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Ambulance location problem is a key issue in Emergency Medical Service (EMS) system, which is to determine where to locate
ambulances such that the emergency calls can be responded efficiently. Most related researches focus on deterministic problems or
assume that the probability distribution of demand can be estimated. In practice, however, it is difficult to obtain perfect information
on probability distribution. This paper investigates the ambulance location problem with partial demand information; i.e., only the
mean and covariance matrix of the demands are known. The problem consists of determining base locations and the employment
of ambulances, to minimize the total cost. A new distribution-free chance constrained model is proposed. Then two approximated
mixed integer programming (MIP) formulations are developed to solve it. Finally, numerical experiments on benchmarks (Nickel et
al.,, 2016) and 120 randomly generated instances are conducted, and computational results show that our proposed two formulations
can ensure a high service level in a short time. Specifically, the second formulation takes less cost while guaranteeing an appropriate

service level.

1. Introduction

The design of Emergency Medical Service (EMS) systems that
affects people’s health and life focuses on how to respond to
emergencies rapidly. Ambulance location problem is one of
the key problems in EMS system, which mainly consists of
determining where to locate bases, also named as emergency
service facilities, and the employment of ambulances in order
to serve emergencies efficiently and to guarantee patient sur-
vivability. There have been various researches investigating
ambulance location problem (e.g., [1,2]) since it is introduced
by Toregas et al. (1974).

Early studies addressing ambulance location problem
mainly focus on deterministic environments, including set
covering ambulance location problem that minimizes the
number of ambulances to cover all demand points [3],
maximal covering location problem to maximize the number
of covered demand points with given number of ambulances

[4], and double standard model (DSM) in which each
demand point must be covered by one or more ambulances
[5]. However, in practice, stochastic ambulance location
problem is more realistic due to the inevitable uncertainties
of emergency events (e.g., [6, 7], etc.). Usually, an emergency
event has the following characteristics: (i) it is difficult to
forecast precisely where an emergency will occur, and (ii) the
required number of ambulances depends on the severity of
the situation, which is also unforeseen [8].

Most existing works investigate stochastic ambulance
location problem by assuming that the demand probability
distribution at each possible emergency is known (e.g., [9,
10], Beraldi and Bruni, 2008; etc.). However, as stated by
Wagner [11] and Delage and Ye [12], it is usually impossible
to obtain the perfect information on probability distribution,
due to (i) the lack of historical data and the fact that (ii) the
given historical data may not be represented by probability
distribution.
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Moreover, how to cover as many emergencies as possible
to guarantee a high patient service level (i.e., the portion of
the satisfied emergency points among all emergency points)
has always been a main goal of EMS operators. Motivated
by the above observation, this work focuses on a stochastic
ambulance location problem with only partial information
of demand points, i.e., the mean and covariance matrix of
the demands. Besides, we introduce a new individual chance
constraint, which implies a minimum probability that each
emergency demand has to be satisfied. For the problem,
a new distribution-free model is presented, and then two
approximated formulations are proposed. The contribution
of this work mainly includes the following:

(1) For the studied stochastic ambulance location prob-
lem, we introduce a new individual chance con-
straint (i.e., safety level) guaranteeing each emergency
demand satisfied with a least probability, while Nickel
etal. [8] use a coverage constraint, where some service
of individual emergencies may sufter insufficiency.

(2) A new distribution-free model based on individual
chance constraints is proposed. To our best knowl-
edge, it is the first distribution-free model for stochas-
tic ambulance location problem.

(3) To solve the distribution-free model, two approx-
imated mixed integer programming (MIP) formu-
lations are developed. Experimental results show
that our approximated formulations are efficient and
effective for large size instances, compared to that
proposed by Nickel et al. [8] in terms of both com-
putational time and service level.

The remainder of this paper is organized as follows.
Section 2 gives a brief literature review. In Section 3, we give
the problem description and propose a new distribution-free
model. In Section 4, two approximated MIP formulations
are proposed. Computational results on benchmarks and
120 randomly generated instances are reported in Section 5.
Section 6 summarizes this work and states future research
directions.

2. Literature Review

The deterministic ambulance location problem has been well
studied in literature (e.g., [2, 5, 13], etc.). Besides, there have
been some works addressing ambulance location problem
under uncertainty (e.g., [1, 6, 14], etc.). Since our study falls
within the scope of stochastic ambulance location problem, in
the following subsections, we first review existing studies on
ambulance location problem with uncertain demand. Then
we review the literature studying general and specific stochas-
tic optimization problems with distribution-free approaches.

2.1. Ambulance Location Problem with Uncertain Demand.
Ambulance location problem under uncertain demand has
been investigated by many researchers. Most existing works
address the uncertainty with given scenarios or known
probability distribution.

Chapman and White [15] first investigate the ambulance
location problem with uncertain demand, in which the
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complete information on probability distributions is assumed
to be known. Beraldi et al. [9] study the emergency medical
service location problem with uncertain demand to minimize
the total cost with a marginal probability distribution. Beraldi
and Bruni (2008) investigate the emergency medical service
facilities location problem with stochastic demand based on
given set of scenarios and known probability distribution.
A stochastic programming formulation with probabilistic
constraints is proposed. Noyan [10] studies the ambulance
location problem with uncertain demand on given scenarios
and probability distribution. Then, two stochastic optimiza-
tion models and a heuristic are proposed.

Recently, Nickel et al. [8] first study the joint optimization
of ambulance base location and ambulance employment. The
objective is to minimize the total constructing base costs
and ambulance employment costs. It is assumed that various
scenarios are given beforehand. A coverage constraint is
introduced in the paper. They propose a sampling approach
that solves a finite number of scenario samples to obtain
a feasible solution of the original problem. But with the
coverage constraint, some emergency demands risk insuffi-
cient individual service or cannot be served. For the study,
we propose a new distribution-free model for stochastic
ambulance location problem.

2.2. Distribution-Free Approaches. In data-driven settings,
the probability distributions of uncertain parameters may
not always be perfectly estimated [16]. Therefore in the last
decade, there have been many solution approaches developed
to address stochastic problems under partial distributional
knowledge. Most related researches focus on the distribution-
free approach via considering chance constraints. Wagner [11]
studies a stochastic 0-1 linear programming under partial
distribution information, i.., minXE{O’l}n{c'x : a;x <
bj, j = 1,...,m}, where a; are random vectors with
unknown distributions. The only information on a; are
their moments, up to order k. A robust formulation, as
a function of k, is given. Given the known second-order
moment knowledge, i.e., k = 2, an approximated formulation

is developed as minXe{O’l}n{c'x : Vx'Tix < \/pj/(l - pjb; =

[E[aj]'x),j = 1,...,m}, where l"fk = El(a; — Ela;])(ay; -
[E[akj])],Vi,k = 1,...,n. Delage and Ye [12] investigate the
stochastic program with limited distribution information,
and they propose a new moment-based ambiguity set, which
is assumed to include the true probability distribution, to
describe the uncertainties. There have been various works
successfully applying the distribution-free approaches. Ng
[17] investigates a stochastic vessel deployment problem for
liner shipping, in which only the mean, standard deviation,
and an upper bound of demand are known. A distribution-
free optimization formulation is proposed. Based on that, Ng
[18] studies a stochastic vessel deployment problem for the
liner shipping industry, where only the mean and variance
of the uncertain demands are known. New models are
proposed, and the provided bounds are shown to be sharp
under uncertain environment. The stochastic dependencies
between the shipping demands are considered.

Jiang and Guan [19] develop approaches to solve stochas-
tic programs with data-driven chance constraints. Two types
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of confidence sets for the possible probability distributions
are proposed. For more distribution-free formulation appli-
cations, please see Lee and Hsu [20], Kwon and Cheong [21],
etc., for the stochastic inventory problem, and Zhang et al.
[23] for stochastic allocating surgeries problem in operating
rooms, and Zheng et al. [24] for stochastic disassembly line
balancing problem. To the best of our knowledge, there is no
research for the stochastic ambulance location problem with
only partial information on the uncertain demand.

3. Problem Description and Formulation

In this section, we first describe the considered problem and
then propose a new distribution-free model.

3.1. Problem Description. There is a given set of candidate
base locations I = {1,2,...,|I]} and a set of potential
emergency demand points J = {1,2,...,|J|}. The emergency
points may refer to a road, a part of the urban area and a
village. Base i € I is said to be covering an emergency point
j if the driving time #;; between i and j is no more than a
predetermined value T'. The set I; of candidate bases covering
emergency point j is denotedas I; = {i € I | t;; < T}.

The number of ambulances required by an emergency
point j € ] is denoted as d;, which depends on the severity
of the practical situation. We consider uncertain emergencies
which are estimated or predicted by partial distributional
information; thus the demand is regarded to be ambiguous.
Besides, we focus on the case where the historical data cannot
be represented by a precise probability distribution. It is
assumed that the customer demands are independent of each
other.

The objective of the problem is to select a subset of

base locations and determine the number of ambulances at
each constructed base in order to minimize the total base
construction cost and ambulance cost. Throughout this paper
we assume that only the mean and covariance matrix of
demands are known. Moreover, a predefined safety level «;
is given for each potential emergency point j € J. That is, the
number of ambulances serving each emergency point j € J is
larger than or equal to its demand with a least probability of
a;.
3.2. Chance Constraint Construction. In this section, we
introduce a chance constraint to guarantee the safety level
of each emergency demand point. In the following, y;; is a
decision variable denoting the number of ambulances serving
point j € J from base i € I; and d; is the uncertain demand
at point j € J. The chance constrained inequality is presented
as follows:

vjieJ @

Probp <Zyij > dj> >,

zte

where Probp(-) denotes the probability of the event in
parentheses under any potential probability distribution P.
Constraint (1) ensures that the number of ambulances serving
emergency point j € ] is no less than its demand with a least
probability of «; (i.e., safety level).

3.3. Distribution-Free Formulation. In the following, we give
basic notations, define decision variables and propose the
distribution-free formulation DF for the ambulance location
problem with uncertain demand.

Parameters

i: index of base locations

j: index of emergency points

I: set of candidate base locations

J: set of possible emergency demand points

t;;: driving time between base i € I and demand point
jel

T: maximum driving time for serving any emergency
call

I;: set of candidate bases that can cover emergency

pointj € J,ie,I;={ieI|t; <T}

J;: set of potential emergency points covered by base
i€Lie,J;={je]|t;<T}

f;: fixed construction cost for installing a base at
locationi € T

g;+ fixed cost associated with an ambulance to be
located ati € I

d;: number of (stochastic) ambulances requested by
emergency point j € J

M a sufficiently large positive number

Decision Variables

x;: a binary variable equal to 1 if a base is constructed
ati € I; 0 otherwise

z;: number of ambulances assigned to possible base
locationi € T

Vij: number of ambulances serving emergency point
j € J from possible base location i € I f

Distribution-Free Model [DF]
[DF]:

min {Z(ﬁ'xi+gi’zi)}

iel (2)
s.t.  Constraint (1)

z;<JM-x;, Viel (3)
i<z, Viel (4)
iel;
x;€{0,1}, Viel (5)
z;€Z", Viel (6)
y; €2, Viel, je], (7)



The objective function denotes the goal to minimize the
total cost consisting of two parts: (i) the cost for constructing
bases, i.e., ) ;c; fi - X;, and (ii) the cost for deploying ambu-
lances, i.e., Y;c; i - 2

Constraint (3) ensures that ambulances can only be
located at the opened bases. Constraint (4) ensures that the
number of ambulances sent to serve emergency points from
base i € I does not exceed the total number of ambulances
located at i € I. Constraints (5)-(7) are the restrictions on
decision variables.

4. Solution Approaches

The proposed distribution-free model is difficult to solve
with the commercial software due to chance constraints. In
this section, we propose two approximated MIP formulations
based on those in Wagner [11] and in Delage and Ye [12],
respectively. In the following subsections, we present the two
approximated MIP formulations.

4.1. Approximated MIP Formulation: MIP-DFI. In this part,
we first describe a widely used ambiguity set to describe the
uncertainty. Then an approximated MIP formulation MIP-
DFl1 is proposed.

Given a set of independent historical data samples {ds}LS:l1
of random vectors of demands, where S is the set of sample
indexes, the mean vector y and the covariance matrix X of
demands can be estimated as follows:

1
- V&,
: |S|SEZS

1 (8)
PG ICE

s€S

where (-)" implies the transposition of the vector in paren-
theses. Then, an ambiguity set of all probability distributions
of demands 2, (i, Z) can be described as the following:

Ep [d] = , } ©)
d-w)d-w'|=2]"

where PP denotes a possible probability distribution satisfying
the given conditions, and Ep[-] denotes the expected value
of the number in parentheses. Then the chance constraint (1)
with the ambiguity set &, can be presented as follows:

Probp <Zyij > dj> > aj,

i€l;

9“”m:{P:EM<

Viel, Pe 2.  (10)

According to Wagner (2010) and Ng [18], constraint (1) can
be conservatively approximated by the following:

%
RN ()

IEI}

vVje] (11)

where o;=

column of matrix 2. In terms of conservative approximation,

\(2Z;j»and ¥ ;; denotes the j-th element in the j-th
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all solutions satisfying constraint (11) must satisfy constraint
(1). Then we describe the approximated MIP formulation
MIP-DF1 to DF combined with constraint (11):

[MIP-DF1]:

min ‘[Z(ﬁ'xi+9i 'Zi)}

i€l

(12)
s.t.  Constraints (4) - (8),(12).

MIP-DF1 can be exactly solved by the commercial
software, such as CPLEX. As we can observe from the
computational results in Section 5, it can obtain a relatively
high service level. However, the system cost is also high. In
order to save the system cost, another approximated MIP
formulation of DF is then proposed in the next subsection.

4.2. Approximated MIP Formulation: MIP-DF2. Ambiguity
set P, focuses on exactly matching the mean and covariance
matrix of uncertain parameters. However, in practice, there
may be considerable estimation errors in the mean and
covariance matrix. To take the inevitable estimation errors
into consideration, Delage and Ye [I2] introduce a new
moment-based ambiguity set. Therefore, we in the following
employ the moment-based ambiguity set:

Py (12,715 12)

C(Epldl-p) 2 (Epldl - ) <y | (3)
O Ep[d-w(d-w)'] <y

where y; > 0 and y, > 0 are two parameters of ambiguity
set P,(u, 2, y,,7,) with the following assumptions: (i) the
true mean vector of demands is within an ellipsoid of size
proportion to y; centered at y, and (ii) the true covariance
matrix of demands is in a positive semidefinite cone bounded
by a matrix inequality of y,>. The ambiguity set describes how
likely the uncertain parameters are to be close to the mean
in terms of the correlation [12]. Besides, under the moment-
based ambiguity set, various stochastic programs with partial
distributional information have been successfully modeled
and solved [22, 23, 25].

According to the approximation method in Zhang et al.
[23], chance constraint (1) can be approximated by

1 1-«;
\]; 1+ J.b -0
l-a-b a; /

(14)
1-«o;
5\/ J'<Zyij_!"j>7 jeJ
&; il
where
-1 ntl

Y2=N (15)

=N

Y>=N
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TABLE 1: ¢ = 0.95.
1l = 1] Sampling approach MIP-DF1 MIP-DE2

CT Obj Sel (%) CT Obj Sel (%) CT Obj Sel (%)

1 7 4.9 23 96.26 0.1 36 100.00 0.1 23 100.00
2 7 5.1 22 98.63 0.1 35 100.00 0.1 24 99.82
3 6 4.1 14 96.92 0.1 30 100.00 0.1 14 98.50
4 6 4.3 13 9713 0.2 29 100.00 0.1 12 97.42
5 6 5.7 12 79.96 0.1 30 100.00 0.2 12 100.00
6 8 5.8 21 98.50 0.1 24 100.00 0.2 27 100.00
Average 5.0 175 94.57 0.1 30.7 100.00 0.1 18.7 99.29

The second approximated MIP formulation MIP-DF2 to
DF is presented as follows:

[MIP-DF2]:

min {

Constraints (4) - (8), (15).

Y (fi-

i€l

Xi +gi'zi)}

(16)
s.t.

Notice that when y, 0 and y, = 1, inequality (14)
reduces to (11) in MIP-DF1, which implies that MIP-DF1 is
a special case of MIP-DF2.

5. Computational Experiments

In this section, the performance of our proposed formula-
tions first evaluated and compared to the sampling approach
proposed in Nickel et al. [8]. Specifically, given a required
service level «, we apply our MIP formulations by restricting
the chance constraint for each emergency point to satisfy
a safety level «; «, while we adopt the sampling
approach by restricting the coverage constraint with «. Then
computational results on 120 randomly generated instances
based on the information on emergencies in Shanghai are
reported. Our approximated MIP formulations and the
sampling approach are solved by coding in MATLAB_2014b
calling CPLEX 12.6 solver. All numerical experiments are
conducted on a personal computer with Core I5 and 3.30GHz
processor and 8GB RAM under windows 7 operating system.
The computational time for sampling approach is limited to
3600 seconds.

5.1. Out-of-Sample Test. Following Zhang et al’s [22] method-
ology, we examine the out-of-sample performance of solu-
tions obtained by our proposed approximated MIP formula-
tions and the sampling approach [8]. The out-of-sample test
includes three steps:

(1) The base locations and the employment of ambu-
lances at each base are determined with known mean
vector and covariance matrix of demands, which is
named as in-sample test.

(2) 1000 scenarios are sampled from the underlying true
distribution, which represent realizing the uncertain
demand.

(3) Based on the solution obtained in step (1), ambu-
lances are assigned to serve emergency points in
the 1000 scenarios to maximize the (out-of-sample)
service level.

The (out-of-sample) service level is defined as the ratio
of the number of emergency points with demand satisfied
to the total number of emergency points in 1000 scenarios.
In the following subsections, the benchmarks are tested and
then three common distributions are employed, i.e., uniform
distribution, Poisson distribution, and normal distribution,
respectively.

5.2. Benchmark Instances. We first test the benchmarks in
Nickel et al. [8] to compare our proposed two approximated
MIP formulations with the sampling approach. In Nickel et al.
[8], they assume that demand nodes are also potential base
locations, and the number of ambulances required by each
emergency point is chosen from set {0, 1, 2} with given proba-
bility distribution. Computational results on benchmarks are
reported in Tables 1 and 2.

Table 1 reports the computational results with service
level requirement o = 0.95. In Table 1, CT, Obj, and Sel denote
the computational time, objective value (i.e., the system cost),
and the service level, respectively. The first column includes
the indexes of instances, and the second indicates the number
of nodes. It shows that the average service level obtained
by the sampling approach is 94.57%, which is smaller than
the required service level, i.e., 85%. Specifically, the service
level of instance 5 obtained by the sampling approach is only
79.96%. However, MIP-DF1 and MIP-DF2 can guarantee the
service levels for all instances higher than the requirement.
Concluding, from Table 1, we can observe that (i) the average
computational time of sampling approach is about 50 times
as those of the two approximated MIP formulations and (ii)
MIP-DF1 and MIP-DE2 improve the average service level by
about 5.74% and 4.99% compared with sampling approach,
however, (iii) system costs obtained by MIP-DF1 and MIP-
DF2 are, respectively, 75.43% and 6.86% higher than that of
sampling approach.

Table 2 reports the computational results with service
level requirement « 0.99. For instances 2-6, the ser-
vice levels obtained by sampling approach cannot meet the
requirement, i.e., 99%. Besides, it shows that the average
computational time of sampling approach is 4.8, which is
about 48 times greater than those of MIP-DF1 and MIP-DF2.
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TABLE 2: o = 0.99.
1l =] Sampling approach MIP-DF1 MIP-DF2
CT Obj Sel (%) CT Obj Sel (%) CT Obj Sel (%)
1 7 4.9 24 99.79 0.1 64 100.00 0.1 25 100.00
2 7 4.8 23 98.56 0.1 63 100.00 0.1 24 100.00
3 6 5.1 15 9717 0.1 55 100.00 0.1 16 100.00
4 6 4.7 15 92.75 0.1 52 100.00 0.1 13 100.00
5 6 4.0 14 90.00 0.1 55 100.00 0.1 14 100.00
6 8 5.2 23 97.85 0.1 45 100.00 0.1 27 100.00
Average 4.8 19.0 93.43 0.1 55.7 100.00 0.1 19.8 100.00
TABLE 3: Solutions to instance 4 in Nickel et al. [8] for the given scenario.
Sampling approach MIP-DF1 MIP-DF2
Emergency points 123456 Emergency points 123456 Emergency points 123456
Demand 102020 Demand 102020 Demand 102020
Base locations Ambulance employment Ambulance employment Ambulance employment
1 0 0 0
2 1 1 0 3 1 2
3 1 1 26 1 2 2 0
4 0 0 0
5 0 6 0
6 2 2 0 4 2

The average service level is 93.43%. Although the average
service levels obtained by MIP-DF1 and MIP-DF2 are both
100%, the average system cost obtained by MIP-DFI is about
3 times larger than that of sampling approach. Besides, the
average system cost obtained by MIP-DF2 is 4.21% higher
than that of sampling approach.

Concluding, for the benchmarks described in Nickel et
al. [8], we can observe that (1) MIP-DF1 and MIP-DF2 can
be solved in far less computational time compared with the
sampling approach; (2) the sampling approach cannot meet
the requirement of service level for all benchmarks, while
the two MIP formulations can; (3) the average system cost of
MIP-DF2 is very close to that of sampling approach; (4) with
the increase of «, the average system costs obtained by MIP-
DEF2 is getting closer to that obtained by sampling approach.

From Tables 1 and 2, we can observe that, in spite of
the lower system cost obtained by the sampling approach,
there may exist extreme situations that demands of some
emergency points are not satisfied. Take one benchmark in
Nickel et al. [8], i.e., instance 4, where there are 6 nodes.
A scenario in which demand at each emergency point is
generated from the given probability distribution is shown in
Figure 1. We can observe from Figure 1 that under the given
scenario, the demand of each possible emergency point is
{1,0,2,0,2,0}. The solutions obtained by sampling approach,
MIP-DF1 and MIP-DF2, are shown in Table 3, which includes
base locations and ambulance employment obtained by in-
sample test and ambulance assignment under given scenario.

In Table 3, the first column includes the indexes of poten-
tial base locations. The second column represents the base
locations and the ambulance employment at each location,

dy =2

FIGURE 1: Instance 4 in Nickel et al. [8] under given scenario.

in which a location with 0 ambulance implies that it is not
selected for base construction. From Table 3, we can observe
that the in-sample solutions obtained by sampling approach
is to construct bases at locations 2, 3 and 6, where the number
of ambulances is 1, 1, and 2, respectively. Besides, under
given scenario, there is one ambulance serving emergency
point 1 from base location 3, and one ambulance serving
emergency point from base location 2, and 2 ambulances
serving emergency point 5 from base location 6. It shows that
the requirement of ambulances at emergency point 3 is not
fully satisfied. The insufficient service may cause serious loss
of life. However, we can find that the solutions obtained by
MIP-DF1 and MIP-DF?2 can provide sufficient ambulances for
all emergency points.

In sum, to guarantee the required service level with
less cost, MIP-DF2 is recommended for the solutions with
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Nickel et al. [8]’s data set. Moreover, in the benchmarks, it
is assumed that all nodes are possible emergency points as
well as potential base locations and the number of required
ambulances is small, which is not always consistent with
the situation in Shanghai. Therefore, we further test the two
approximated MIP formulations and the sampling approach
on randomly generated instances by analysing the informa-
tion on emergencies in Shanghai [26].

5.3. Computational Tests on Randomly Generated Instances.
In the following subsection, numerical experiments on 120
randomly generated instances are described.

5.3.1. Test Instances. By analysing the information on emer-
gencies in Shanghai [26], the mean value y; of demand d; in
each emergency point are randomly generated from a discrete
Uniform distribution on interval [5, 25]. The standard devia-
tion o is set to be 5. Since the sampling approach proposed in
Nickel et al. [8] requires a sample of scenarios, in numerical
experiments scenarios are produced with demands randomly
generated from Uniform distribution, Poisson distribution
and Normal distribution consistent with given mean and
standard deviation.

According to the instance settings in Erkut and Ingolfsson
(2008), response time from a base to an emergency point
is randomly generated from a discrete Uniform distribution
on interval [3,30] in units of minutes. A base covers an
emergency point if the driving time between them is less
than 10 minutes to ensure the survival probability (Erkut and
Ingolfsson, 2006). For an emergency point in each instance,
if there is no base with 10 minutes driving time to it, then the
base covering this point is set to be the nearest one. The cost
of constructing a base and that of locating one ambulance are
both set to be 1, as in Nickel et al. [8]. Besides, the number of
emergency points is 3 times that of potential base locations.

5.3.2. Results and Discussion. Different values of required
service level « are tested, i.e., 0.85, 0.9, 0.95. Computational
results on 120 randomly generated instances are reported in
Tables 4-6.

Table 4 reports the numerical results of instances with
demand generated from Uniform distribution. We observe
that when o« = 0.85,0.9,0.95, the average computational
times of the sampling approach are 448.2, 437.9 and 429.5
seconds, respectively. However, both approximated MIP for-
mulations can produce solutions in much faster speeds, i.e.,
within 1.3 seconds on average. With the increase of «, (i)
the out-of-sample average service level is getting higher, and
(ii) the system costs of solutions obtained by all method are
getting larger, and (iii) the system costs of solutions yielded
by MIP-DF2 is getting closer to those of solutions obtained by
the sampling approach. In terms of the average system cost,
the sampling approach performs the best, while MIP-DF1 is
the poorest. When « = 0.85, for example, the average system
cost of MIP-DF2 and the sampling approach are about 30.32%
and 44.2% less than that of MIP-DF], respectively. When
a = 0.95, the above gaps are even larger. Concluding, for
the Uniform distribution, (1) the proposed two approximated
MIP formulations are far more time saving than the sampling

approach, (2) MIP-DF1 and MIP-DF2 can improve the service
level by about 19.07% compared with the sampling approach,
however, (3) despite of the highest service levels obtained
by MIP-DFI, the system cost obtained by MIP-DF1 is also
high, (4) MIP-DF2 can ensure an appropriate service level
with much less cost than MIP-DF1, and (5) for the situations
with small-scale instances and high service level requirement,
MIP-DFI is recommended.

Computational results of instances with demand at each
emergency point generated from Poisson distribution are
presented in Table 5. For MIP-DF1 and MIP-DF2, only
mean and variance are involved. Therefore, with given
mean and standard deviation of the demand at each point,
computational results are the same for different probability
distributions. We can obtain from Table 5 that the objective
value obtained by the sampling approach increases with the
increase of a. Besides, when the value of « equals 0.85,
the average service level obtained by the sampling approach
is about 81.43%, which is smaller than that of the two
approximated MIP formulations. The highest service level
99.34% is obtained by MIP-DFI, and that obtained by MIP-
DEF2 is 97.08%. When « = 0.9, the average service level
of the sampling approach is 84.37%, and those obtained by
MIP-DF1 and MIP-DF2 are 99.85% and 97.97%, respectively.
When o = 0.95, the average service level obtained by the
sampling approach is 93.56%, and those yielded by MIP-
DF1 and MIP-DF2 are 99.97% and 97.81%, respectively. For
Poisson distribution, concluding, MIP-DF1 and MIP-DF2
can improve the service level compared with the sampling
approach, especially, MIP-DF1 can obtain the highest service
level.

Similarly, Table 6 reports the computational results for
instances in which the demand at each emergency point is
generated following Normal distribution. When o« = 0.85,
the average service levels obtained by the sampling approach,
MIP-DF1 and MIP-DF2 are 81.74%, 99.25%, and 97.42%,
respectively. When « = 0.9, the three values are 84.57%,
99.81%, and 97.43% respectively. Moreover, for o« = 0.95, the
values are equal to 87.32%, 99.99%, and 97.94%, respectively.
It can be observed that the performance of the sampling
approach is the poorest in terms of the service level.

By observing the above computational results on bench-
marks and randomly generated instances, we conclude that
(1) The proposed approximated MIP formulations, i.e., MIP-
DF1 and MIP-DF2 are very time saving compared with the
sampling approach; (2) MIP-DF1 an MIP-DF2 can achieve
the requirement of service level and improve the service level
by about 15.47% and 12.29% on average, compared with that
of the sampling approach; (3) MIP-DFI is more conservative
in terms of overhigh emergency service level close to 100%,
and the system cost is also high, which is about 56.8% larger
than that of MIP-DF2; (4) Compared with MIP-DF1, MIP-
DEF?2 is less conservative and much more cost saving while
ensuring an appropriately service level on average, which is
about 97%.

In sum, for medium and large problem instances (e.g.,
Shanghai), which are common in practice, to guarantee the
required service level with less cost, we recommend MIP-DF2
as solution method. However, for very small instances with
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high service level requirement, we recommend MIP-DF1 for
solutions.

6. Conclusion

This paper investigates an ambulance location problem with
ambiguity set of demand, in which the probability distribu-
tion of the uncertain demand is unknown. In such a data-
driven environment, only the mean and covariance demands
at emergency points are known. The problem is to determine
the base locations and the number of ambulances at each
base, aiming at minimizing the total cost associated with
locating bases and assigning ambulances. We propose a
distribution-free model with chance constraints. Then two
approximated MIP formulations with different approxima-
tion methods of chance constraints are proposed, which are
based on different ambiguity sets of the unknown probability
distribution. Numerical experiments on benchmarks and
120 randomly generated instances are conducted, and the
computational results show that the first approximated MIP
formulation is much conservative with overhigh system cost,
while the second approximated MIP formulation is more cost
saving with service level appropriately ensured.

In future research, we may consider the following relevant
issues. First, the uncertainty of driving time from a base to
an emergency point shall be analysed. Besides, unexpected or
sudden disasters may be taken into consideration. Moreover,
other uncertainties should be considered, such as travel time,
the number of available vehicles and so on. The stochastic
dependence should also further considered.
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The data of the benchmark instances in our manuscript can
be obtained in Nickel et al. [8]. For the test instances, the
data is randomly generated and the way for generating data is
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reasonable request.
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