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Abstract Explicit differentiation matrices in various

polynomial bases are presented in this work. The idea is to

avoid any change of basis in the process of polynomial

differentiation. This article concerns both degree-graded

polynomial bases such as orthogonal bases, and non-de-

gree-graded polynomial bases including the Lagrange and

Bernstein bases.
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Differentiation
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Introduction

Consider a scalar (complex) polynomial P(x) of degree n

and a basis given by fB0ðxÞ;B1ðxÞ; . . .;Bn�1ðxÞ;BnðxÞg.
This basis determines the representation

PðxÞ ¼
Pn

j¼0 ajBjðxÞ, where aj 2 C and, regardless of the

basis, the coefficient of xn in the expression is nonzero.

Alternatively, this polynomial can be written as

PðxÞ ¼ a0 a1 . . . an�1 an½ �I

B0ðxÞ
B1ðxÞ
..
.

Bn�1ðxÞ
BnðxÞ

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

; ð1:1Þ

where I is the unit matrix of size nþ 1.

We want to find a matrix D, the differentiation matrix,

of size nþ 1 such that the kth order derivative of P(x),

shown by
dkPðxÞ
dxk

or PðkÞðxÞ, can be written as

PðkÞðxÞ ¼ a0 a1 . . . an�1 an½ �Dk

B0ðxÞ
B1ðxÞ
..
.

Bn�1ðxÞ
BnðxÞ

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

:

ð1:2Þ

For a polynomial of degree n, D has to be a nilpotent

matrix of degree nþ 1.

D has a well-known structure and can be easily found

for the monomial basis. For convenience, let us assume

n ¼ 5 and the generalizations for all positive n will be

clear. If

PðxÞ ¼ a0 a1 a2 a3 a4 a5½ �I

1

x

x2

x3

x4

x5

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

; ð1:3Þ

then
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D ¼

0 0 0 0 0 0

1 0 0 0 0 0

0 2 0 0 0 0

0 0 3 0 0 0

0 0 0 4 0 0

0 0 0 0 5 0

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

: ð1:4Þ

Differentiation in bases other than the monomial basis has

been occasionally studied. One of the most important

applications of polynomial differentiation in other bases is in

spectral methods like collocation method [14]. Differentia-

tion matrices for Chebyshev and Jacobi polynomials were

computed [13]. The differentiation of Jacobi polynomials

through Bernstein basis was studied [12]. Chirikalov [2]

computed the differentiation matrix for the Hermite basis.

In this paper, we present explicit formulas for D in

different polynomial bases. Constructing D is fairly

straightforward and having D, we can easily find deriva-

tives of higher order by raising D to higher powers

accordingly. Another important advantage of having a

formula for D in a basis is that we do not need to change

the basis—often to the monomial basis— to differentiate

P(x). Conversion between bases has been exhaustively

studied in [6], but it can be unstable [8].

Section ‘‘Degree-graded bases’’ of this paper consid-

ers degree-graded bases and finds D in general for them.

Orthogonal bases are all among degree-graded bases.

Section ‘‘Degree-graded bases’’ then discusses other

important special cases such as the monomial and

Newton bases as well as the Hermite basis. Sec-

tion ‘‘Bernstein basis’’ and ‘‘Lagrange basis’’ concern

the Bernstein and Lagrange bases, respectively, and find

D for them.

The Bernstein (Bézier) basis and the Lagrange basis are

most useful in computer-aided geometric design (see [5],

for example). For some problems in partial differential

equations with symmetries in the boundary conditions

Legendre polynomials can be successfully used the most

natural. Finally, in approximation theory, Chebyshev

polynomials have a special place due to their minimum-

norm property (see e.g., [11]).

Degree-graded bases

Real polynomials f/nðxÞg1n¼0 with /nðxÞ of degree n which
are orthonormal on an interval of the real line (with respect

to some nonnegative weight function) necessarily satisfy a

three-term recurrence relation (see Chapter 10 of [3], for

example). These relations can be written in the form

x/jðxÞ ¼ aj/jþ1ðxÞ þ bj/jðxÞ þ cj/j�1ðxÞ; j ¼ 0; 1; 2; . . .;

ð2:1Þ

where the aj; bj; cj are real, aj 6¼ 0, /�1ðxÞ � 0,

/0ðxÞ � 1.

The choices of coefficients aj; bj; cj defining three well-
known sets of orthogonal polynomials (associated with the

names of Chebyshev and Legendre) are summarized in

Table 1.

Orthogonal polynomials have well-established signifi-

cance in mathematical physics and numerical analysis (see

e.g., [7]). More generally, any sequence of polynomials

f/jðxÞg1j¼0 with /jðxÞ of degree j is said to be degree-

graded and obviously forms a linearly independent set; but

is not necessarily orthogonal.

A scalar polynomial of degree n can now be written in

terms of a set of degree-graded polynomials

PðxÞ ¼
Pn

j¼0 aj/jðxÞ, where aj 2 C and an 6¼ 0. We can

then write

PðxÞ ¼ a0 a1 . . . an�1 an½ �I

/0ðxÞ
/1ðxÞ

..

.

/n�1ðxÞ
/nðxÞ

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

: ð2:2Þ

Table 1 Three well-known

orthogonal polynomials
Polynomial TnðxÞ PnðxÞ UnðxÞ

Name of polynomial Chebyshev (1st kind) Legendre (Spherical) Chebyshev (2nd kind)

Weight function ð1� x2Þ�
1
2 1 ð1� x2Þ

1
2

Orthogonality interval ½�1; 1� ½�1; 1� ½�1; 1�
Leading coefficient kn 2n�1 ð2nÞ!

2nðn!Þ2
2n

an 1 for n ¼ 0; 1
2
otherwise nþ1

2nþ1
1
2

bn 0 0 0

cn 1
2

n
2nþ1

1
2
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Lemma 1 If P(x) is given by (2.2), then

PðkÞðxÞ ¼ a0 a1 . . . an�1 an½ �Dk

/0ðxÞ
/1ðxÞ

..

.

/n�1ðxÞ
/nðxÞ

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

;

ð2:3Þ

where

D ¼

0 0 . . . 0

..

.

Q

0

2

6
6
6
6
4

3

7
7
7
7
5
: ð2:4Þ

Q is a size n lower triangular matrix that has the following

structure for i ¼ 1; . . .; n.

Any entry, q, with a negative or zero index is set to 0 in the

above formula.

Proof We start by differentiating (2.1) to get

/jðxÞ ¼ aj/
0
jþ1ðxÞ þ ðbj � xÞ/0

jðxÞ þ cj/
0
j�1ðxÞ; j ¼ 0; 1; . . .:

ð2:6Þ

We can write this equation in a matrix-vector form.

Without loss of generality, we assume n ¼ 4.

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

/0ðxÞ
/1ðxÞ
/2ðxÞ
/3ðxÞ
/4ðxÞ

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

¼

0 a0 0 0 0

c1 b1 � x a1 0 0

0 c2 b2 � x a2 0

0 0 c3 b3 � x a3
0 0 0 0 0

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

/0
0ðxÞ

/0
1ðxÞ

/0
2ðxÞ

/0
3ðxÞ

/0
4ðxÞ

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

:

ð2:7Þ

Given that /0
0ðxÞ ¼ 0 and /4ðxÞ does not appear in the

system, we can eliminate them and rewrite the above

system as

/0ðxÞ
/1ðxÞ
/2ðxÞ
/3ðxÞ

2

6
6
6
4

3

7
7
7
5
¼ H

/0
1ðxÞ

/0
2ðxÞ

/0
3ðxÞ

/0
4ðxÞ

2

6
6
6
4

3

7
7
7
5
; ð2:8Þ

where

H ¼

a0 0 0 0

b1 � x a1 0 0

c2 b2 � x a2 0

0 c3 b3 � x a3

2

6
6
6
4

3

7
7
7
5
: ð2:9Þ

Since ai 6¼ 0, H�1 exists and is a lower triangular matrix

that has the following row structure in general for

i ¼ 1; . . .; n.

h
ð�Þ
i;j ¼

1

ai�1

; j ¼ i

x� bj
aj�1

ðhð�Þi;jþ1Þ �
cjþ1

aj�1

ðhð�Þi;jþ2Þ; j ¼ ði� 1Þ; . . .; 1

8
>><

>>:

ð2:10Þ

Now

/0
1ðxÞ

/0
2ðxÞ

/0
3ðxÞ

/0
4ðxÞ

2

6
6
6
4

3

7
7
7
5
¼ H�1

/0ðxÞ
/1ðxÞ
/2ðxÞ
/3ðxÞ

2

6
6
6
4

3

7
7
7
5
: ð2:11Þ

It is obvious from (2.10) that the variable, x, appears in

entries of H�1. Through a fairly straightforward, but rather

tedious process and using (2.1) to eliminate x from H�1,

we get Q as given by (2.5), and we have

/0
1ðxÞ

/0
2ðxÞ

/0
3ðxÞ

/0
4ðxÞ

2

6
6
6
4

3

7
7
7
5
¼ Q

/0ðxÞ
/1ðxÞ
/2ðxÞ
/3ðxÞ

2

6
6
6
4

3

7
7
7
5
: ð2:12Þ

qi;j ¼

i

ai�1

; i ¼ j

1

ai�1

ððbj�1 � bi�1Þqi�1;j þ aj�2qi�1;j�1 þ cjqi�1;jþ1 � ci�1qi�2;jÞ: i[ j

8
>><

>>:
ð2:5Þ
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From there, adding a 0 row and a 0 column, we find D and

have

/0
0ðxÞ

/0
1ðxÞ

/0
2ðxÞ

/0
3ðxÞ

/0
4ðxÞ

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

¼

0 0 . . . 0

..

.

Q

0

2

6
6
6
6
4

3

7
7
7
7
5

/0ðxÞ
/1ðxÞ
/2ðxÞ
/3ðxÞ
/4ðxÞ

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

: ð2:13Þ

Using these results, we can write the first derivative of a

generic first kind Chebyshev polynomial of degree 4 (see

Table 1) as

P0ðxÞ ¼ a0 a1 a2 a3 a4½ �

0 0 0 0 0

1 0 0 0 0

0 4 0 0 0

3 0 6 0 0

0 8 0 8 0

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

T0ðxÞ
T1ðxÞ
T2ðxÞ
T3ðxÞ
T4ðxÞ

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

:

ð2:14Þ

Similarly, for a second kind Chebyshev polynomial of

degree 4, we can write the first derivative as

P0ðxÞ ¼ a0 a1 a2 a3 a4½ �

0 0 0 0 0

2 0 0 0 0

0 4 0 0 0

2 0 6 0 0

0 4 0 8 0

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

U0ðxÞ
U1ðxÞ
U2ðxÞ
U3ðxÞ
U4ðxÞ

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

:

ð2:15Þ

P0ðxÞ ¼ a0 a1 a2 a3 a4½ �

0 0 0 0 0

1 0 0 0 0

0 3 0 0 0

1 0 5 0 0

0 3 0 7 0

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

P0ðxÞ
P1ðxÞ
P2ðxÞ
P3ðxÞ
P4ðxÞ

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

:

ð2:16Þ

Special degree-graded bases

As mentioned above, the family of degree-graded poly-

nomials with recurrence relations of the form (2.1) include

all the orthogonal bases, but are not limited to them. Here,

we discuss some of the famous non-orthogonal bases of

this kind and, consequently, for which we find the differ-

entiation matrix, D, formulas. In particular, if in (2.1), we

let aj ¼ 1 and bj ¼ cj ¼ 0, it will become the monomial

basis. Using (2.4) and (2.5), we can easily verify that in

this case, D has a form like (1.4).

Another important basis of this kind is the Newton basis.

Let a polynomial P(x) be specified by the data f zj;Pj

� �
gnj¼0

where the zjs are distinct. If the ‘‘Newton polynomials’’ are

defined by setting N0ðxÞ ¼ 1 and, for k ¼ 1; . . .; n;

NkðxÞ ¼
Yk�1

j¼0

ðx� zjÞ; ð2:17Þ

then

PðxÞ ¼ a0 a1 . . . an�1 an½ �I

N0ðxÞ
N1ðxÞ

..

.

Nn�1ðxÞ
NnðxÞ

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

ð2:18Þ

For j ¼ 0; . . .; n, the ajs can be found by divided differ-

ences as follows.

aj ¼ ½P0;P1; . . .;Pj�1�; ð2:19Þ

where we have ½Pj� ¼ Pj, and

½Pi; . . .;Piþj� ¼
½Piþ1; . . .;Piþj� � ½Pi; . . .;Piþj�1�

ziþj � zi
: ð2:20Þ

If in (2.1), we let aj ¼ 1, bj ¼ zj and cj ¼ 0, it will become

the Newton basis. For n ¼ 4, D, as given by (2.4), has the

following form.

D ¼

0 0 0 0 0

1 0 0 0 0

z0 � z1 2 0 0 0

ðz0 � z2Þðz0 � z1Þ � 2z2 þ z1 þ z0 3 0 0

ðz0 � z3Þðz0 � z2Þðz0 � z1Þ ðz1 � z3Þðz1 � 2z2 þ z0Þ þ ðz0 � z2Þðz0 � z1Þ � 3z3 þ z2 þ z1 þ z0 4 0

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

:

ð2:21Þ
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The confluent case

Suppose that a polynomial P(x) of degree n as well as its

derivatives are sampled at k nodes, i.e., distinct (finite) points

z0; z1; . . .; zk�1. We write Pj :¼ PðzjÞ;P0
j :¼ P0ðzjÞ; . . .;PðsjÞ

j

:¼ PðsjÞðzjÞ; j ¼ 0; . . .; k � 1. Here s ¼ ðs0; s1; . . .; sk�1Þ
shows the confluencies (i.e., the orders of the derivatives)

associated with the nodes and we have
Pk�1

i¼0 si ¼ nþ 1� k.

If for j ¼ 0; . . .; k � 1, all sj ¼ 0, then k ¼ nþ 1 and we have

the Lagrange interpolation.

This is an interesting polynomial interpolation that

deserves a better consideration: the ‘‘Hermite interpola-

tion’’ (See e.g., [2, 10]). It is basically similar to the

Lagrange interpolation, but at each node, we have the value

of P(x) as well as its derivatives up to a certain order.

Now, we assume that at each node, zj, we have the value

and the derivatives of P(x) up to the sjth order. The nodes at

which the derivatives are given are treated as extra nodes.

In fact we pretend that we have sj þ 1 nodes, zj, at which

the value is Pj and remember that
Pk�1

i¼0 si ¼ nþ 1� k. In

fact, the first s0 þ 1 nodes are z0, the next s1 þ 1 nodes are

z1 and so on.

Using the divided differences technique, as given

by (2.20), to find ajs, whenever we get ½Pj;Pj; . . .;Pj�
where Pj is repeated m times, we have

½Pj;Pj; . . .;Pj� ¼
P
ðm�1Þ
j

ðm� 1Þ! ;
ð2:22Þ

and all the values P0
j to P

ðsjÞ
j for j ¼ 0; . . .; k � 1 are given.

For more details see e.g., [10].

The bottom line is that the Hermite basis can be seen as

a special case of the Newton basis, thus a degree-graded

basis. For the Hermite basis, like the Newton basis, aj ¼ 1,

bj ¼ zi, and cj ¼ 0, but some of the bjs are repeated. Other
than that, the differentiation matrix, D, can be similarly

found for the Hermite basis.

For a data set like fðz0;Pðz0ÞÞ; ðz0;P0ðz0ÞÞ; ðz1;Pðz1ÞÞ;
ðz2;Pðz2ÞÞ; ðz3;Pðz3Þg, b0 ¼ z0, we have b1 ¼ z0, b2 ¼ z1,

b3 ¼ z2, and b4 ¼ z3. In this case, (2.21) becomes

D ¼

0 0 0 0 0

1 0 0 0 0

0 2 0 0 0

0 � 2z1 þ 2z0 3 0 0

0 ðz0 � z2Þð2z0 � 2z1Þ � 3z3 þ z1 þ 2z0 4 0

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

:

ð2:23Þ

Bernstein basis

A Bernstein polynomial (also called Bézier polynomial)

defined over the interval [a, b] has the form

bjðxÞ ¼
n

j

� �
ðx� aÞ jðb� xÞn�j

ðb� aÞn ; j ¼ 0; . . .; n: ð3:1Þ

This is not a typical scaling of the Bernstein polynomials;

however, this scaling makes matrix notations related to this

basis slightly easier to write.

The Bernstein polynomials are nonnegative in [a, b],

i.e., bjðxÞ� 0 for all x 2 ½a; b� (j ¼ 0; . . .; n). Bernstein

polynomials are widely used in computer-aided geometric

design (e.g., see [4]).

A polynomial P(x) written in the Bernstein basis is of

the form

PðxÞ ¼ a0 a1 . . . an�1 an½ �I

b0ðxÞ
b1ðxÞ
..
.

bn�1ðxÞ
bnðxÞ

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

; ð3:2Þ

where the ajs are sometimes called the Bézier coefficients

(j ¼ 0; . . .; n).

Lemma 2 If P(x) is given by (3.2), then

PðkÞðxÞ ¼ a0 a1 . . . an�1 an½ �Dk

b0ðxÞ
b1ðxÞ
..
.

bn�1ðxÞ
bnðxÞ

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

;

ð3:3Þ

where D is a size nþ 1 tridiagonal matrix that has the

following structure for i ¼ 1; . . .; nþ 1.

di;j ¼

n� 2ði� 1Þ
a� b

; i ¼ j

i

a� b
; i ¼ j� 1

�ðn� iþ 1Þ
a� b

i ¼ jþ 1

8
>>>>>><

>>>>>>:

ð3:4Þ

Proof A little computation using (3.1) shows that

b0kðxÞ ¼
k � 1

a� b
bk�1ðxÞ þ

n� 2k

a� b
bkðxÞ þ

n� k

a� b
bkþ1ðxÞ;

ð3:5Þ
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for k ¼ 0; . . .; n. Any biðxÞ with either a negative or larger

than n index is set to 0 in (3.5). This is why D is tridiagonal

and form here, it is easy to derive (3.4) for D.

For n ¼ 4, the differentiation matrix is as follows.

D ¼

4

a� b

1

a� b
0 0 0

� 4

a� b

2

a� b

2

a� b
0 0

0 � 3

a� b
0

3

a� b
0

0 0 � 2

a� b
� 2

a� b

4

a� b

0 0 0 � 1

a� b
� 4

a� b

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

:

ð3:6Þ

h

Lagrange basis

Lagrange polynomial interpolation is traditionally viewed

as a tool for theoretical analysis; however, recent work

reveals several advantages to computation using new

polynomial interpolation techniques in the Lagrange basis

(see e.g., [1, 9]). Suppose that a polynomial P(x) of degree

n is sampled at nþ 1 distinct points z0; z1; . . .; zn, and write

pj :¼ PðzjÞ. Lagrange polynomials are defined by

LjðxÞ ¼
‘ðxÞwj

x� zj
; j ¼ 0; 1; . . .; n ð4:1Þ

where the ‘‘weights’’ wj are

wj ¼
Yn

m¼0;m6¼j

1

zj � zm
; ð4:2Þ

and

‘ðxÞ ¼
Yn

m¼0

ðx� zmÞ: ð4:3Þ

Then P(x) can be expressed in terms of its samples in the

following form.

PðxÞ ¼ p0 p1 . . . pn�1 pn½ �I

L0ðxÞ
L1ðxÞ
..
.

Ln�1ðxÞ
LnðxÞ

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

ð4:4Þ

Lemma 3 If P(x) is given by (4.4), then

PðkÞðxÞ ¼ p0 p1 . . . pn�1 pn½ �Dk

L0ðxÞ
L1ðxÞ
..
.

Ln�1ðxÞ
LnðxÞ

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

;

ð4:5Þ

where D is a size nþ 1 matrix that has the following

structure.

di;j ¼

Pn
k¼0;k 6¼i�1

1

zi�1 � zk
; i ¼ j

wi�1

wj�1ðzj�1 � zi�1Þ
; i 6¼ j

8
>><

>>:
ð4:6Þ

Proof A little computation using (4.1) shows that

L0iðxÞ ¼
Xn

j¼0;j6¼i

wi

wjðzj � ziÞ
LjðxÞ þ

Xn

k¼0;k 6¼i

1

zi � zk
LiðxÞ;

ð4:7Þ

for i ¼ 0; . . .; n. Form here, it is easy to derive (4.6) for D.

For n ¼ 3, the differentiation matrix is as follows.

h

D ¼

1

z0 � z1
þ 1

z0 � z2
þ 1

z0 � z3

w0

w1ðz1 � z0Þ
w0

w2ðz2 � z0Þ
w0

w3ðz3 � z0Þ
w1

w0ðz0 � z1Þ
1

z1 � z0
þ 1

z1 � z2
þ 1

z1 � z3

w1

w2ðz2 � z1Þ
w1

w3ðz3 � z1Þ
w2

w0ðz0 � z2Þ
w2

w1ðz1 � z2Þ
1

z2 � z0
þ 1

z2 � z1
þ 1

z2 � z3

w2

w3ðz3 � z2Þ
w3

w0ðz0 � z3Þ
w3

w1ðz1 � z3Þ
w3

w2ðz2 � z3Þ
1

z3 � z0
þ 1

z3 � z1
þ 1

z3 � z2

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

:

ð4:8Þ
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Concluding remarks

A differentiation matrix, D, of size nþ 1 in a certain basis

is a nilpotent matrix of degree nþ 1. As such, all of its

eigenvalues are zero. Assuming n ¼ 5—and the general-

izations for all positive n will be clear—we can fairly

easily verify that the Jordan form for D in any basis is

J ¼

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

: ð5:1Þ

We can write J ¼ T�1DT. The jth column of the trans-

formation matrix, T, is the first column of Dnþ1�j for

j ¼ 1; . . .; nþ 1. For example, for the D given by (1.4), we

have

T ¼

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 2 0 0

0 0 6 0 0 0

0 24 0 0 0 0

120 0 0 0 0 0

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

: ð5:2Þ

Now, if we consider two different polynomial bases for

which the differentiation matrices are D1 and D2, then we

can write J ¼ T�1
1 D1T1 and J ¼ T�1

2 D2T2. From here it is

easy to check that

D2 ¼ ðT1T2Þ�1D1ðT1T2Þ; ð5:3Þ

which shows, as expected, the differentiation matrices in

different bases are similar.

In this paper, we have found explicit formulas for the

differentiation matrix, D, in various polynomial bases. The

most important advantage of having D explicitly is that

there is no need to go from one basis to another (normally

monomial) to differentiate a polynomial in a given basis.

Moreover, having D, we can easily find higher order

derivatives of any polynomial in its original basis. One

may hope that new and more efficient polynomial-related

algorithms, such as root-finding methods, can be developed

using D.

These results can be easily extended to matrix polyno-

mials in different bases.
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