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Abstract-Connectivity clearly plays an important role in 

Internet of Things (loT) solutions, and the efficient handling of 

mobility is crucial for the overall performance of loT 

applications. Currently, the most widely adopted protocols for 

loT and Machine to Machine (M2M) environments, namely 

MQTT, CoAP or LWM2M, are directly dependent on the 

TCP/IP protocol suite. This suite is highly reliable when using 

wired networks, but it is not the best solution in the presence of 

intermittent connections. In this work we provide a solution to 

improve MQTT with an emphasis on mobile scenarios. The 

advantage of the solution we propose is making the system more 

immune to changes in the point of attachment of mobile devices. 

This way we avoid loT service developers having to explicitly 

consider this issue. Moreover, our solution does not need extra 

support from the network through protocols like MobilelP or 

LISP. The obtained results show that our proposal, based on 

intermediate buffering, guarantees that there is no information 

loss during hand-off periods due to node mobility; furthermore, 

based on discrete event simulation results, we determine the 

maximum number of sources and the required amount of buffers 

for a mobile node. 

Keywords-mobility; iot; m2m; handover; mqtt; handoff 
management. 

I. INTRODUCTION 

The Internet of Things (loT) paradigm basically refers to 
the concept of connecting any device to any other device 
through the Internet. Devices can range from cell phones to 
coffee makers, washing machines, headphones, lamps, 
wearable devices, and basically any device that may have an 
associated IP address. 

A large number of communication protocols, also referred 
to as "middleware", are used in nowadays loT industries. From 
the industrial protocol used to collect temperature data on a 
sensor, to the communication protocol used to send this data to 
a server in the Cloud, there are various alternative middleware 
options for building an end-to-end loT solution. 

Currently, the most widely adopted protocols in the loT and 
M2M[l] fields are MQTT[2], CoAP[3] and L WM2M[4]. 

Connectivity clearly plays an important role in loT, and the 
efficient handling of mobility is crucial for the overall 
performance of any loT application. To achieve stable and 
reliable communications, the crucial aspects to be considered 
are: (a) links can be frequently modified or broken without 
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control, (b) channels can suffer from interferences, (c) nodes 
can become isolated, and (d) the service offered may not be 
available at any time. The presence of one or several of these 
factors have negative effects on the quality of the information 
transmission, producing: data loss, fail to access a service, and 
bad overall performances. 

All the protocols indicated referred above, i.e., MQTT, 
CoAP and L WM2M, are directly dependent on the TCP/IP 
protocol suite; this is a highly reliable set of protocols when 
using wired networks, but do not perfonn adequately in 
intermittently connected scenarios. For example, in a broken 
connection case, using TCP over IP will cause the receiver to 
inform the sender about which packets must be resent. This 
approach would work perfectly if, after the re-connection, the 
IP address of the nodes remained the same, but it will fail when 
one of the nodes changes its address. Unfortunately, most 
applications do not support IP address changes, being severely 
affected by these events. These issues are totally outside the 
developer's control, who usually assume that the middleware 
used takes care of these problems. 

In this work we focus on this specific issue, providing a 
solution to adapt MQTT protocol to mobile scenarios. The 
advantage is that developers will not have to explicitly consider 
the changes in the point of attachment to the network. In 
addition, there is no need to have the network support through 
protocols like MobileIP [5] or LISP [6]. 

The rest of this paper is organized as follows: Section II 
presents a brief literature review. Section III describes the 
MQTT protocol. Section IV provides a description of our 
proposal and the methodology used in this work. Section V 
presents the results of the evaluation, and Section VI extends 
the results of the empirical evaluation using queueing 
networks. Finally, some conclusions are presented in Section 
VII. 

II. RELATED WORKS 

The general issue of dealing with node mobility is typically 
taken care by advanced solutions like Mobile IP or LISP. This 
is anyway a very active area, and new standards and protocols 
have been developed at the application level to connect all the 
things that surround us to the Internet. 

In [7], the MQTT and CoAP protocols are analyzed 
comparatively in terms of latency and throughput, using a 
network emulation tool to simulate different network 



characteristics (like packet loss, delay, and bandwidth 
limitations) in their connections. The authors have developed a 
platform called "Ponte", which is basically a message broker to 
adapt different loT protocols to a publisher/subscriber 
architecture model. Currently, this platform is included in the 
Eclipse repositories [8]. The authors suggest using the MQTT 
protocol in the presence of high delays, and the use of CoAP 
when the data traffic increased significantly, since CoAP uses 
UDP as the transport protocol. 

In [9] authors present a study of the reliability mechanism 
used by the MQTT-S and CoAP protocols. The authors 
demonstrate that both protocols would achieve a better 
performance by modifying the Retransmission Time Out 
(RTO) calculation method from a fixed to an adaptative value. 
The authors state that the network conditions are not taken into 
account when using a fixed RTO value (of ten to fifteen 
seconds), and that the features provided by a publish/subscribe 
model will be not fully exploited. Their evaluations show that, 
when considering the network conditions as a parameter for 
calculating the RTO value, these protocols would avoid 
increasing spurious retransmissions and resource wastage (with 
a small RTO value), while also avoiding to react too late when 
recovering packet losses (with a large RTO value). 

In [lO] the authors determine the correlation between end
to-end latency and message loss. They use a real world 
scenario with both wired and wireless clients exchanging 
messages of different sizes (payload from 1 to 16 Kbytes), 
using the three different MQTT QoS levels available [see 
section III]. 

Mobility support of the next generation of smart devices is 
one of the most important issues in the future Internet [11]. Our 
work is aimed at scenarios where the flow of information is 
basically unidirectional, with just a few signalling messages in 
the upward direction. So, we need a simpler solution that 
avoids extra reliability functions besides those already provided 
by the loT middleware. 

III. OVERVIEW OF THE MQTT PROTOCOL 

MQ Telemetry Transport (MQTT) [1] is a lightweight 
messaging protocol designed to be open, simple, lightweight 
and easy to implement. MQTT supports the publish and 
subscribe messaging model, i.e., when a message is sent by a 
client it is placed in a queue on the message-broker and, 
afterward, all customers subscribed to this queue automatically 
receive the message as a push notification. 

These characteristics make it ideal for use in constrained 
environments, like for example when the network is expensive, 
has low bandwidth, is unreliable, or when it runs on an 
embedded device with limited processor or memory resources. 

The messages that are transported by MQTT have an 
associated Quality of Service level (QoS) and Topic Name. 
The protocol defmes three levels of QoS, namely level zero 
(QoS=O), where the sender sends the message only once and no 
retries are performed, and levels one and two (QoS>O), where 
the protocol ensures that no published message will be lost, 
thus involving a one- or two- steps acknowledgement process, 
respectively. However, the decision to use one of these levels 
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impacts on the application performance as well as on the use of 
bandwidth and battery life on devices. 

To guarantee that a message has been received, an 
acknowledgements exchange mechanism taking place between 
the client and the broker is used. This mechanism is associated 
with a Quality of Service level specified on each message. 
With QoS=O, which means "fire and forget" [1], it totally 
depends on the reliability of TCP/IP. If a TCP/IP session is 
broken, the messages are lost. 

When the QoS level is set to one, the protocol ensures that 
a message arrives at the server "at least once". A published 
message is stored in the publisher internal buffer until it 
receives the ACK packet. Once the acknowledgement is 
received, the message is discarded from the buffer, and the 
delivery is complete. If a TCP/IP session is broken, only a few 
messages can be stored in the buffer until the time when the 
session is again restored and acknowledgement messages again 
are delivered. 

When the QoS level is set to two, the protocol guarantees 
that a published message will be delivered "exactly once". 
Neither loss nor duplication of messages are acceptable, a 
requirement which is met through a two-step acknowledgement 
process [1]. The problem associated with this level is the 
increased overhead, since the transmission of one message 
involves the interchange of four messages. 

IV. PROPOSED SOLUTION 

In this section we describe the proposed enhancements to 
the MQTT protocol. Our proposal maintains the 
publish/subscribe approach but decouples the pure data 
generation process by the data sending process. It is based on a 
technique called intermediate buffering. This decoupling 
allows for recovery when the communication channel presents 
disruption periods, even if these are very frequent and last for 
several seconds, a situation where TCP fails to recover from. 

subscriber 

� 

broker 

producer " --� 

8 
7 
6 

queue consumer 

publisher 

Fig. 1. Structure of the proposed solution based on intermediate buffering. 

Figure 1 illustrates our proposal. We consider a message 
producer that continuously generates messages with a given 
frequency. An MQTT publisher takes the produced messages 
and turns them into MQTT messages, to be published with a 
given periodicity to a predefmed MQTT broker. The latter will 
then forward the incoming messages directly to subscribers. A 



subscription is initially created by a client application on a 
predefmed topic (simple subscription name). 

When the connection between the node publisher and the 
message-broker suffers an interruption, the node enters in roam 
mode. The in-flight published messages (messages that have 
not received the acknowledgement from the message-broker) 
are stored in the MQTT internal buffer, which is constrained in 
terms of capacity. These messages are delivered only when the 
node recovers the connection with the last access point (that 
means recovering the last IP address); otherwise these 
messages are lost. 

When a longer disruption takes place, our intermediate 
buffer is in charge of storing all the published messages that 
have not received the acknowledgement. Meanwhile, the 
MQTT network control mechanism manages the creation of 
the new connection, and the correct closing of the aborted 
session. With the new connection, and independently from the 
IP address that the node obtain once the connection with the 
MQTT-broker is re-established, we can guarantee the delivery 
of all these messages in the same order as originally published, 
followed by the messages which are continuously being 
generated. 

A. Testbed implementation details 

We implemented and evaluated our proposal using a 
testbed representing a small-scale scenario (see Figure 2). In 
our scenario, the message-broker and the subscriber client are 
executed on the same computer, and the publisher is connected 
through one of the two WiFi access points. A DHCP server is 
running on each access point and configured to assign IP 
addresses to clients on different and independent subnets. 
Inside a subnet, all clients communicate with each other, and 
routes to the MQTT message-broker are always available. 

In the testbed, to generate workloads for the message 
queuing system, we have developed a testing application called 
mqttperJ MqttperJuses the Paho [14] library, which is an open 
source implementation of MQTT protocol. 

Each time a new message arrives, the sequence number and 
the production time stamps are recorded in a log file together 
with the reception time-stamp. When a client leaves a subnet 
and enters another one, the regularity of message exchange is 
affected due to the inter-message arrival times, the bursty 
delivery to the subscriber, message losses, and out-of-order 
arrival of messages. All these issues are considered in the data 
processing phase at the subscriber side. 

In order to simulate node mobility in an outdoor scenario, 
we used a set of scripts that turned the APs' radios up or down, 
thus associating or disassociating the related client devices. A 
schema of this approach is shown in Figure 2. 

Due to the asynchrony between the internal clocks of the 
different entities in a distributed system, we cannot obtain an 
accurate latency value [13]. Instead, we have calculated the 
variation in the delay of the messages received (jitter). This 
way we are not affected by a possible asynchrony among the 
producer, broker and consumer, since we take as the reference 
clock only one of them, namely the subscriber client clock. 
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Fig. 2. Simulating node mobility in an outdoor scenario. 
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For example, let us consider two consecutive messages 
received by the subscriber. For message n, its arrival time is 
defmed as t'n. T is the inter-message production period; for 
each experiment, T is a fixed parameter. So, the inter-arrival 
jitter time to the n'h message is computed through the following 
formula: 

In = t'n - t'n-! - T (1) 

In terms of channel bandwidth, we have taken as a 
reference, the bandwidth needed to support high definition 
video streaming, which is about 5 Mbps. In the test, using the 
mqttperJ tool, this value can be reached, for instance, by 
transmitting messages of 12500B (l2.5KBytes) every 0.02 
seconds. 

We made a set of tests to detect the point at which 
messages start being lost in both cases: with and without access 
point migration for the publisher. We have observed that the 
minimum time to remove the messages from our queue is of 50 
ms on average. Thus, we cannot use a period of time smaller 
than this value. We therefore used 100 ms as the minimum 
period between consecutive published messages. We also 
found that the publisher saturates when using a publish rate of 
100 msg/s, using a QoS level of 1; in this case there is not 
enough time to exchange the confirmation messages between 
the entities involved. 

V. EXPERIMENTAL RES UL TS 

This section presents the experimental results using a 
scenario based on a wireless producer node moving between 
two different sub-networks while communication is ongoing. 
In each sub network the producer gets a different IP address. 
The tests were repeated 100 times for each combination of 
inter-message period and message size. The data message size 
ranged between 0.5 KBytes and 6 KBytes, and the intervals of 
time between consecutive messages where of 100, 500, and 
1000 ms. The duration of each test was of about 60 seconds, 
enough time to observe the behavior of a mobile client moving 
along these sub-networks. The tests were run on a dedicated 
network, without external traffic. 



A. Behaviour during access point transition 

When the communication link is stable and reliable, the 
jitter values for each message were of just a few milliseconds, 
very close to zero. In the mobility case, when a producer is 
migrating from one access point to another and changes its IP 
address, the delay jitter had a considerable value, in the order 
of tens of seconds. 

In order to understand such event ajust of Figure 3, shows 
the typical jitter behavior for each message received by the 
subscriber. This value were obtained when producing and 
sending messages of different size during 60 seconds with 
different inter-message periods. We can see a positive peak 
corresponding to the hand-off time until a new connection 
between the different APs is again achieved. The computed 
value of the delay jitter on transitions was in all the cases of: 
35.8 ± 0.03 seconds. 

Fig. 3. Jitter values for received MQTT messages as the producer/publisher 
move between different access points. 

B. Jitter analysis 

The messages were produced at a constant rate and were 
published depending of the connection with the MQTT 
message-broker. These messages reach the subscriber with 
different delays depending on network conditions. Taking the 
difference of the arrival timestamps using equation (1), the 
jitter values of each message was typically of only a few 
milliseconds. The maximum jitter value in our tests occurs as a 
consequence of a disconnection of the publisher node. Notice 
that in our tests the network had no external traffic, and the 
workloads used do not saturate the system. 

Using the Cumulative Distribution Function (CDF) on the 
set of experimental data, we have analyzed the behavior of the 
message jitter focusing on the instant when the 
producer/publisher makes an AP migration. Figure 4, shows 
the CDF for the jitter using a message production period of 
lOOms. With all our evaluated message sizes (from 512 Bytes 
to 6 Kbytes) the observations present a self-similar behavior. 
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Fig. 4. Cumulative Distribution Function of the maximum jitter value with a 
different inter·message production periods and different message sizes too. 

We have observed that the jitter value is independent both 
from the message size and from the inter-message publishing 
period, being concentrated on values close to 36 seconds, 
without significant variation. 

To study the jitter evolution as a function of the message size 
and the publishing period, we have used the rounding mode 
values (rounded to the nearest hundred) to fit the most 
representative value instead of using the value that appears 
most often in the data sets. In Figure 5 we represent the jitter 
mode values as a function of message size . 

Fig. 5. Evolution of maximum jitter as a function of the message size. 

Overall, we find that there is essentially a same behavior, 
independently of the message size (from 512 Bytes up to 6 
KBytes) and the inter-message publishing period (from 100 ms 
to 1 s). After a disconnection and a connection re
establishment, the handover time of a user moves through the 



area covered by a Wi-Fi hotspot is less than 36 seconds. This 
actual handover time includes factors such as the time to detect 
another access point and sets up a secure link towards the 
MQTT message broker. 

VI. SYSTEM MODELLING 

To extend the results of the empirical evaluation described 
in the previous Section, we modeled a more general scenario 
using queueing networks. Our model is shown in Figure 6; the 
model was implemented3 using SimPy, a process-based 
discrete-event simulation framework based on standard Python. 

We supposed a unique Consumer and m Mobile Nodes, 
each with n associated Producers. The Producers generate 
messages with an inter-delay that we supposed constant with 
value AP. Messages reach the Consumer from the Mobile 
Nodes through the Network, an unbounded queue server with 
an exponentially distributed mean service time f.1NET. The 
Consumer processes the incoming messages with a mean 
service time f.1c that we supposed exponentially distributed. 
Queues are modeled as being unbounded so that no message is 
lost. 

In this work we supposed that the Producers and the 
Consumer were located geographically close (e.g., the same 
city), and also supposed the Consumer to be a fast server. 
Specifically we take values to f.1NET = 3ms, and f.1c = 100 fts. 

Node handovers, i.e., changes in the point of attachment, 
are independent (Bernoulli) events with probability PHO; this 
parameter allows us to tune the number of handover processes 
that take place in a test. The mobile nodes service time f.1N, can 
be either proportional to the message size s (i.e., equal to 
s*8 .0ITM , where TM is the maximum network throughput, 
experimentally obtained with the testbed and set to 20Mbps) or 
to the handover delay (dHo) , which again was experimentally 
obtained with the testbed and set to 35.0s. 

The main objective of this model was to evaluate the 
stability of our proposal when considering the complications 
imposed by mobility to mobile nodes. In Figure 7 we show 
end-to-end delay of messages with a fixed mobility pattern 
while increasing the message generation frequency. We 
considered a scenario with 100 mobile nodes, each with 3 
producers, and each producer sending 1000 messages. We 
varied AP in the range [15.0, 30.0, 60.0, 90.0, and 120.0] 
seconds. Parameter PHo=O.O 1 produced an average of 3000 
handovers over a simulation period of about 4 hours (i.e., about 
one handover every 5 seconds); a total of 300000 messages 
were generated. 

Figure 7 shows the 95 percentile (yellow lines with stars), 
and the median (red lines with triangles), the straight lines are 
relative to a message size of 1MB, while the dashed lines are 
relative to a message size of 512B. 

As we can see, our approach is quite stable when varying 
the data generation frequency and the message size, even with 
a high handover rate. At the lowest frequency used, i.e., below 
30.0s, the system showed the first signs of saturation, with end
to-end delays of up to 20 seconds. In general the upper limit for 
the 95percentile was less that Is for a message size of 512B, 

3 The code is available to interested readers upon request. 
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and less than 2s for a message size of 1MB. 

Producer 

Mobile 
Nodes 

Fig. 6. Two states model of the mobile node behavior. 

To more precisely evaluate the behavior inside a mobile 
node, we considered a set-up with a single mobile node, but 
with a growing number of sources (in the range [1, 100]) each 
producer sending 1000 messages at a rate AP=60s. The other 
parameters where kept the same as before, again considering a 
message size of either 512B or 1MB. 

Fig. 7. Two-state model of the mobile node behavior. 

Figure 8 shows the result of the evaluation; the blue bars 
indicate the mean value and the red bars the 99 percentile. The 
results obtained where similar for the two message sizes 
considered. As can be seen, the mean queue length is 
approximately equal to half the number of sources, while the 
99-percentile is basically equal to the double of the number of 
sources. This is an important result for dimensioning the 
number of sources for the mobile node, and to calculate the 
required amount of buffers in the mobile node as a function of 
the number of sources and the size of the messages. Basically 
the relation would be: 



buffer size (bytes) = 2*s*n (2) 
in order to limit the number of messages lost due to buffer 

overflow. If the managed data is not critical, we could even 
reduce the amount of resources to: 

buffer size (bytes) = s*n/2 (3) 

that would allow to handle, on average, half of the 
produced messages, while significantly reducing the buffer size 
required. 
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Fig. 8. Mobile node queue size. The blue bars indicate the mean value and 
the red bars the 99 percentile. 

VII. CONCLUSIONS 

In this work we focused on providing a solution to adapt 
MQTT to mobile scenarios. The advantage of our solution is 
that developers do not have to explicitly consider the changes 
in the point of attachment to the network without requiring 
network support through protocols like MobileIP or LISP. 

We described our proposal based on intermediate buffering, 
and evaluated it in various scenarios where the publisher node 
suffers a handover process due to mobility. We measured jitter 
variability and information loss, with a simple workload model 
of one producer/publisher node and one subscriber node, in an 
extended wireless network. We have observed that this 
approach introduces a mean jitter value that ranges from 35 to 
38 seconds. 

We proved that our solution guarantees that there is no 
information loss during the hand-off of the producer/publisher 
node, thus making a messaging system based on MQTT 
protocol robust, and able to guarantee message delivery 
without losses in the presence of publisher node mobility. 
Messages losses would be present only when roaming time 
tends to infinite, a situation prone to cause memory leaks and 
the system buffer capacity to be overloaded. 

To extend the results of the empirical evaluation we 
modeled a more general scenario using queueing networks. 
Our model was implemented using SimPy, a process-based 
discrete-event simulation framework based on standard Python. 
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Through the model we obtained important results for 
dimensioning the number of sources transmitting towards the 
mobile node, and to calculate the required amount of buffers in 
the mobile node as a function of the number of sources and the 
message size. Basically, the relation would be: buffer size 
(bytes) = 2*s*n in order to limit the number of messages lost 
due to buffer overflow. If the managed data is not critical, we 
could even reduce the amount of resource to a value: buffer 
size (bytes) = s*nI2, which allows handling half of the 
produced messages on average, although reducing buffer 
requirements by 75%. 
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