussion

4.3.1.1. The workload
We used SPEC CPU benchmarks for our

experiments because it is a standard workload used for
evaluation of CPU performance. We believe that this
workload is appropriate for the experiments that stress
the memory hierarchy, because this suite of benchmarks
has been improved from previous versions specifically
for this purpose [3]. It has been modified to include
programs whose memory footprints are much larger
than traditional cache sizes.

Our workload included benchmarks with good
cache locality (164.gzip, 197.parser) as well as poor
cache locality (188.ammp, 179.art), so the resulting
thread groups had varying cache performance. If, on the
contrary, all threads in the workload are identical, all
thread groups will produce identical cache performance.
In this case, the scheduler may need to schedule fewer
threads than available hardware contexts, in order to
alleviate the pressure on the L2. This, however, is a
double-edged sword: while running fewer threads
improves performance in the L2, leaving hardware
contexts unused may hurt performance.

From our experience, the payoff from trading better
performance in the L2 for unused hardware contexts
depends on the workload. In order for the scheduler to
decide when it pays to do so, it needs to be able to
predict how the L2 performance affects processor IPC.
We have developed a model that does this [34] and we
plan to incorporate it into the future scheduler
implementation.

4.3.1.2. Fairness
Trading off fairness for performance is a canonical

issue faced when designing scheduling algorithms [35,
38]. In order to achieve low L2 miss ratio, the job of
the balance-set scheduler is to select those groups of
threads whose estimated miss ratio is the lowest. Such
groups are likely to include cache-frugal threads more
often than cache-greedy threads. As a result, cache-
frugal threads may get a higher share of CPU. For
example, in our experiments a cache-frugal benchmark
197.parser was included in almost every simulation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

48KB 96KB 192KB 384KB

L2 cache size

IP
C

Default

PERF

FAIR

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

48KB 96KB 192KB 384KB
L2 cache size

L
2

m
is

s
ra

tio

Default

PERF

FAIR

(log scale)

(log scale)

12

group, while a cache-greedy 188.ammp was present in
only one or two groups per schedule. Whether or not
fairness has to be sacrificed depends on the workload.

Although addressing fairness of the balance-set
scheduling was not the objective of this study, we
attempted to improve fairness with the thread-selection
policy FAIR.

To evaluate how FAIR compares to PERF in terms
of fairness, we estimated the degree of fairness achieved
by these policies using the following metric: standard
deviation from the average CPU share. Under a fair-
share scheduler, each workload gets an equal share of
CPU, and the standard deviation is zero.

Figure 13. Evaluation of fairness for the two scheduling
policies.

Figure 13 displays standard deviations for PERF
and FAIR. Although when using the FAIR policy the
scheduler is somewhat fairer than when using PERF, the
standard deviation from the average is still rather high
for the FAIR policy.

The level of fairness achieved in our experiments
is not fundamental to the balance-set scheduling. It is
particular to our workload. For example, if we had a
workload where the number of cache-frugal threads was
far greater than the number of cache-greedy threads, it
would be possible to always match a cache-greedy
thread with cache-frugal threads without sacrificing
fairness. The relationship between the workload and the
achievable fairness is a rich topic that we plan to
investigate in the future.

The amount of fairness that is acceptable to
sacrifice for the sake of performance is specific to each
system. In systems where any fairness sacrifices would
be unacceptable, balance set scheduling would not be
the scheduling policy of choice. More likely, however, a
system scheduler would want to be able to decide how
much fairness it wants to trade off for performance,
depending on relative priorities of the threads in its
workload and on the performance goals set for the

system. Therefore, it is important to equip the scheduler
with mechanisms that would aid it in making such a
decision. Our work on modeling effects of cache miss
ratio on processor IPC [34] is a step in this direction.

5. IMPLEMENTING THE SCHEDULER
Implementing the balance-set scheduling

algorithm is the subject of ongoing work. In this section
we discuss the challenges involved in this task and lay
out the related research agenda.

The scheduler operations that contribute the most
to runtime overhead are the data collection for reuse-
distance histograms and the miss ratio analysis.

Reuse-distance histograms need to be built when
new threads enter the system and then re-built when the
existing threads change their cache access patterns. Data
collection for reuse-distance histograms can be done by
monitoring memory locations accessed by a thread
using the hardware watchpoint mechanism. Berg and
Hagersten describe a user-level tool that builds reuse-
distance histograms this way [19]. They report the
runtime overhead of less than 20% for long-running
applications. Handling kernel traps associated with
watchpoints is the most significant source of overhead,
most of which will be removed if the monitoring is done
in the kernel. Only a sample of memory locations needs
to be monitored. Reducing the sampling rate reduces the
monitoring overhead, but can also result in reduced
model accuracy. We plan to investigate what should be
the right balance between the two.

The amount of storage needed for reuse-distance
histograms is about 100 bytes per histogram. The range
of possible reuse distances can be very large, so in order
to reduce space requirements we compressed the
histograms by aggregating reuse distances in buckets.
Our predictions remained accurate even though we used
fewer than 20 buckets.

Miss ratio analysis using the AVG method
involves estimating miss ratios for individual threads
and then averaging the quantities for groups of threads.
These operations need to be performed as new threads
enter or leave the system, as well as when reuse-
distance histograms are updated for the existing threads.
To avoid estimating miss ratios for all possible groups
of threads, we plan to design a greedy algorithm that
constructs a candidate set after analyzing the miss ratios
for only a small number of thread groups. We plan to
evaluate the cost of this process for different rates of
arrival and departure of threads in the system.

When designing algorithms for multiprocessor
operating systems, it is critical to avoid implementations
that require global data, because this may result in
shuffling such data among processors’ L1 caches,
resulting in high latencies [26,37]. We need to take this

0

10

20

30

40

50

60

70

80

90

100

48KB 96KB 192KB 384KB
L2 cache size

st
a

n
da

rd
 d

e
vi

a
tio

n
 (

%
)

PERF

FAIR

(log scale)

13

important design principle into account when
implementing the balance-set scheduler. On the other
hand, it is possible, that this would not be so important
on CMT processors, where the latency associated with
faulting in the L1 is well hidden by hardware
multithreading.

6. RELATED WORK
Previous work has proposed scheduling algorithms

for single-core SMT processors that have been shown to
improve system response time by 17% [1, 2, 12]. These
algorithms involved sampling the space of possible
schedules and using the ones that performed the best.
This method can be implemented with virtually no
overhead but requires hardware support. Our
scheduling algorithm is different in that it uses modeling
to predict the best schedule. Modeling may be
preferable to sampling when the sample space becomes
very large, such as on a system equipped with dozens of
thread contexts (i.e., a CMT processor) running
hundreds of threads. It would be interesting to compare
the effectiveness and costs of the method proposed in
the SMT study to ours on a large CMT configuration.
We are also hoping to apply ideas from the follow-up
study on incorporating priorities into the SMT-aware
scheduler [2] to improve fairness of our scheduler.

We adapted the reuse-distance model to estimate
miss ratios for threads concurrently accessing a cache.
An alternative method has been proposed before [27].
Our methods are just as accurate but less
computationally expensive.

A related study by Thekkath and Eggers
considered co-scheduling threads based on their data-
sharing patterns [28]. Although it is intuitive to expect
that placing threads that share data on the same
processor could improve performance in the L1 cache,
the study showed that such a scheduling policy does not
yield significant performance benefits.

Cohort scheduling [10] is a scheduling
infrastructure for server applications that batches
execution of similar operations from different requests.
This improves data locality, increasing processor IPC by
30% and reducing L2 cache misses by 50%. The
applicability of this technique is limited to a specific
class of applications (albeit an important one), and
requires significant changes to application code.

The Capriccio thread package [17] implements
resource-aware scheduling by monitoring threads’
behavior, and measuring their resource requirements.
This information is used in making scheduling decisions
to optimize resource utilization. This method is more
general than ours in that it can optimize for usage of
different types of resources, but it requires rather
detailed monitoring of the program’s state.

7. CONCLUSIONS
In this paper we presented results of the first study

evaluating the performance of a CMT processor. We
analyzed how contention for the processor pipeline, L1
and L2 caches affects performance. We determined that
contention for the L2 cache has the greatest effect on
system performance – therefore, this is where system
designers should focus their optimization efforts.

We investigated how to leverage the operating
system scheduler to reduce the pressure on the L2
cache, using balance-set scheduling. To make balance-
set scheduling work we adapted the reuse-distance
cache model to estimate miss ratios for threads that
concurrently access the cache.

We demonstrated that with balance-set scheduling
it is possible to reduce the L2 cache miss ratio by 19-
37% and increase performance by 27-45%. Performance
improvement, however, may come at the expense of
fairness.

To determine whether balance-set scheduling is
viable for real systems, we plan to implement it and
evaluate its runtime overhead. We also plan to
investigate how workload characteristics affect the
potential performance gains from this algorithm and the
associated fairness tradeoffs.

8. REFERENCES
[1] A. Snavely, D. Tullsen, “Symbiotic Job

Scheduling for a Simultaneous Multithreading
Machine,” ASPLOS IX, 2000.

[2] A. Snavely, D. Tullsen, G. Voelker, “Symbiotic
Jobscheduling with Priorities for a Simultaneous
Multithreading Processor,” SIGMETRICS, 2002.

[3] SPEC CPU2000 Web site:
http://www.spec.org/cpu2000/analysis/memory/

[4] R. Alverson et al., “The Tera Computer System”,
Proc. 1990 Intl. Conf. on Supercomputing.

[5] A. Agarwal, B-H. Lim, D. Kranz, J. Kubiatowicz,
“APRIL: A Processor Architecture for
Multiprocessing”, ISCA, June 1990.

[6] J. Laudon, A. Gupta, M. Horowitz, “Interleaving:
A Multithreading Technique Targeting
Multiprocessors and Workstations”, ASPLOS VI,
October 1994.

[7] J. Lo, S. Eggers, J. Emer, H. Levy, R. Stamm, D.
Tullsen, “Converting thread-level parallelism into
instruction-level parallelism via simultaneous
multithreading”, ACM TOCS 15, 2, August 1997.

[8] Jonathan Schwartz on Sun’s Niagara processor:
http://blogs.sun.com/roller/page/jonathan/
20040910#the_difference_between_humans_and

[9] Intel web site, http://www.intel.com/pressroom/
archive/speeches/otellini20030916.htm

14

[10] J. Larus, M. Parkes, “Using Cohort Scheduling to
Enhance Server Performance”, USENIX Tech.
Conf., June 2002.

[11] J. Lo et al., “An Analysis of Database Workload
Performance on Simultaneous Multithreaded
Processors”, ISCA, June 1998.

[12] S. Parekh, S. Eggers, H. Levy, J. Lo, “Thread-
sensitive Scheduling for SMT Processors”,
http://www.cs.washington.edu/research/smt/

[13] N. Tuck, D. Tullsen, “Initial Observations of the
Simultaneous Multithreading Pentium 4
Processor”, PACT, September 2003.

[14] D. Tullsen, S. Eggers, H. Levy, “Simultaneous
Multithreading: Maximizing On-Chip
Parallelism”, ISCA, June 1995.

[15] P. Magnusson et al., “ SimICS/sun4m: A Virtual
Workstation”, USENIX Tech. Conf., June 1998.

[16] D. Nussbaum, A. Fedorova, C. Small, “The Sam
CMT Simulator Kit.”, Sun Microsystems TR 2004-
133, March 2004.

[17] R. von Behren, J. Condit, F. Zhou, G. C. Necula, E.
Brewer, "Capriccio: Scalable Threads for Internet
Services," SOSP, October 2003.

[18] “IBM eServer iSeries Announcement”,
http://www-1.ibm.com/servers/eserver/iseries/
announce/

[19] E. Berg, E. Hagersten, “Efficient Data-Locality
Analysis of Long-Running Applications,” TR
2004-021, University of Uppsala, May 2004

[20] P. Denning, “The working set model for program
behavior”, CACM 1l, 5 (May 1968), 323-333.

[21] P. Denning, “Thrashing: Its causes and
prevention”, Proc. AFIPS 1968 Fall Joint
Computer Conference, 33, pp. 915-922, 1968.

[22] A. Agarwal, M. Horowitz, J. Hennessy, "An
Analytical Cache Model," ACM TOCS 7, pp. 184--
215, 1989.

[23] R. Eickenmeyer et al., “Evaluation of
multithreaded uniprocessors for commercial
application environments”, ISCA’96.

[24] L. Barroso et al., “Piranha: A Scalable
Architecture Based on Single-Chip
Multiprocessing”, ISCA’00.

[25] J. Torrellas, A. Tucker, A. Gupta, “Evaluating the
performance of cache-affinity scheduling in
shared-memory multiprocessors”, Journal of
Parallel and Distributed Computing 24, pp. 139—
151, Feb. 1995.

[26] F. W. Burton and M. R. Sleep, “Executing
Functional Programs on a Virtual Tree of
Processors”, Proceedings of the ACM FPCA,
Portsmouth, NH, pp. 187-194, ACM, 1981.

[27] G. E. Suh, S. Devadas, and L. Rudolph,
“Analytical cache models with application to

cache partitioning,” 15th International Conference
on Supercomputing, 2001.

[28] R. Thekkath, S. Eggers, “Impact of Sharing-Based
Thread Placement on Multithreaded
Architectures”, ISCA’94.

[29] J. M. Borkenhagen, R. J Eickemeyer, R. N. Kalla,
S.R. Kunkel, “A multithreaded PowerPC processor
for commercial servers”, IBM Journal of
Research and Development 44, 6, pp. 885.

[30] A. Ailamaki, D. DeWitt, M. Hill, D. Wood.
"DBMSs on modern processors: Where does time
go?" VLDB ‘99, September 1999.

[31] A. Barroso, K. Gharachorloo, E. Bugnion,
"Memory System Characterization of Commercial
Workloads", ISCA’98.

[32] K. Keeton, D. Patterson, Y. He, R. Raphael, and
W. Baker, "Performance characterization of a
Quad Pentium Pro SMP using OLTP Workloads",
ISCA’98.

[33] Y. Wiseman, D. Feitelson, “Paired Gang
Scheduling”, IEEE TPDS, 14, 6, pp. 581-592,
2003.

[34] A. Fedorova, M. Seltzer and M. Smith, “Modeling
Effects of Memory Hierarchy Performance on the
IPC of Multithreaded Processors”, Harvard
University Technical Report, In Preparation.
Contact fedorova@eecs.harvard.edu for a copy.

[35] M. Seltzer, P. Chen, J. Ousterhout, “Disk
Scheduling Revisited”, Proceedings of the
USENIX Winter 1990 Technical Conference

[36] K. Olukotun, B.Nayfeh, L. Hammond, K. Wilson
and K. Chang, “The Case for a Single-Chip
Multiprocessor”, ASPLOS 1996.

[37] B. Gamsa, O. Krieger, J. Appavoo, M. Stumm,
“Tornado: Maximizing Locality and Concurrency
in a Shared Memory Multiprocessor Operating
System.'' OSDI 1999, pp. 87-100

[38] D. Ellard and M. Seltzer, “NFS Tricks and
Benchmarking Traps”, Proceedings of the
USENIX Annual Technical Conference, FREENIX
Track, June 2003

[39] A. Fedorova, M. Seltzer, C. Small and D.
Nussbaum, "Throughput-Oriented Scheduling On
Chip Multithreading Systems", Technical Report
TR-17-04, Harvard University, August 2004.

