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Abstract 

An operating system’s design is often influenced by the architecture of the target hardware. While uni-
processor and multiprocessor architectures are well understood, such is not the case for multithreaded chip 
multiprocessors (CMT) – a new generation of processors designed to improve performance of memory-intensive 
applications. The first systems equipped with CMT processors are just becoming available, so it is critical that we 
now understand how to obtain the best performance from such systems. 

The goal of our work is to understand the fundamentals of CMT performance and identify the implications for 
operating system design. We have analyzed how the performance of a CMT processor is affected by contention for 
the processor pipeline, the L1 data cache, and the L2 cache, and have investigated operating system approaches to 
the management of these performance-critical resources. Having found that contention for the L2 cache can have the 
greatest negative impact on processor performance, we have quantified the potential performance improvement that 
can be achieved from L2-aware OS scheduling.  We evaluated a scheduling policy based on the balance-set 
principle and found that it has a potential to reduce miss ratios in the L2 by 19-37% and improve processor 
throughput by 27-45%. To achieve a similar improvement in hardware requires doubling the size of the L2 cache.   

1. INTRODUCTION
An operating system provides a layer of 

abstraction between the hardware and the software. Its 
job is to expose the power of the hardware to 
applications, while hiding its complexities. It is no 
surprise that the architecture of the hardware influences 
the design of the operating system. The subject of 
operating system design for conventional processors has 
been addressed in the past.  This paper begins to 
investigate the area of operating system design for a 
new family of processors: multithreaded chip 
multiprocessors (CMT). 

CMT processors combine chip multiprocessing 
(CMP) and hardware multithreading (MT) – today’s 
architectural trends designed to improve processor 
utilization by offering better support for thread-level 
parallelism.  A CMP processor includes multiple 
processor cores on a single chip, which allows more 
than one thread to be active at a time and improves 
utilization of chip resources. An MT processor 
interleaves execution of instructions from different 
threads. As a result, if one thread blocks on a memory 
access, other threads can make forward progress. 
Numerous studies have demonstrated the performance 
benefits of CMP and MT [4-7, 13, 23, 29, 36].  

Thanks to improvement in chip densities, it has 
become possible to combine these two approaches in 
CMTs. The goal of CMTs is to improve performance of 
an important class of modern applications, such as web 

services, application servers, and on-line transaction 
processing systems. These applications are notorious for 
poor utilization of the CPU pipeline – they usually 
include multiple threads of control executing short 
sequences of integer operations, with frequent dynamic 
branches. Such structure decreases cache locality and 
branch prediction accuracy and causes frequent 
processor stalls [11, 30, 31, 32]. Modern superscalar 
processors, using speculative and out-of-order 
execution, can wring instruction-level parallelism (ILP) 
from scientific workloads, but can do little for branch-
heavy transaction processing-style workloads. Even 
some SPEC CPU benchmarks yield processor pipeline 
utilizations as low as 19% [14]. This means that the 
majority of the time, the processor pipeline is being 
unused.  CMT processors are designed to address this 
problem.  

Systems equipped with CMT processors are 
beginning to become available at the time of the writing. 
IBM released its POWER 5 CMT chip in the summer of 
2004 [18]; Sun Microsystems and Intel plan to ship their 
commercial CMT processors in 2005 [8, 9].  

CMTs differ from conventional processors in a 
fundamental way: they are equipped with dozens of 
simultaneously active thread contexts (e.g., Sun’s 
Niagara processor will have eight cores, each with four 
thread contexts [8]), and, as a result the competition for 
shared resources is intense. This carries new 
implications for operating system designs targeted at 
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such processors. We have studied how contention for 
the processor pipeline, the L1 data cache and the L2 
cache affects system performance, with the objective of 
understanding which of these shared resources are most 
likely to become performance bottlenecks so that we 
can adapt operating systems to compensate for these 
bottlenecks. We have found that the latency resulting 
from a poor hit rate in the L1 cache can be effectively 
hidden by hardware multithreading, but that high 
contention for the L2 can significantly hurt the overall 
processor performance.  This result drove us to 
investigate how much potential there is in using the OS 
scheduling to improve L2 (and subsequently overall 
processor) performance.  

We have considered an OS scheduling algorithm 
based on the balance-set principle [21] and found that it 
has the potential to reduce the L2 cache miss ratios by 
19-37%, yielding a performance improvement of 27-
45% – an improvement that could have been achieved 
in hardware only by doubling the size of the L2 cache.     

While this result is encouraging, it is not yet clear 
what fraction of this potential can be realized by an 
implementation; at the conclusion of this paper we 
present a research agenda for implementing this 
algorithm and discuss the challenges involved in 
performing this task. 

The major contributions of our work include: 
quantifying the effects of contention for various 
components of CMT processors on the overall 
performance, the design of a new scheduling algorithm 
that yields better L2 performance, an evaluation of this 
algorithm, and an adaptation of an existing model for 
cache miss ratios to make it work with multithreaded 
workloads (this was necessary for evaluation of the 
balance-set scheduling algorithm). 

Using software mechanisms to best exploit 
existing hardware helps us build systems that can 
continue to provide good performance as applications 
evolve.  While hardware designers do their best to make 
processors work well with present-day workloads, 
accurately predicting the future is a black art.   Since 
hardware cannot adapt as quickly as applications 
change, it is important to design operating system 
software that will keep systems running well as 
applications evolve.  

The rest of this paper is structured as follows: in 
Section 2 we provide background on CMT systems, 
describe the CMT model that we are using, and discuss 
our simulation technology. In Section 3, we analyze 
shared resources on a CMT processor to identify the 
performance bottlenecks and conclude that performance 
optimizations targeted at the L2 cache are likely to have 
the greatest impact.  In Section 4 we investigate 
potential performance gains from balance-set 

scheduling for improving the L2 performance. We 
present the challenges involved in implementing such a 
scheduler and lay out a future research agenda in 
Section 5.  We discuss related work in Section 6 and 
conclude in Section 7. 

2. BACKGROUND AND SIMULATOR
The systems addressed in this study have multiple 

processor cores on a chip (chip multiprocessing [36]) 
and multiple hardware thread contexts on each 
processor (hardware multithreading).  

There are several ways to implement hardware 
multithreading, and they can be broadly categorized as 
coarse-grained, fine-grained, and simultaneous. The 
main difference between these categories is how the 
processor switches among thread contexts.   

Coarse-grained multithreading switches to a new 
thread when a thread occupying the processor blocks on 
a memory request or other long-latency operation [5]. 
While performance benefits of this architecture have 
been demonstrated for multithreaded workloads [23], it 
has also been shown that performance is limited on such 
architectures by the high cost of context switching [6].  

This problem is addressed on fine-grained 
multithreaded, or interleaved, architectures, which 
switch threads on every cycle [6]. 

Simultaneous multithreading (SMT) architectures 
add multi-context support to multiple-issue, out-of-order 
processors. Unlike conventional multiple-issue 
processors, they can issue instructions from different 
instruction streams on each cycle for improved 
instruction-level parallelism [7, 14].   

Our model of a multithreaded processor core is 
based on the concept of fine-grained multithreading 
(interleaving), proposed by Laudon et al. [6]. An MT 
core has several hardware thread contexts (usually two, 
four, or eight), where each context consists of a set of 
registers and other thread state. Such a processor 
interleaves execution of instructions from the threads, 
switching between contexts on each cycle.  When one or 
more threads are blocked, the system continues to 
switch among the remaining available threads.   

For the purposes of our study we built a CMT 
system simulator toolkit [16] as a set of extensions to 
the Simics simulation toolkit [15]. Simics provides full-
system simulation of several popular hardware 
platforms. Our simulator is based on an UltraSPARC 
II® machine. Simics can bootstrap the simulated 
machine with the Solaris™ operating system and 
standard Unix environment. All the simulations 
described in this paper are execution-driven and include 
both user-level and OS code.     

Our toolkit models systems with multiple 
multithreaded CPU cores. The number of CPU cores per 
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chip and the degree of hardware multithreading are 
configurable.  

Our simulated CPU core has a simple RISC 
pipeline with one set of functional units.  We have 
decided to simulate a simple, classical RISC core, as 
opposed to a complex out-of-order processor, because 
we believe that this is a viable architecture for future 
CMT processors with a large number of processor cores 
on a chip.  Allowing each core to be simple, allows 
placing more multithreaded cores on a chip – and this is 
an attractive design option for OLTP and server 
workloads, since such workloads typically have a high 
degree of application-level parallelism and benefit little 
from complex super-scalar pipeline designs.  Moreover, 
a previous study has shown that for such workloads, 
core complexity should be traded off for an increased 
number of hardware contexts [24].  Additionally, we 
believe that the results of our study that concern the 
memory hierarchy are applicable to a wide range of 
multithreaded architectures, since the architecture of the 
memory hierarchy does not depend on the architecture 
of the pipeline. 

Our simulator accurately simulates pipeline 
contention, the L1 cache, bandwidth limits on crossbar 
connections between the L1 and L2 caches, the L2 
cache, and bandwidth limits on the path between the L2 
cache and memory. We do not simulate a shared TLB; 
our measurements have shown that the TLB is not a 
highly contended resource for the benchmarks we ran. 
Our simulator is configured with one to four processor 
cores, depending on the experiment. Each core includes 
four hardware contexts, an 8KB L1 data cache and a 
16KB L1 instruction cache (both 4-way set-associative). 
We simulate a unified 12-way set-associative L2 cache, 
shared among all cores on a chip, whose size we vary 
depending on the experiment.  We chose cache sizes to 
be similar to those used in the hyper-threaded Pentium 
IV, a one-core multithreaded processor that is 
commercially available at the time of this writing [13].  

3. SOURCES OF PERFORMANCE
BOTTLENECKS 

In this section we analyze processor pipeline and 
on-chip caches, L1 data cache and the L2 cache, as 
potential performance bottlenecks on CMT processors. 
Based on our experience, other shared resources such as 
the TLB or the L1 instruction cache are not likely to 
become performance bottlenecks for the workloads we 
consider, and, therefore, we do not address them in this 
study.  

Multithreaded processors are specifically designed 
to hide memory latency experienced by applications 
when the processor cache hit rate is poor. When 
memory latency can be hidden by hardware 

multithreading, the processor pipeline becomes a 
performance bottleneck. However, when memory 
latency is too high to be hidden, the on-chip caches 
become the performance bottleneck.  

This section consists of two parts: first, in Section 
3.1, we consider the scenario when the processor 
pipeline is the performance bottleneck. We propose an 
OS scheduling technique designed to better manage 
pipeline contention. In Section 3.2 we investigate the 
scenario when the processor caches are the performance 
bottleneck. Specifically, we explore under which 
conditions the L1 data cache (Section 3.2.1) or the L2 
cache (Section 3.2.2) become performance bottlenecks. 
We conclude that while hardware multithreading does 
an excellent job of hiding latency resulting from faults 
in the L1 data cache, its capability to hide latencies 
resulting from poor performance in the L2 is much more 
limited.  In Section 4 we propose an OS scheduling 
algorithm designed to manage L2 contention.  

3.1. Processor pipeline 
Operating system approaches to managing pipeline 

contention in multithreaded processors have been 
proposed before [1, 2, 12].  As we elaborate in Section 
6, we were concerned that the applicability of these 
approaches is limited for CMT processors because they 
will not scale well in systems with several dozens of 
hardware contexts. We investigated an approach with 
better scalability properties.  

They key observation is that threads differ in how 
they use the processor pipeline. Compute-intensive 
threads with predictable branch targets, such as 
scientific workloads, issue instructions frequently and 
utilize the pipeline intensively.  Threads that exhibit 
poor locality of memory reference, such as database 
applications, frequently stall while waiting for a 
response from the memory hierarchy: such threads are 
memory-intensive. 

This observation suggests how to better manage 
pipeline contention. By co-scheduling compute-
intensive threads with memory-intensive threads on the 
same processor core the scheduler can balance the 
demand for pipeline resources across cores. A compute-
intensive thread can use the pipeline while the memory-
intensive thread is blocked on memory.  This idea is 
similar to paired gang scheduling [33], a technique for 
scheduling on parallel supercomputers that matches 
compute-intensive and I/O intensive jobs for optimal 
resource utilization.  

A scheduler can identify compute-intensive and 
memory-intensive threads by measuring the workload’s 
CPI (cycles per instruction) metric. Workloads with low 
CPIs (those nearing 1 on our simple pipeline) have high 
pipeline utilization, and vice versa.  Using CPI as a 
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heuristic for scheduling is especially attractive on a 
CMT processor: CPI can be easily measured, nicely 
captures the workloads’ pipeline utilization, and enables 
scheduling decisions based on local information. 

We have qualified the potential performance 
improvement from such a scheduling policy, by running 
the following experiment. We constructed 
microbenchmarks with the following single-threaded 
CPI’s: 1, 6, 11, and 16, to simulate compute-intensive 
and progressively more memory-intensive workloads. 
Then, on a machine with four processor cores and four 
thread contexts on each processor, we tried several ways 
to schedule 16 threads: four each with CPIs of 1, 6, 11 
and 16. To assign threads to a particular processor, we 
use a processor_bind() system call, available on 
Solaris™.  Each thread assigned to a particular core is 
bound to its own hardware context. The processor 
interleaves instructions issued on processors’ contexts. 
Therefore, all threads run in parallel and get equal 
shares of processor issue slots. We start the 
measurement at the main loop of the benchmarks and 
stop the measurement whenever any thread finishes. 

Table 1 illustrates four different schedules that we 
evaluated. Schedules (a) and (b) match compute-
intensive threads with memory-intensive threads, and 
are expected to perform better than schedules (c) and (d) 
that place compute-intensive threads on the same core.  

Core 0 Core 1 Core 2 Core 3 

(a) 1, 6, 11, 16 1, 6, 11, 16 1, 6, 11, 16 1, 6, 11, 16 

(b) 1, 6, 6, 6 1, 6, 11, 11 1, 11, 11, 16 1, 16, 16, 16 

(c) 1, 1, 6, 6 1, 1, 6, 6 11, 11, 11, 11 16, 16, 16, 16 

(d) 1, 1, 1, 1 6, 6, 6, 6 11, 11, 11, 11 16, 16, 16, 16 

Table 1: Assignment of threads to cores for schedules (a)-(d). 
Numbers in cells show the single-threaded CPIs of threads 
assigned to this core. 

Figure 1 shows the IPC (instructions per cycle) 
achieved by each schedule, broken down by CPU. As 
expected, schedules a) and (b) achieve the best 
performance1. The difference in IPC between schedule 
(d) and schedules (a) and (b) is a factor of two. The IPC 
breakdown by CPU indicates that the reason for better 
performance for schedules (a) and (b) is that they 
produce a more balanced utilization of processor 
resources.  

While the potential performance improvement 
from this scheduling technique is dramatic, to achieve it, 

1 Schedule (b) performs slightly better than schedule (a) because 
workloads with CPI 16 that dominate core 3 in schedule (b) have a 
smaller I-cache footprint and achieve a better I-cache hit rate.  

it was necessary to have threads with a wide range of 
CPIs. To determine whether real workloads can benefit 
from this scheduling technique in the same way we 
measured single-threaded CPIs for a number of standard 
integer benchmarks: SPEC CPU (int), SPEC JVM, 
SPEC JBB and SPEC Web. We saw a very small 
variation in CPIs across the benchmarks. For most 
benchmarks, the CPI howers around 4. The smallest 
average CPI that we saw was 2.37 for 164.gzip, the 
largest – 5.11 for 181.mcf. The dynamic instruction mix 
also shows little variation across the benchmarks. If 
these benchmarks are characteristic of real workloads, 
these data show that there is little variation in pipeline 
utilization. Therefore, there is little potential for 
performance gains from exploiting this variation. Our 
experiments with the SPEC benchmarks confirmed that 
performance gains from CPI-based scheduling are 
modest (about 5%) for such workloads.  

Figure 1. IPC achieved by each schedule, broken down by 
CPU. 

While the benefits of CPI-based scheduling for 
SPEC workloads are small with our simulated pipeline, 
they may be greater on an SMT system. Recall that 
SMT systems have multiple functional units and a 
multiple-issue pipeline. The range of single-threaded 
CPIs for the integer workloads may be greater on such 
machines.  Since our simulator does not have the ability 
to simulate a super-scalar pipeline, we could not 
confirm that this is the case. But this is an interesting 
area for future exploration.  

3.2. Processor caches 

3.2.1. The L1 data cache 
Multithreaded processors are typically configured 

with small L1 data caches, e.g., the L1 data cache on 
Intel's hyper-threaded Pentium IV is 8KB [13]. We were 
concerned that this would result in high latencies 
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associated with handling cache faults, which the multi-
threaded processor would not be able to hide.  The 
latency-hiding ability depends on the degree of 
multithreading in the processor’s core. We use four for 
the degree of multithreading, which has been shown to 
work best for the architecture we are simulating [6].  
For the experiments in this section, the simulator has 
been configured with a single core: since there is an L1 
data cache on each core, simulating a single core was 
sufficient. 
 We measured cache miss ratios for several cache 
sizes for the following workloads: SPEC CPU’s 
186.crafty, 164.gzip, 175.vpr (place), Berkeley DB and 
SPEC JBB. For each experiment, we ran four copies of 
the same benchmark on a single-core machine – the 
threads running the workload shared the core’s data 
cache. Benchmarks did not share any data. We 
experimented with several cache sizes, from 8KB (this 
would be a typical cache size used on a CMT core) to 
128 KB.  

As Figure 2 shows, for small cache sizes, cache 
miss ratios are way above what is considered acceptable 
for conventional single-threaded processors. For SPEC 
JBB, the miss ratio is high even when the cache size is 
128 KB. 

Figure 2. D-cache miss ratios as the cache size changes. 
 
However, as we can see from Figure 3, the 

processor performance is immune to such poor cache 
behavior. Even when cache miss ratios are above 20%, 
the IPC2 (instructions per cycle) is between 0.7 and 0.9, 
and it does not change much as cache size changes.  
This suggests that hardware multithreading does a good 
job of hiding the latency associated with faulting in the 
L1 data cache. The implication of this result is that 
operating system policies targeted at improving 
performance in the L1 data cache are not likely to bring 
                                                 
2
 Our simple pipeline issues at most one instruction each cycle. The 

highest IPC it is able to obtain is one.  

significant performance improvements (and we have 
confirmed this experimentally), because the hardware 
already masks poor cache performance. 

Figure 3. Pipeline utilization as D-cache size changes. 
 
  
3.2.2. The L2 cache  

The L2 cache has a greater potential for becoming 
a performance bottleneck when the miss ratio is high, 
because the latency between the L2 and main memory is 
significantly greater than that between the L1 and L2.  
For example, on the hyper-threaded Pentium IV, a trip 
from L1 to L2 takes 18 processor cycles, while a trip 
from L2 to main memory takes 360 cycles [13].  These 
latencies are set at 20 and 120 cycles in our model.  
Penalties from faulting in the L2 are further increased 
due to competition for main memory bandwidth.   

To evaluate the effect of L2 performance on 
processor IPC, we used a dual-core MT machine with 
four thread contexts per core, an 8KB L1 data cache and 
L2 caches of varying sizes.  

Our workload consists of nine benchmarks from 
the SPEC CPU 2000 suite (164.gzip, 175.vpr (place), 
175.vpr (route), 176.gcc, 179.art, 186.crafty, 188.ammp, 
197.parser, 255.vortex).  We chose these particular 
benchmarks, because we wanted our workload to 
include programs with both good and poor cache 
locality.  We run two copies of each benchmark, giving 
us an 18-thread workload (each benchmark is a single-
threaded process that runs in its own thread). 

As explained in Section 2, our simulations are 
execution-driven, and the benchmarks are run in the 
Solaris™ 9 operating environment.  Solaris™ 9 does 
not include special support for CMT processors. From 
the point of view of the OS, our simulated dual-core 
four-way multithreaded machine looks like a 
conventional eight-way multiprocessor.  The Solaris™ 
scheduler assigns threads to hardware contexts as if it 
were assigning them to processors on a multiprocessor 
system, picking eight threads at a time to schedule on 
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the eight hardware contexts during each scheduling time 
slice.  We vary the size of the L2 cache and show how 
this affects L2 performance and processor IPC.  The 
hyper-threaded Pentium IV has a 256 KB L2 cache. We 
simulated both larger and smaller caches to explore 
effects of light and heavy cache contention on 
performance, without having to vary the workload.  We 
fast-forward the simulation until all running threads 
reach the main loop, and then perform a detailed 
simulation for one billion cycles.   

Figure 4. IPC for the 18-process SPEC workload. Processor 
IPC is sensitive to the size of the L2.  

Figure 5. L2 miss ratios for the 18-process SPEC workload. 
The L2 miss ratio falls as the L2 size increases.  

 
Figure 4 shows the processor IPC resulting from 

running this SPEC workload. Performance degradation 
is evident as the L2 cache becomes smaller. Figure 5 
shows that the reason for performance degradation is 
high miss ratios for small L2 sizes.   
 This result suggests that multithreaded processors 
are limited in their ability to hide high latency resulting 
from handling faults in the L2.  Since modern 
applications exhibit a dangerous trend of becoming 
progressively more data-intensive, it is possible that 
CMT processors equipped with a sufficiently large L2 

cache for today’s workloads will fail to satisfy the needs 
of applications in the near future. Since changing 
software is easier than changing hardware, it is wise to 
equip the operating system with the ability to handle 
resource shortages when the hardware fails to do so. 
The next section quantifies the potential performance 
improvement that can be achieved from better OS 
scheduling.   
 
4. BALANCE-SET SCHEDULING  

Balance-set scheduling has been proposed by 
Denning [20] as a way of improving the performance of 
virtual memory. We evaluated the effectiveness of this 
approach for the L2 cache.  The idea behind balance-set 
scheduling is as follows.  Separate all runnable threads 
in subsets, or groups, such that the combined working 
set of each group fits in the cache. Then, schedule a 
group at a time for the duration of the scheduling time 
slice. By making sure that the working set of each 
scheduled group fits in the cache, this algorithm is 
designed to reduce cache miss ratios.  

However, we found that working set size was not a 
good indicator of the workload's cache behavior. When 
we used a model based on the working set principle [22] 
to estimate cache miss ratios of SPEC workloads, the 
estimates were often inconsistent: a workload with a 
large working set would produce lower miss ratios than 
a workload with a small working set, and vice versa. 
Further investigation [39] revealed that the working set 
is a good indicator of a workload’s cache miss ratio only 
if the program accesses its working set uniformly – this 
assumption of uniform access is the premise underlying 
Denning's original work on balance-set scheduling [21].  
As we learned, this assumption does not hold for 
standard benchmarks (SPEC CPU, SPEC Web, SPEC 
JBB). 

We needed to find a better way to assess a 
workload’s cache behavior, so we searched for a model 
that would accurately estimate cache miss ratios based 
on some characteristics of a workload. 

In Section 4.1 we describe the model for cache 
miss ratio that we used and how we adapted this model 
so that it could be used with balance-set scheduling. In 
Section 4.2 we evaluate the potential performance gains 
from the balance-set scheduling algorithm based on this 
model.  

 
4.1. A model for  cache miss ratios 
 Berg and Hagersten developed a model for 
estimating cache miss ratios based on reuse distances 
[19]. A reuse distance is the amount of time3 that passes 
                                                 
3
 Time is measured in terms of memory references. 
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between successive references to the same memory 
location. The model bases the probability of a cache hit 
on the reuse distance.  The smaller the reuse distance, 
the greater the probability that the reference results in a 
hit. Using this model, Berg and Hagersten estimated 
cache miss ratios of SPEC workloads to within about 
5% of actual values. 
 Figure 6 shows an example of a reuse-distance 
histogram (a non-normalized reuse-distance 
distribution) for 188.ammp – a benchmark from the 
SPEC CPU 2000 suite. A significant fraction of the 
reuse distances are large – this is an indication of poor 
locality. Our experiments confirmed that this 
benchmark has exceptionally high cache miss ratios.   

 The input necessary for this model, a reuse-
distance histogram, can be built at runtime by 
monitoring memory references, using the standard 
hardware watchpoint mechanism [19].   

Figure 6. Reuse distance distribution for 188.ammp. 
 
 The reuse-distance model estimates cache miss 
ratios for a single workload.  For balance-set 
scheduling, we need to decide which threads produce 
the lowest miss ratios when scheduled to run together 
and access the cache concurrently. Therefore, we need 
to estimate cache miss ratios for groups of threads.  To 
do this, we build individual reuse-distance histograms 
for threads, and then combine these histograms to 
estimate miss ratios for groups of threads.  
 We developed three methods for estimating group 
miss ratios: COMB, COMB+IPC, and AVG. COMB 
combines individual reuse distance histograms into a 
single histogram and uses this histogram to predict the 
miss ratio for the group. COMB+IPC improves on 
COMB by making adjustments for relative differences 
in the speeds of the running threads. AVG estimates 
miss ratios for each thread in a group as if it ran with a 
dedicated partition of a smaller cache and then averages 
the resulting ratios. We will now describe these methods 
in detail and then evaluate their accuracy. 
 

4.1.1. Method #1: COMB 
To combine several histograms into one, we use 

the following two-step algorithm:  
1. For each reuse distance, sum the number of 
references falling within this distance for all 
histograms.  
2. Multiply the value of each reuse distance 
appearing in the histogram by N or N-1, where N 
is the number of combined histograms (i.e., the 
number of threads). See Figure 7.  

Step 2 is necessary because when several threads share 
the cache using fine-grained multithreading, the reuse 
distance for each memory re-reference will be 
increased. For example, if a thread running on its own 
re-referenced a memory location within one time step, 
when it runs with three other threads, before it re-
references that memory location, the other threads could 
intervene with their own memory references. As a 
result, the original reuse distance of one, for instance, 
could become anywhere between one and four.  We 
have experimented with adjusting the reuse distance by 
multiplying it by coefficients from 1 to N, where N is 
the number of histograms (number of threads) being 
combined. We found that using a coefficient of N-1 
worked better for larger caches, and a coefficient of N 
worked better for smaller caches.  
 
Histogram A  Histogram B  Histogram 

A+B 
R.dist # ref.  R.dist # ref.  R.dist # ref. 

1 90  1 30  2 120 
10 50  10 46  20 96 
20 78  20 27  40 105 
… …  … …  … … 
100 14  100 18  200 32 

Figure 7. Combining reuse-distance histograms. 
 
 Our next method, COMB+IPC, deterministically 
calculates this coefficient, by taking into account the 
different rates at which threads issue memory 
references.  
   
4.1.2. Method #2: COMB + IPC 
 When several threads share a cache, the cache 
access patterns of slower threads will have a smaller 
effect on the overall cache miss ratio than those of fast 
threads, because slower threads will issue memory 
references at a slower rate. It is necessary to account for 
these differences when combining reuse-distance 
histograms.  
 The memory reference rate, number of references 
per cycle, can be decomposed into two components, 
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references per instruction and instructions per cycle 
(IPC): 

Refs. per cycle = Refs per instr. *  IPC. 
 
 To account for relative differences in references 
per instruction, we collect the data for reuse-distance 
histograms over the same window of instructions for all 
threads. 
 To understand how we adjust for relative 
differences in instructions per cycle (IPC), consider the 
following example: 

Suppose FastThread runs twice as fast as 
SlowThread – their respective IPCs are 1 and 0.5. When 
these two threads run together, about half of 
FastThread’s references will be interspersed with 
SlowThread’s references. Therefore, for FastThread, 
half of the reuse distances will remain the same, and the 
other half will increase by a factor of two. (See Figure 
8.) To reflect this, we multiply the reuse distances in 
FastThread’s histogram by the following coefficient: 
(0.5 * 1 + 0.5 * 2) = 1.5 

SlowThread, however, will not be so lucky: all of 
its memory references will be interspersed with the 
references made by FastThread.  In fact, each reference 
that SlowThread makes will be interspersed with two 
memory references made by FastThread. Therefore, all 
reuse distances will increase by a factor of three.  
 
FastThread:    SlowThread:  

A B A C A  E ... F ... F 

FastThread and SlowThread: 

A E B A F C A F 

 
Figure 8. Illustration of how reuse distances change when 
threads with unequal speeds run in parallel. 
 
 These observations lead us to the following 
formula for DIST_COEFF, a coefficient by which we 
adjust the values of reuse distances of each thread: 

 DIST_COEFFi  = i

n

j
j IPCIPC /

1








∑

=
 ,  

where i is the index of the thread whose coefficient we 
are computing and n is the total number of threads in the 
group. 
 Finally, we need to make an adjustment to the 
number of references that fall within each reuse-
distance: a slow thread will be issuing memory 
references more slowly than a fast thread, so we need to 
scale the number of references that fall within each 

reuse-distance accordingly. This produces the following 
formula to compute REFS_COEFF – the corresponding 
scaling coefficient: 
 
 REFS_COEFFi = IPCi / MAX_IPC,  
 
where i is the index of the thread whose coefficient we 
compute and MAX_IPC is the largest IPC in the 
combination of threads.    
 Once we adjust each reuse distance histogram by 
multiplying reuse distances by DIST_COEFF and the 
number of references by REFS_COEFF, we simply 
merge all reuse distance histograms (See Figure 9). 
  

Histogram A 
(IPC = 1) 

 Histogram B 
(IPC = 0.5) 

 Histogram 
A+B 

R.dist # ref.  R.dist # ref.  R.dist # ref. 

1.5 90  3 15  1.5 90 
15 50  30 23  3 15 
30 78  60 14  15 50 
… …  … …  … … 
150 14  300 9  300 9 

Figure 9. Combining adjusted reuse-distance histograms. 
Note that we use the same histograms as in the example in 
Figure 7, and make the adjustments to them according to the 
method described in this section.  
 
 The drawback of a combination-based approach 
such as this one is that it is too computationally 
expensive to implement in a real system. Imagine a 
machine with 32 thread contexts and 100 threads. The 

scheduler has to potentially combine 





32

100
 histograms, 

and estimate the miss ratios. Although this computation 
does not have to be performed often (as we explain in 
Section 6), it still adds to the overhead. The approach 
we describe next is more practical. 
 
4.1.3. Method #3: AVG 
 The intuition behind AVG is to pretend that each 
thread runs with its own dedicated partition of a cache.  
AVG estimates miss ratios for each thread as if it ran 
with a smaller cache, of size TOTAL_CACHE / 
NUMBER_OF_THREADS. Then, to predict the miss 
ratio for a group of threads, it averages the estimated 
ratios of the individual threads. We found that 
predictions based on this method are just as accurate as 
those based on combination-based methods, and are 
significantly less expensive to produce.  

The miss ratio estimate has to be computed once 
for each workload, and then, to project miss ratios for 
multiple workloads, the scheduler needs only to average 
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several values. Furthermore, the scheduler can 
remember averages for small groups of threads, and 
then predict the miss ratio for a larger group by merging 
the known averages.   

 
4.1.4. Evaluating Model Accuracy  

To test the effectiveness of the model, we used the 
18-benchmark SPEC CPU2000 workload described in 
Section 3.2.2. We estimated miss ratios for all possible 
groups consisting of eight threads, for four L2 cache 
sizes, using COMB, COMB+IPC and AVG. We 
validated the estimated miss ratios for those thread 
groups that produced the best schedule for the balance-
set scheduling algorithm, for each cache size.  (We 
explain how such groups were selected in the next 
section.)  

To validate the estimated miss ratios for the 
groups, we simulated each group on a machine with two 
cores and four hardware contexts per core for 100 
million cycles after fast-forwarding the simulation past 
the benchmark initialization phase.  

Figure 10. Actual vs. predicted miss ratios. 

Figure 10 shows the actual and predicted miss 
ratios obtained using the three methods for various 
cache sizes.  The displayed miss ratios are the averaged 
quantities for the thread groups producing the best 
schedule for each cache size (standard deviation is 
small). Our estimated miss ratios are, on average, within 
17% of the actual miss ratios. Errors are expected, given 
that we applied the model to a multi-program workload, 
simulated a set-associative cache (the reuse-distance 
model assumes a fully-associative cache), and used a 
window size of 500 million instructions when collecting 
data for reuse-distance histograms (Berg and Hagesten 
suggest using smaller windows in order to avoid 
spanning different phases in behavior of a program).   

Although error rates are high, reducing them is not 
critical for us: what is important is that the model is 

accurate enough to distinguish between thread groups 
that produce high miss ratios and those that produce low 
miss ratios.  And, as we demonstrate in the next section, 
this is precisely what we need to improve the 
performance of the default scheduler.  

 
4.2. Balance-set scheduling   

The ability to predict cache miss ratios for groups 
of threads makes it possible to identify the thread 
groups that produce low cache miss ratios. We leverage 
this in the balance-set scheduling algorithm. Before 
implementing the algorithm, we wanted to quantify the 
performance improvement that could be expected from 
using it.  This section describes how we evaluated the 
potential of this algorithm for reducing L2 contention 
and improving processor performance by emulating its 
actions. First, we describe the scheduling algorithm, and 
then explain how we emulated it. In Section 4.3 we 
present performance results and offer analysis. We 
discuss implementation challenges and potential 
runtime costs in Section 5.  
 
4.2.1. Scheduling Algor ithm 
Step 1 – Choosing the L2 miss ratio threshold  
(Performed periodically, as the set of threads running on 
the system changes): 

The job of the scheduler will be to keep the L2 
miss ratios below this threshold. The goal is to set 
the miss ratio threshold to be as low as possible, 
but not too low so as to starve some threads. The 
scheduler first identifies the most cache-greedy 
thread, because it is this thread that runs the danger 
of being starved. Miss ratios obtained from 
analysis of individual reuse-distance histograms 
are used to identify this thread.  
Next, once the scheduler has analyzed the miss 
ratios for all groups of threads, it examines the 
estimated miss ratios for the groups that include 
the greediest thread, and picks the smallest miss 
ratio.  This miss ratio is the smallest that can be 
achieved without starving the greediest thread, and 
it is this miss ratio that is chosen as the threshold.  

Step 2 – Miss ratio analysis to identify the thread 
groups that will produce low cache miss ratios 
(Performed periodically, as the set of threads running on 
the system changes): 

From the entire pool of runnable threads, construct 
thread groups, such that the number of threads in 
each group is equal to the number of the available 
hardware contexts. Estimate L2 miss ratios for all 
groups, using the reuse-distance model and the 
histogram-combining method AVG. Discard those 
groups whose estimated miss ratio is above the 
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threshold. The remaining groups are candidate 
groups. 

Step 3 – Scheduling decision (performed every time a 
scheduling time slice expires): 

Choose a group from the set of candidate groups. 
Schedule the threads in the group to run during the 
current time slice. (Note that a thread may belong 
to more than one group.) Keep track of how much 
processor time each thread has received. On the 
next time slice, make a selection from candidate 
groups that contain threads that previously 
received little or no processor time.  
 

4.2.2. Emulating the scheduler  
In this section we first explain how we emulated 

the process of making a scheduling decision and then 
how we simulated the resulting schedule. We use the 
18-thread SPEC workload described in Section 3.2.2 
and the CMT processor with two cores and four 
hardware contexts on each core.  We instrumented our 
simulator to collect the data for reuse-distance 
histograms and built reuse-distance histograms for all 
the threads off-line.  
 
4.2.2.1.  Making the scheduling decision 

 First, we examine all 





8

18
combinations of threads 

– we have a total of 18 threads, but only eight can be 
scheduled at a time on the processor’s eight hardware 
contexts. We compute group miss ratios for all groups, 
and sort the groups in ascending order by miss ratio. 
Next, we pick the miss ratio threshold as described in 
Step 1 of the scheduling algorithm (Section 4.2.1).  The 
groups whose estimated miss ratio is below the 
threshold form the candidate set.  
 From the candidate set we pick several groups that 
will form the final schedule.  Because each group has 
eight threads, and the total workload has 18 threads, a 
schedule needs to include at least three groups, to make 
sure that each of the 18 threads gets to run.  The idea is 
that each group in a schedule will run for a scheduling 
time slice; once all groups in the schedule have run, the 
schedule repeats.   
 To pick thread groups for a schedule we 
experimented with two policies: performance-oriented 
(PERF), and fairness-oriented (FAIR).  
 With PERF, we select from the candidate set the 
group with the lowest miss ratio and containing threads 
have not yet been selected. We repeat this process until 
each thread is represented in the schedule.   
 With FAIR, we attempt to equalize the CPU share 
of each workload: as we select groups of threads we 
keep track of how many times each thread had been 

selected. Each time we make a selection, we pick the 
group that contains the greatest number of the least 
frequently selected threads.   
 We evaluate how these policies compare in terms 
of performance and fairness in Section 4.3. 
 We repeated the above schedule-construction 
process for four L2 cache sizes from 48KB to 384KB. 
 
4.2.2.2. Simulation  
 Once we construct schedules for all cache sizes 
and policies, we simulate each schedule to measure its 
performance. For a given schedule, we simulate each of 
its groups for a time slice (100 million cycles) after fast-
forwarding the simulation past the benchmark 
initialization phase.  To obtain the IPC for the schedule 
we average the IPCs achieved by the groups in that 
schedule (the standard deviation is small, typically 
within 5% of the mean). In the same way we compute 
the L2 miss ratio for the schedule.   
 Recall that each group contains eight threads – one 
for each hardware context on the machine. By running a 
workload of eight CPU-intensive threads on a machine 
with eight hardware contexts and with nothing else 
running on that machine, we ensured that each thread 
ran on its own hardware context.  In this way, we 
emulated the action of a real scheduler that would 
specifically assign each thread to its own hardware 
context for a time slice. 
 Because each thread was assigned to its proper 
context, and the machine issued instructions from each 
context in a round-robin fashion, we assured that all 
threads simulated as a group were given equal shares of 
processor issue slots and made forward progress.   

To measure IPC and L2 miss ratio for the default 
scheduler, we ran the 18-benchmark workload on the 
simulated machine, for one billion. cycles, after fast-
forwarding the benchmarks past the initialization phase. 
Threads were dynamically assigned to hardware 
contexts by the Solaris™ scheduler (recall the 
explanation in Section 3.2.2). 
 . 
4.3. Results 

Figure 11 presents the IPC for each schedule. In all 
cases, the balance-set scheduler outperforms the default 
scheduler. The performance gain from the scheduler 
using the PERF policy is from 27% (384KB L2) to 45% 
(48KB L2).  With the FAIR policy, the performance 
gain is from 7% (384KB L2) to 34% (48KB L2). As 
cache pressure becomes greater, there is more benefit to 
be reaped from the balance-set scheduling approach. As 
cache contention decreases, there is less performance 
benefit: if the performance achieved with the default 
scheduler is already good, there is less room for 
improvement. 
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Figure 12 shows the corresponding L2 miss ratios. 
With balance-set scheduling we were able to reduce the 
L2 miss rates by 19-37% when using the PERF policy 
and by 9-18% when using the FAIR policy. It is 
interesting to place this result into perspective by 
evaluating the means that would be necessary to achieve 
similar improvements in hardware. With a 48KB L2 
cache, the balance-set PERF scheduler achieves the L2 
miss ratio of 12%. To achieve a similar miss ratio with 
the default scheduler, the L2 cache size would have to 
be 96KB – twice as large. This ratio holds for the 
remaining cache sizes. 

Figure 11. IPC achieved with the default scheduler, and the 
balance-set scheduler using PERF and FAIR policies.   

Figure 12. L2 cache miss ratios achieved with the default 
scheduler, and the balance-set scheduler using PERF and 
FAIR policies.   

The performance improvement that we got 
resulted from the fact that we have constructed thread 
groups so that they would share the cache amiably, 
producing a low L2 miss ratio, and achieving high IPC 
as a result.  Our miss ratio analysis, which preceded 
schedule construction, helped us avoid scheduling 

groups of threads that would induce thrashing and waste 
processor cycles on endless trips to memory.  

While this shows that balance-set scheduling has 
potential to decrease cache contention and improve 
performance, it is important to address the following 
questions: Are these results achievable for any 
workload? Does fairness have to be sacrificed? We 
provide discussion of these questions in the following 
section. 

4.3.1 Discussion 

4.3.1.1. The workload 
We used SPEC CPU benchmarks for our 

experiments because it is a standard workload used for 
evaluation of CPU performance. We believe that this 
workload is appropriate for the experiments that stress 
the memory hierarchy, because this suite of benchmarks 
has been improved from previous versions specifically 
for this purpose [3]. It has been modified to include 
programs whose memory footprints are much larger 
than traditional cache sizes. 

Our workload included benchmarks with good 
cache locality (164.gzip, 197.parser) as well as poor 
cache locality (188.ammp, 179.art), so the resulting 
thread groups had varying cache performance. If, on the 
contrary, all threads in the workload are identical, all 
thread groups will produce identical cache performance. 
In this case, the scheduler may need to schedule fewer 
threads than available hardware contexts, in order to 
alleviate the pressure on the L2. This, however, is a 
double-edged sword: while running fewer threads 
improves performance in the L2, leaving hardware 
contexts unused may hurt performance.  

From our experience, the payoff from trading better 
performance in the L2 for unused hardware contexts 
depends on the workload. In order for the scheduler to 
decide when it pays to do so, it needs to be able to 
predict how the L2 performance affects processor IPC. 
We have developed a model that does this [34] and we 
plan to incorporate it into the future scheduler 
implementation. 

4.3.1.2. Fairness 
Trading off fairness for performance is a canonical 

issue faced when designing scheduling algorithms [35, 
38].  In order to achieve low L2 miss ratio, the job of 
the balance-set scheduler is to select those groups of 
threads whose estimated miss ratio is the lowest.  Such 
groups are likely to include cache-frugal threads more 
often than cache-greedy threads. As a result, cache-
frugal threads may get a higher share of CPU. For 
example, in our experiments a cache-frugal benchmark 
197.parser was included in almost every simulation 
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group, while a cache-greedy 188.ammp was present in 
only one or two groups per schedule. Whether or not 
fairness has to be sacrificed depends on the workload.  

Although addressing fairness of the balance-set 
scheduling was not the objective of this study, we 
attempted to improve fairness with the thread-selection 
policy FAIR.       

To evaluate how FAIR compares to PERF in terms 
of fairness, we estimated the degree of fairness achieved 
by these policies using the following metric: standard 
deviation from the average CPU share. Under a fair-
share scheduler, each workload gets an equal share of 
CPU, and the standard deviation is zero.  

Figure 13. Evaluation of fairness for the two scheduling 
policies.  

Figure 13 displays standard deviations for PERF 
and FAIR.   Although when using the FAIR policy the 
scheduler is somewhat fairer than when using PERF, the 
standard deviation from the average is still rather high 
for the FAIR policy. 

The level of fairness achieved in our experiments 
is not fundamental to the balance-set scheduling. It is 
particular to our workload.  For example, if we had a 
workload where the number of cache-frugal threads was 
far greater than the number of cache-greedy threads, it 
would be possible to always match a cache-greedy 
thread with cache-frugal threads without sacrificing 
fairness. The relationship between the workload and the 
achievable fairness is a rich topic that we plan to 
investigate in the future.       

The amount of fairness that is acceptable to 
sacrifice for the sake of performance is specific to each 
system. In systems where any fairness sacrifices would 
be unacceptable, balance set scheduling would not be 
the scheduling policy of choice. More likely, however, a 
system scheduler would want to be able to decide how 
much fairness it wants to trade off for performance, 
depending on relative priorities of the threads in its 
workload and on the performance goals set for the 

system. Therefore, it is important to equip the scheduler 
with mechanisms that would aid it in making such a 
decision. Our work on modeling effects of cache miss 
ratio on processor IPC [34] is a step in this direction.  

5. IMPLEMENTING THE SCHEDULER
Implementing the balance-set scheduling 

algorithm is the subject of ongoing work. In this section 
we discuss the challenges involved in this task and lay 
out the related research agenda. 

The scheduler operations that contribute the most 
to runtime overhead are the data collection for reuse-
distance histograms and the miss ratio analysis. 

Reuse-distance histograms need to be built when 
new threads enter the system and then re-built when the 
existing threads change their cache access patterns. Data 
collection for reuse-distance histograms can be done by 
monitoring memory locations accessed by a thread 
using the hardware watchpoint mechanism. Berg and 
Hagersten describe a user-level tool that builds reuse-
distance histograms this way [19]. They report the 
runtime overhead of less than 20% for long-running 
applications. Handling kernel traps associated with 
watchpoints is the most significant source of overhead, 
most of which will be removed if the monitoring is done 
in the kernel. Only a sample of memory locations needs 
to be monitored. Reducing the sampling rate reduces the 
monitoring overhead, but can also result in reduced 
model accuracy.  We plan to investigate what should be 
the right balance between the two. 

The amount of storage needed for reuse-distance 
histograms is about 100 bytes per histogram. The range 
of possible reuse distances can be very large, so in order 
to reduce space requirements we compressed the 
histograms by aggregating reuse distances in buckets. 
Our predictions remained accurate even though we used 
fewer than 20 buckets. 

Miss ratio analysis using the AVG method 
involves estimating miss ratios for individual threads 
and then averaging the quantities for groups of threads. 
These operations need to be performed as new threads 
enter or leave the system, as well as when reuse-
distance histograms are updated for the existing threads. 
To avoid estimating miss ratios for all possible groups 
of threads, we plan to design a greedy algorithm that 
constructs a candidate set after analyzing the miss ratios 
for only a small number of thread groups. We plan to 
evaluate the cost of this process for different rates of 
arrival and departure of threads in the system.   

When designing algorithms for multiprocessor 
operating systems, it is critical to avoid implementations 
that require global data, because this may result in 
shuffling such data among processors’ L1 caches, 
resulting in high latencies [26,37].  We need to take this 
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important design principle into account when 
implementing the balance-set scheduler. On the other 
hand, it is possible, that this would not be so important 
on CMT processors, where the latency associated with 
faulting in the L1 is well hidden by hardware 
multithreading. 

6. RELATED WORK
Previous work has proposed scheduling algorithms 

for single-core SMT processors that have been shown to 
improve system response time by 17% [1, 2, 12].  These 
algorithms involved sampling the space of possible 
schedules and using the ones that performed the best. 
This method can be implemented with virtually no 
overhead but requires hardware support.  Our 
scheduling algorithm is different in that it uses modeling 
to predict the best schedule. Modeling may be 
preferable to sampling when the sample space becomes 
very large, such as on a system equipped with dozens of 
thread contexts (i.e., a CMT processor) running 
hundreds of threads. It would be interesting to compare 
the effectiveness and costs of the method proposed in 
the SMT study to ours on a large CMT configuration. 
We are also hoping to apply ideas from the follow-up 
study on incorporating priorities into the SMT-aware 
scheduler [2] to improve fairness of our scheduler. 

We adapted the reuse-distance model to estimate 
miss ratios for threads concurrently accessing a cache. 
An alternative method has been proposed before [27]. 
Our methods are just as accurate but less 
computationally expensive.  

A related study by Thekkath and Eggers 
considered co-scheduling threads based on their data-
sharing patterns [28]. Although it is intuitive to expect 
that placing threads that share data on the same 
processor could improve performance in the L1 cache, 
the study showed that such a scheduling policy does not 
yield significant performance benefits. 

Cohort scheduling [10] is a scheduling 
infrastructure for server applications that batches 
execution of similar operations from different requests. 
This improves data locality, increasing processor IPC by 
30% and reducing L2 cache misses by 50%.  The 
applicability of this technique is limited to a specific 
class of applications (albeit an important one), and 
requires significant changes to application code.  

The Capriccio thread package [17] implements 
resource-aware scheduling by monitoring threads’ 
behavior, and measuring their resource requirements. 
This information is used in making scheduling decisions 
to optimize resource utilization. This method is more 
general than ours in that it can optimize for usage of 
different types of resources, but it requires rather 
detailed monitoring of the program’s state. 

7. CONCLUSIONS
In this paper we presented results of the first study 

evaluating the performance of a CMT processor. We 
analyzed how contention for the processor pipeline, L1 
and L2 caches affects performance. We determined that 
contention for the L2 cache has the greatest effect on 
system performance – therefore, this is where system 
designers should focus their optimization efforts. 

We investigated how to leverage the operating 
system scheduler to reduce the pressure on the L2 
cache, using balance-set scheduling. To make balance-
set scheduling work we adapted the reuse-distance 
cache model to estimate miss ratios for threads that 
concurrently access the cache.  

We demonstrated that with balance-set scheduling 
it is possible to reduce the L2 cache miss ratio by 19-
37% and increase performance by 27-45%. Performance 
improvement, however, may come at the expense of 
fairness.   

To determine whether balance-set scheduling is 
viable for real systems, we plan to implement it and 
evaluate its runtime overhead. We also plan to 
investigate how workload characteristics affect the 
potential performance gains from this algorithm and the 
associated fairness tradeoffs. 
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