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Abstract 

The public-transport (transit) operation planning process commonly includes four basic activities, usually performed in sequence: 
network design, timetable development, vehicle scheduling, and crew scheduling. This work addresses two activities: timetable 
development and vehicle-scheduling with different vehicles types. Alternative timetables are constructed with either even 
headways, but not necessarily even passenger loads or even average passenger loads, but not even headways. A method to 
construct timetables with the combination of both even-headway and even-load concepts is developed for multi-vehicle sizes. 
The vehicle-scheduling problem is based on given sets of trips and vehicle types arranged in decreasing order of vehicle cost. 
This problem can be formulated as a cost-flow network problem with an NP-hard complexity level. Thus, a heuristic algorithm is 
developed. A few examples are used as an expository device to illustrate the procedures developed. 
© 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Organizing Committee. 
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1. Introduction 

The public-transport (transit) operation planning process commonly includes four basic activities, usually 
performed in sequence: (1) network route design, (2) timetable development, (3) vehicle scheduling, and (4) crew 
scheduling (Ceder 2007). Figure 1 shows the systematic decision sequence of these four planning activities. The 
output of each activity positioned higher in the sequence becomes an important input for lower-level decisions. 
Clearly the independence and orderliness of the separate activities exist only in the diagram; i.e., decisions made 
further down the sequence will have some effect on higher-level decisions. It is desirable, therefore, that all four 
activities be planned simultaneously in order to exploit the system’s capability to the greatest extent and maximize 
the system’s productivity and efficiency. Occasionally the sequence in Figure 1 is repeated; the required feedback is 
incorporated over time. However since this planning process, especially for medium to large fleet sizes, is extremely 
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cumbersome and complex, it requires separate treatment for each activity, with the outcome of one fed as an input to 
the next. 
 This work focuses on two activities: timetable development and vehicle scheduling with the consideration 
different vehicle types. The aim of public timetables is to meet general public transportation demand. This demand 
varies during the hours of the day, the days of the week, from one season to another, and even from one year to 
another. It reflects the business, industrial, cultural, educational, social, and recreational transportation needs of the 
community. The purpose of this activity, then, is to set alternative timetables for each transit route in order to meet 
variations in public demand. Alternative timetables are determined on the basis of passenger counts, and they must 
comply with service-frequency constraints. The vehicle-scheduling activity in Figure 1 is aimed at creating chains of 
trips; each is referred to as a vehicle schedule according to given timetables. This chaining process is often called 
vehicle blocking (a block is a sequence of revenue and non-revenue activities for an individual vehicle). A transit 
trip can be planned either to transport passengers along its route or to make a deadheading trip in order to connect 
two service trips efficiently. 

 
Figure 1. Functional diagram of a common transit-operation planning process 

  The vehicle-scheduling task described in Figure 1 usually considers only one type of transit vehicle. In practice, 
however, more than one type is used; e.g., a bus operation may employ minibuses, articulated and double-decker 
buses, and standard buses with varying degrees of comfort and different numbers of seats. Commonly the 
consideration of vehicle type in transit-operations planning involves two considerations: first, determining the 
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suitable or optimal vehicle size; second, choosing vehicles with different comfort levels, depending on trip 
characteristics. Certainly a multi-criteria effort may treat both considerations simultaneously, but this is seldom done 
in practice. The issue of what vehicle type to consider arises when purchasing a vehicle or a fleet of vehicles, an 
undertaking that is not performed frequently. The purpose of this work is two-fold. First, to insert the variable of 
vehicle size and construct efficient timetables; that is, to approach both even headways and even loads. Second, to 
address a minimum-cost vehicle-scheduling problem, while taking into account the association between the 
characteristics of each trip (urban, peripheral, inter-city, etc.) and the vehicle type required for the particular trip. 
This means complying with a certain level of service for that trip: degree of comfort, seat availability, and other 
operational features.  

2. Concise Literature Review 

This section covers concisely the literature of the two activities: timetable development and vehicle scheduling.  

2.1. Timetabling 

The problem of finding the best dispatching policy for transit vehicles on fixed routes has a direct impact on 
constructing timetables. This dispatching-policy problem, which has been dealt with quite extensively in the 
literature, can be categorized into four groups: (1) models for an idealized transit system, (2) simulation models, (3) 
mathematical programming models, and (4) data-based models. 

The first group, idealized transit systems, was investigated by, for example, Newell (1971), De Palma and 
Lindsey (2001), and Wirasinghe (2003). Newell (1971) assumed a given passenger-arrival rate as a smooth function 
of time, with the objective of minimizing total passenger waiting time. De Palma and Lindsey (2001) develop a 
method for designing an optimal timetable for a single line with only two stations. Wirasinghe (2003) considered the 
average value of a unit waiting time per passenger (C1) and the cost of dispatching a vehicle (C2) to show that the 
passenger-arrival rate in Newell’s square root formula is multiplied by (C1/2C2).  

In the second group, simulation models were studied by, for example, Adamski (1998), and Dessouky et al. 
(1999). Adamski (1998) employed a simulation model for real–time dispatching control of transit vehicles while 
attempting to increase the reliability of service in terms of on-time performance. Dessouky et al. (1999) used a 
simulation analysis to show that the benefit of knowing the location of the bus was most significant when the bus 
was experiencing a significant delay. 

In the third group, mathematical programming methods have been proposed, for example by Furth and Wilson 
(1981), and Gallo and Di-Miele (2001). Furth and Wilson sought to maximize the net social benefit, consisting of 
ridership benefit and waiting-time saving, subject to constraints on total subsidy, fleet size, and passenger-load 
levels. Gallo and Di-Miele (2001) produced a model for the special case of dispatching buses from parking depots. 
Their model is based on the decomposition of generalized assignments and matching sub-problems. In the fourth 
and last group, the data-based models described in this work are based on Ceder (1986, 2007). 

2.2. Vehicle Scheduling 

Vehicle scheduling refers to the problem of determining the optimal allocation of vehicles to carry out all the 
trips in a given transit timetable. A chain of trips is assigned to each vehicle including possible deadheading (DH) or 
empty trips. The number of feasible solutions to this problem is extremely high, especially in the case in which the 
vehicles are based in multiple depots. Much of the focus of the literature is, therefore, on computational issues. 

Löbel (1999) discussed the multiple-depot vehicle scheduling problem and its relaxation into a linear 
programming formulation that can be tackled using the branch-and-cut method. Freling et al. (2001) discussed the 
case of single-depot with identical vehicles, concentrating on quasi-assignment formulations and auction algorithms. 
Huisman et al. (2004) proposed a dynamic formulation of the multi-depot vehicle scheduling problem. The 
traditional, static vehicle scheduling problem assumes that travel times are a fixed input that enters the solution 
procedure only once; the dynamic formulation relaxes this assumption by solving a sequence of optimization 
problems for shorter periods.  
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Recent contributions noted are of Zak (2009) who developed a multi-criteria optimization method for bus 
scheduling using two criteria from the passenger perspective and two – from the operator perspective with 
satisfactory results. In addition studies of integrated multi-depot vehicle and crew scheduling can be found by 
Borndorfer et al. (2008), Gintner et al. (2008) and Mesquita et al. (2009) that use integer mathematical formulation, 
relaxation methods and heuristics to overcome the basic NP-Hard problem. Other related recent studies search for 
relief opportunities to approach optimal crew scheduling at transit stops where the drivers can be switched. Such 
studies are presented by Kwan and Kwan (2007) and Laplagne et al (2009). 

3. Background on Even-Headway and Even-Load Timetables 

Procedures to construct alternative timetables appear in Ceder (1986, 2007). The automated timetables are 
constructed with either even headways, but not necessarily even loads on board individual vehicles at the peak-load 
section, or even average passenger loads on board individual vehicles, but not even headways. Average even loads 
on individual vehicles can be approached by relaxing the evenly spaced headways pattern (through a rearrangement 
of departure times).  

3.1. Even-Headway Timetables with Smooth Transitions 

One characteristic of existing timetables is the repetition of the same headway in each time period. However, a 
problem facing the scheduler in creating these timetables is how to set departure times in the transition segments 

between adjacent time periods. A common headway smoothing rule in the transition between time periods is to 
use an average headway. Many transit agencies employ this simple rule, but it may be shown that it can result in 
either undesirable overcrowding or underutilization. For example, consider two time periods, 06:00-07:00 and 
07:00-08:00, in which the first vehicle is predetermined to depart at 06:00. In the first time period, the desired 
occupancy (desired load) is 50 passengers, and in the second 70 passengers. The observed maximum demand to be 
considered in these periods is 120 and 840 passengers, respectively. These observed loads at a single point are based 
on the uniform passenger-arrival-rate assumption. The determined frequencies are 120/50 = 2.4 vehicles and 840/70 
= 12 vehicles for the two respective periods, and their associated headways are 25 and 5 minutes, respectively. If 
one uses the common average headway rule, the transition headway is (25 + 5)/2 = 15 minutes; hence, the timetable 
is set to 06:00, 06:25, 06:50, 07:05, 07:10, 07:15,…, 07:55, 08:00. By assuming a uniform passenger arrival rate, the 
first period contributes to the vehicle departing at 07:05 the average amount of (10/25) 50 = 20 passengers at the 
Max load point; the second period contributes (5/5) 70 = 70 passengers. Consequently, the expected load at the Max 
load point is 20 + 70 = 90, a figure representing average overcrowding over the desired 70 passengers after 7:00. 
Certainly, the uniform arrival-rate assumption does not hold in reality. However, in some real-life situation (e.g., 
after work and school dismissals), the observed demand in 5 minutes can be more than three times the observed 
demand during the previous 10 minutes, as is the case in this example. In order to overcome this undesirable 
situation, the following principle may be employed. 

Principle 1: Establish a curve representing the cumulative (non-integer) frequency determined versus time. Move 
horizontally for each departure until intersecting the cumulative curve, and then vertically; this will result in the 
required departure time. 

Proposition 1:  Principle 1 provides the required evenly spaced headways with a transition load approaching the 
average desired occupancies of doj and do(j+1) for two consecutive time periods, j and j+1. 

Proof:  Figure 2 illustrates Principle 1 using an example (Ceder, 2007) of determined frequencies of 2.68 and 
3.60 vehicles/hour for 6:00-7:00 and 7:00-8:00 periods, respectively. Because the slopes of the lines are 2.68 and 
3.60 for j = 1 and j = 2, respectively, the resultant headways are those required. The transition load is the load 
associated with the 7:05 departure, which consists of arriving passengers during 16 minutes for j = 1, and of arriving 
passengers during 5 minutes for j = 2. Therefore, (16/22) 50 + (5/17) 60 = 54 approximately. This transition load is 
not the exact average between do1 = 50 and do2 = 60, because departures are made in integer minutes. That is, the 
exact determined departure after 7:00 is (3-2.68) 60/3.60 = 5.33 minutes. Inserting this value, instead of the 5 
minutes mentioned above, yields a value that is closer to the exact average. Basically, the proportions considered 
satisfy the proof-by-construction of Proposition 1. 

 



Avishai (Avi) Ceder / Procedia Social and Behavioral Sciences 20 (2011) 19–30 23

 

 
Figure 2. Determination of evenly spaced headways  

Figure 3  Determination of departure times with even load 

3.2. Even-Load Timetables 

A simple example is presented here to illustrate the underlying load-balancing problem. Consider an evenly 
spaced headway timetable in which vehicles depart every 20 minutes between 07:00 and 08:00; i.e., at 07:20, 07:40, 
and 08:00. The observed load data consistently show that the second vehicle, which departs at 07:40, has 
significantly more passengers than the third vehicle. The observed (average) Max load during this 60-minute period 
is 150 passengers, and the desired occupancy is 50 passengers. Hence, based on max-load consideration, three 
vehicles are required to serve the demand as in the case of the evenly spaced headways timetable. The average 
observed loads at the hourly Max load point on the three vehicles are 50, 70, and 30 passengers, respectively. Given 
that these average loads are consistent, then the transit agency can adjust the departure times so that each vehicle has 
a balanced load of 50 passengers on the average at the hourly Max load point. The assumption of a uniform 
passenger- arrival rate results in 70/20 = 3.5 passengers/minute between 07:20 and 07:40, and 30/20 = 1.5 
passengers/minute between 07:40 and 08:00. If the departure time of the second vehicle is shifted by X minutes 
backward (i.e., an early departure), then the equation 3.5X = 70-50 yields the balanced schedule, with X = 5.7 ≈ 6 
minutes, or departures at 07:20, 07:34, and 08:00. The third departure will add this difference of 20 passengers at the 
hourly Max load point. The even-headway setting assures enough vehicles to accommodate the hourly demand, but 
it cannot guarantee balanced loads for each vehicle at the peak point.  In order to avoid this imbalanced situation, the 
following principle should be exploited. 

Principle 2: Construct a curve representing the cumulative loads observed on individual vehicles at the hourly 
Max load points. Move horizontally per each doj for all j, until intersecting the cumulative-load curve, and then 
vertically; this results in the required departure times. 

Proposition 2: Principle 2 results in departure times such that the average Max load on individual vehicles at the 
hourly jth Max load point approaches the desired occupancy doj. 

Proof:  Figure 3 illustrates Principle 2 using loading data at the Max load point of individual vehicles observed. 
The derived departure times are unevenly spaced to obtain even loads at the Max load points for j = 1 and for j = 2. 
These even loads are constructed on the cumulative curve to approach do1=50 and do2=60. If we assume a uniform 
passenger-arrival rate between each two observed departures, it can be shown that the load of the first derived 
departure (6:23) consists of the arrival rate between 6:00 and 6:15 (35/15 = 2.33) and the rate between 6:15 and 6:50 
(65/35 = 1.86). Thus, 2.33  15 + 1.86  8 ≈ 50.  In the transition between j = 1 and j = 2, the value of d2 = 60 is 
considered, because the resultant departure comes after 7:00. The load of the vehicle departing at 7:07 at its hourly 
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Max load point, is simply 17 (90/25) = 61.2 from rounding off the departure time to the nearest integer. That is, 
(10+y) (90/25) = 60 results in y = 6.67 minutes. This completes the proof-by-construction of Proposition 2.  

4. Combining Even-Load and Even-Headway Timetables Using Different Vehicle Types 

4.1. Introduction and Background 

As is mentioned above currently, in practice, bus timetables are commonly based on even-headway departures. 
The even-headway feature for a given time period reduces the flexibility of the scheduler to accommodate 
fluctuations in demand within this period. This lack of flexibility may result in undesirable operational scenarios 
such as overcrowding or vehicles running almost empty. Uneven loads lead to either passenger discomfort, in case 
of overcrowding, or uneconomical and energy inefficient operation of the vehicles in the latter case (Spicher 2004, 
Potter 2003). However, the even-load timetables can lead to long and exceedingly irregular headways and thus to 
increase the waiting times for passengers arrived randomly. To overcome the disadvantages of both approaches 
(even-headway and even-load) this section aims at making the transit service more attractive by creating timetables 
using different types and sizes of vehicles to achieve even headways with minimum uneven loads at the max-load 
point(s). The quality of the timetables will be based on two criteria: load discrepancy on the vehicles from a 
desirable load, and time discrepancy from a desirable headway. 

The load discrepancy criterion serves as an indicator of how the actual max-point load on the buses deviates from 
a desired occupancy level (e.g., number of seats) including a buffer for demand fluctuations. The time discrepancy 
criterion provides information about how evenly the headways are spaced in the final timetable based on the 
calculation of average waiting time per passenger.  

4.2. Methodology 

As is shown in Ceder (2007) the expected waiting time for randomly arriving passengers, Wt, can be calculated 
as follows: 

 
This formula shows that the expected waiting time is minimal for even headways. For evenly distributed arrivals the 
best headway for a single type of vehicle can be easily found by dividing the total number of passengers observed at 
the Max load point by the desired passenger load. However in reality arrivals show fluctuations and are far from 
being evenly distributed. Consequently the proposed methodology uses a heuristic procedure to determine the 
optimal headway for a fluctuated demand using different vehicle sizes. For convenience the use of seat capacity 
determines the size of the vehicle; this seat capacity term is compared with the desired passenger load (desired 
occupancy or load factor). 

In each step, of the heuristic procedure, buses are assigned departure times based on an even-headway timetable 
such that the Max load demand is satisfied. Having different vehicle sizes available, the choice of vehicle is 
sometimes ambiguous. Therefore, three main strategies are considered: 
Strategy C1: Minimizing the size of the bus by assigning the largest bus size amongst all available buses such that 
its seat capacity is less than or equal to the average observed (hence expected) passenger load, That is, for a 
departure at time t with an expected load of L(t),  where Sk and Sk-1 are two following (w.r.t. to 
size) available bus sizes, the assigned bus is with the seat capacity of Sk-1. This may imply overcrowding on certain 
vehicles. 
Strategy C2: Maximizing the size of bus by assigning the smallest bus size amongst all available buses such that its 
seat capacity is greater than or equal to the average observed (hence expected) passenger load. That is, for a 
departure at time t with an expected load of L(t),  the assigned bus is with the seat capacity of Sk. 
This may imply empty seats on certain vehicles. 
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Strategy C3: Selecting the vehicle, whose size is closest to the average observed demand, per vehicle, at the Max 
load point. That is, for a departure at time t with an expected load of L(t), select the bus sixe of seat capacity Sk such 
that   is minimal for all k. This can result in either overcrowding or running empty seats. 

 

 

  Figure 4. Strategies for selection of vehicle type  

Figure 5. Shifting procedure 

Figure 4 illustrates the three strategies on a cumulative observed load of individual buses at the Max load point. 
In this example, the examined departure is at t = 24 (after the beginning of the time period). The previous departure 
relates to t = 15 with 25 passengers on board. The load associated with the examined departure is: L(24)=60-25=35 
passengers (pax). Vehicle size available are S1 = 25 and S2 = 40 seat capacity. Based on Strategy C1 bus S1 will be 
selected, and bus S2 for Strategy C2 and Strategy C3 as is shown in Figure 4. 

Although those strategies allow the creation of timetables with even headways, they might result in uneven loads 
even for the different bus sizes. Hence, there is a benefit of shifting departure times away from the even headway to 
approach a better balance of on-board passenger load. Figure 5 illustrates an example in which there is a departure at 
t = 15 and with even headway of 7 minutes the next departure is at t = 22. However L(22)=30 passengers and the 
assigned bus has  a seat capacity of 35 passengers. The shifting to the right in Figure 5 (see arrow) will make the 
headway 10 minutes, but will provide a more efficient service without harming in average sense the quality of 
service. 

The research examines different shifting policies with a total of 21 different combinations of strategies and 
shifting for constructing a set of feasible timetables. From this set the optimal timetable will be determined.  

4.3. Results  

The methodology developed has been applied to several sets of real data from Auckland, New Zealand. It refers 
to a city bus line which is currently running with even headways and with only one type of vehicle with 36 seats. 
The heuristic-based process provides several non-dominated sets of departure times; the Pareto frontier of these 
results exhibits significant improvement over the current set of departures. That is, the original passenger-load 
discrepancy from the desired load can be reduced from 38% to a discrepancy between 0% - 15% while preserving 
the time deviation from the determined even headway in the range of 0% - 7%. The work discusses the results in 
detail and also provides a sensitivity analysis 

5. Vehicle Scheduling with Multi-Vehicle Types 

In the vehicle scheduling activity in Figure 1 the scheduler’s task is to list all daily chains of trips (some 
deadheading) for each vehicle so as to ensure the fulfillment of both timetable and operator requirements (refueling, 
maintenance, etc.). The major objective of this activity is to minimize the number of vehicles required in case of a 
single type, and minimum cost – for multi-type vehicles. The technique used is a step function termed deficit 
function, as it represents the deficit number of vehicles required at a particular terminal in a multi-terminal transit 
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system (Ceder and Stern 1981, Ceder 2007). The value of embarking on such a technique is to achieve the greatest 
saving in number of vehicles while complying with passenger demand. This saving is attained through a procedure 
incorporating a man/computer interface allowing the inclusion of practical considerations that experienced transit 
schedulers may wish to introduce into the schedule. 

5.1. Background on the deficit function 

Following is a description of a step function approach described first by Ceder and Stern (1981) and Ceder 
(2007), for assigning the minimum number of vehicles to allocate for a given timetable. The step function is termed 
deficit function (DF), as it represents the deficit number of vehicles required at a particular terminal in a multi-
terminal transit system. That is, DF is a step function that increases by one at the time of each trip departure and 
decreases by one at the time of each trip arrival. To construct a set of deficit functions, the only information needed 
is a timetable of required trips. The main advantage of the DF is its visual nature. Let d k t S, ,  denote the DF for 
the terminal k  at the time t  for the schedule S . The value of d k t S, ,  represents the total number of departures 
minus the total number of trip arrivals at terminal k , up to and including time t . The maximal value of d k t S, ,  
over the schedule horizon T T1 2,  is designated D k S, . 

Let i
st  and te

i  denote the start and end times of trip i , i S . It is possible to partition the schedule horizon of 

d k t S, ,  into sequence of alternating hollow and maximal intervals. The maximal intervals 

knies k
i

k
i ,...,1,,  define the interval of time over which d k t,  takes on its maximum value. Note that the 

S  will be deleted when it is clear which underlying schedule is being considered. Index i  represents the ith 

maximal intervals from the left and n k  represents the total number of maximal intervals in d k t, . A hollow 

interval k
lH , l=0,1,2,…,n(k) is defined as the interval between two maximal intervals including the first hollow 

from T1 to the first maximal interval, and the last hollow-from the last interval to T2 . Hollows may consist of only 

one point, and if this case is not on the schedule horizon boundaries T1  or T2 , the graphical representation of 

d k t,  is emphasized by clear dot. 
If the set of all terminals is denoted as T, the sum of D k  for all Tk  is equal to the minimum number of 

vehicles required to service the set T. This is known as the fleet size formula. Mathematically, for a given fixed 
schedule S: 

D S D k d k t
t T T

k Tk T

max ,
,1 2

 (1) 

where D S  is the minimum number of buses to service the set T. 

When deadheading (DH) trips are allowed, the fleet size may be reduced below the level described in Eq. 1. 

Ceder and Stern (1981) described a procedure based on the construction of a unit reduction DH chain (URDHC), 

which, when inserted into the schedule, allows a unit reduction in the fleet size. The procedure continues inserting 

URDHCs until no more can be included or a lower boundary on the minimum fleet is reached. The lower boundary 

G(S) is determined from the overall deficit function defined as 
Tk

StkdStg ,,, where StgSG
TTt

,max)(
21,

. 

This function represents the number of trips simultaneously in operation. Initially, the lower bound was determined 

to be the maximum number of trips in a given timetable that are in simultaneous operation over the schedule 

horizon. Stern and Ceder (1983) improved this lower bound, to SGSG '  based on the construction of a 

temporary timetable, S’, in which each trips is extended to include potential linkages reflected by DH time 

consideration in S. This lower bound was even further improved by Ceder (2002) by looking into artificial 

extensions of certain trip-arrival points without violating the generalization of requiring all possible combinations 

for maintaining the fleet size at its lower bound. 
In addition, it is worth mentioning the NT (Next Terminal) selection rule and the URDHC routines. The selection 

of the next terminal in attempting to reduce its maximal deficit function may rely on the basis of garage capacity 
violation, or otherwise on a terminal whose first hollow is the longest. The rationale here is to try to open up the 
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greatest opportunity for the insertion of the DH trip. Once a terminal k is selected, the algorithm searches to reduce 
D(k) using the URDHC routines. Then all the d(k,t) are updated and the NT rule is again applied. In the URDHC 
routines there are four rules: R=O for inserting the DH trip manually in a conversational mode; R=1 for inserting the 
candidate DH trip which has the minimum travel time; R=2 for inserting a candidate DH trip whose hollow starts 
farthest to the right; and R=3 for inserting a candidate DH trip whose hollow ends farthest to the right. In the 
automatic mode (R=1,2,3) if a DH trip cannot be inserted and the completion of a URDHC is blocked, the algorithm 
backs up to a DH candidate list and selects the next DH candidate on that list.   

5.2. Optimization framework of vehicle-type scheduling problem 

The problem, entitled the vehicle-type scheduling problem (VTSP), is based on given set S of trips (schedule) 
and set M of vehicle types. The set M is arranged in decreasing order of vehicle cost so that if Mu  is listed 
above Mv , it means that cu > cv, where cu, cv are the costs involved in employing vehicle types u and v, 
respectively. Each trip Si  can be carried out by vehicle type Mu  or by other types listed prior to u in the 
above-mentioned order of M. 

The problem can be formulized as a cost-flow network problem, in which each trip is a node and an arc connects 
two trips if, and only if, it is possible to link them in a time sequence with and without DH connections. On each arc 
(i,j), there is a capacity of one unit and an assigned cost Cij. If the cost of the lower-level vehicle type associated 
with trip i is higher than the cost of the vehicle type (even if of a lower level) required for trip j, then Cij = ci. That is, 
Cij = max (ci,cj). The use of such a formulation was implemented by Costa et al. (1995), who employed three 
categories of solutions: (a) a multi-commodity network flow; (b) a single-depot vehicle- scheduling problem; and (c) 
a set-partitioning problem with side constraints. The mixed-integer programming of these problems is known to be 
NP-complete as may be seen, for example, in Bertossi et al. (1987). The math-formulation concepts for the third 
category are further explained by Ceder (2007, 2011). 

 
Figure 6. Optimization framework 

 
Because of the complexity involved in reaching an optimal solution for a large number of trips in S, a heuristic 

method is considered a more practical approach. The heuristic procedure developed is called the VTSP algorithm. It 
begins by establishing lower and upper bounds on fleet size. The upper bound is attained by creating different DFs, 
each associated with a certain vehicle type Mu , which includes only the trips whose lower-level required 
vehicle type is u. Certainly, this scheduling solution reflects a high cost, caused by the large number of vehicles 
demanded. The lower bound on the fleet size is attained by using only one vehicle type: the most luxurious one with 
the highest cost that can clearly carry out any trip in the timetable.    

Between these bounds on fleet size, the procedure searches for the best solution, based on the properties and 
characteristics of DF theory.  The algorithm VTSP developed is heuristic in nature while incorporating all DF 
components. It is detailed in Ceder (2007, 2011). Because of the graphical features associated with DF theory, the 
algorithm can be applied in an interactive manner or in an automatic mode, along with the possibility of examining 
its intermediate steps. The following is a general description of algorithm VTSP in a stepwise manner: 
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5.3. Example 

An example is provided for the general demonstration of the VTSP algorithm. The example is illustrated in Figure 7, 
and consists of 8 trips, three terminals (a,b,c), and three types of vehicles, with the cost of 12, 5, and 3 cost-units, 
respectively. Figure 7(a) presents the simple network of the routes, in which the DH travel time between each two 
terminals is 20 minutes. The timetable and trip travel times are shown in Figure 7(b) according to vehicle type. The 
DFs of algorithm VTSP for the example are depicted in Figure 7(c); all trips are served initially by the same vehicle 
type (Type 1). 

 

Figure 7. Network, schedule and DFs of the example 

 
 
 

 

Figure 8. Min-cost solution

For inserting a DH trip, the NT rule (the first hollow is the longest) is applied; this results in the selection of terminal 
b. The URDHC procedure with R=2 (furthest start of a hollow) then results in three DH trips, in which DH2 is used 
for the level of D(a). Two vehicle chains are then created using the FIFO [1-3-DH1-5-7] and [2-4-DH2-6-DH3-8], 
and the total cost is C1=24. 

 Algorithm VTSP continues with treating vehicle types separately. The maximum DF of Types 1 and 2 are 
reduced by one, using DH1 and DH2, respectively; the number of Type 3 vehicles remains same. Thus, N2 = 1 + 1 + 
2 = 4, and the four following chains are derived by using the FIFO rule: [1-DH1-4] (vehicle type 1), [2-5-DH2-8] 
(vehicle type 2), [3-7], and [6] (vehicles of Type 3); this results in a total cost of C2 = 23. 

The next step in algorithm VTSP compares N1 = 2 with N2 = 4, and then moves to the next step. Figure 8 
(marked as part ‘e’ of the process) illustrates the process of this step which again applies the NT rule and the 
URDHC procedure with R=2 (furthest start of a hollow), but this time with the possibility of inserting any DH trip 
from a DF with a more expensive vehicle type to a DF with a less expensive type. The first terminal selected is b, 
based on d2(b,t), from which DH1 is determined from terminal a. The DFs are then updated and the next terminal 
again b, but related to d1(b,t); DH2 is inserted from terminal c. We continue with the next selected terminal c, based 
on d3(c,t); however, no DH trip can be inserted into its maximum-interval starting point, including. Thus, a is 
selected next, based on d3(a,t), and DH3 is inserted to arrive from c, based on the updated d1(c,t). This terminates 
this step and results in the three following (FIFO) chains: [1-DH2-4-DH3-6] (vehicle type 1), [2-5-DH1-8] (vehicle 
Type 2), and [3-7] (vehicle Type 3), with a total cost of 12 + 5 + 3 = 20.  



Avishai (Avi) Ceder / Procedia Social and Behavioral Sciences 20 (2011) 19–30 29

6. Concluding remark 

This work addresses two transit operations-planning activities: timetable development and vehicle-scheduling 
with different vehicles types. Alternative timetables are constructed with either even headways, but not necessarily 
even passenger loads or even average passenger loads, but not even headways. A method to construct timetables 
with the combination of both even-headway and even-load is developed for multi-vehicle sizes. The vehicle-
scheduling problem is based on given sets of trips and vehicle types arranged in decreasing order of vehicle cost 
using the deficit-function theory. Further analysis of the deficit function theory is to include possible shifting in 
departure times within bounded tolerances; this was introduced by Ceder and Stern (1985). Basically, the shifting 
criteria is based on a defined tolerance time ]t,t[ i

d
i
s

i
a

i
s  where i

a  is the maximum advance of the trip 
scheduled departure time (early departure) and i

d  is the maximum delay allowed (late departure). This shifting 
analysis is included in the VSTP procedures described by Ceder (2011). Finally, it is believed that prudent use of 
transit vehicles by the consideration of different vehicle sizes can help making the need for travel more economical, 
thus saving resources. 

References 

Adamski, A. (1998). Simulation support tool for real-time dispatching control in public transport. Transportation Research, 32A (2), 73-87. 
Bertossi, A., Carraresi, P., and Gallo, G. (1987). On some matching problems arising in vehicle scheduling. Networks, 17, 271-281. 
Borndorfer, R., Lobel, A., and Weider, S. (2008). A Bundle Method for Integrated Multi-Depot Vehicle and Duty Scheduling in Public Transit. 

Computer-Aided Systems in Public Transport (M. Hickman, P. Mirchandani, S. Voss, eds). Lecture notes in economics and mathematical 
systems, Vol. 600, Springer, 3-24. 

Ceder, A. (1986).  Methods for creating bus timetables. Transportation Research, 21A (1), 59-83. 
Ceder, A. (2002). A step function for improving transit operations planning using fixed and variable scheduling. In Transportation and Traffic 

Theory, (M.A.P. Taylor, ed), 1-21, Elsevier Science. 
Ceder, A. (2007). Public Transit Planning and Operation: Theory, Modeling and Practice . Oxford, UK: Elsevier, Butterworth-Heinemann. This 

book was translated to Chinese by the Tsinghua publishing press, Beijing, China, June 2010. 
Ceder, A. (2011). Public-Transport Vehicle Scheduling with Multi Vehicle-Type”. Journal of Transportation Research, 19C (3), 485-497. 
Ceder, A. and Stern, H.I. (1981). Deficit function bus scheduling with deadheading trip insertion for fleet size reduction. Transportation Science, 

15 (4), 338-363. 
Ceder, A. and Stern, H.I. (1985). The variable trip procedure used in the AUTOBUS vehicle scheduler. In Computer Scheduling of Public 

Transport 2, (J.M. Rousseau, ed.), pp. 371-390, North Holland. 
Costa, A., Branco, I., and Paixao, J. (1995). Vehicle scheduling problem with multiple types of vehicles and a single depot. In Computer-aided 

Transit Scheduling. Lecture Notes in Economics and Mathematical Systems, 430 (J. R. Daduna, I. Branco, and J. M. P. Paixao, eds.), pp. 
115-129, Springer-Verlag. 

De Palma, A. and Lindsey, R. (2001). Optimal timetables for public transportation. Transportation Research, 35B, 789-813. 
Dessouky, M., Hall, R., Nowroozi, A., and Mourikas, K. (1999). Bus dispatching at timed transfer transit stations using bus tracking technology. 

Transportation Research, 7C (4), 187-208. 
Freling, R., Wagelmans, A. P. M., and Paixao, J. M. P. (2001). Models and algorithms for single-depot vehicle scheduling, Transportation 

Science, 35 (2), 165-180. 
Furth, P.G. and Wilson, N.H.M. (1981). Setting frequencies on bus routes: theory and practice.  Transportation Research Board, 818, 1-7. 
Gallo, G. and Di-Miele, F. (2001). Dispatching buses in parking depots. Transportation Science 35(3), 322-330. 
Gintner, V., Kliewer, N. and Suhl, L (2008). A Crew Scheduling Approach for Public Transit Enhanced with Aspects from Vehicle Scheduling.  

Computer-Aided Systems in Public Transport (M. Hickman, P. Mirchandani, S. Voss, eds). Lecture notes in economics and mathematical 
systems, Vol. 600, Springer, 25-42. 

Huisman, D., Freling, R., and Wagelmans, A.P.M. (2004). A robust solution approach to the dynamic vehicle scheduling problem.  
Transportation Science, 38 (4), 447-458. 

Kwan R.S.K and Kwan A.S.K (2007). Effective Search Space Control for Large and/or Complex Driver Scheduling Problems. Annals of 
Operations Research 155, 417-435. 

Laplagne, I., Kwan R.S.K., and Kwan A.S.K (2009). Critical Time Window Train Driver Relief Opportunities. Public Transport planning and 
Operations 1(1), 73-85. 

Löbel, A. (1999). Solving large-scale multiple-depot vehicle scheduling problems. In Computer-Aided Transit Scheduling. Lecture Notes in 
Economics and Mathematical Systems, 471 (N. H. M. Wilson, ed.), pp. 193-220, Springer-Verlag. 

Mesquita, M., Paias, A., and Respicio, A. (2009). Branching Approaches for Integrated Vehicle and Crew Scheduling. Public Transport Planning 
and Operations 1(1), 21-37. 

Newell, G. F. (1971). Dispatching policies for a transportation route. Transportation Science, 5, 91-105. 
Potter, S. (2003). Transport energy and emissions: urban public transport. Handbook of transport and the environment. D. A. Hensher and K. J. 

Button, Elsevier. 4, 247-263. 



30  Avishai (Avi) Ceder / Procedia Social and Behavioral Sciences 20 (2011) 19–30

Spicher, U. (2004). Skript zur Vorlesung Verbrennungsmotoren. Karlsruhe,. Karlsruhe, Universitaet Karlsruhe, Institut für Kolbenmaschinen. 
Stern, H.I. and Ceder, A. (1983). An improved lower bound to the minimum fleet size problem. Transportation Science, 17 (4), 471-477. 
Wirasinghe, S. C. (2003). Initial planning for an urban transit system. In Advanced Modeling for Transit Operations and Service Planning (W. 

Lam and M. Bell, eds.), pp. 1-29, Pergamon Imprint, Elsevier Science Ltd. 
Zak, J. A. (2009). Multiple criteria optimization method for the vehicle assignment problem in a bus transportation company. Journal of 

Advanced Transportation .43(2) , 203-243. 


