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central venous pressure (CVP). The stable control of MAP 
is important in the prevention of acute life-threatening con-
dition such as hemorrhagic stroke and the deterioration of 
chronic hypertension-associated morbidities. Previous stud-
ies have shown that MAP is more accurate than systolic BP, 
diastolic BP and pulse pressure in predicting future meta-
bolic syndrome among the normotensive elderly popula-
tion (Hsu et al. 2015). According to that research, an MAP 
higher than the cutoff value indicates an elevated risk of 
developing metabolic syndrome. For the patients following 
cardiac arrest, hypoxic-ischemic brain injury is the major 
cause of death (Padmanabhan et al. 2015). While an MAP 
below the auto-regulatory threshold leads to additional 
ischemia and further brain injury, an elevated MAP above 
the auto-regulatory threshold causes excessive brain perfu-
sion that may result in increased cerebral edema and wors-
ening the pre-existing brain injury (Sekhon et al. 2016). 
It is, therefore, suggested that keeping the MAP within 
an optimal range using the relationship between brain tis-
sue regional saturation of oxygen and MAP is critical for 
survival for this patient population (Sekhon et al. 2016). 
Hypotensive anesthesia, which is a widely used technique 
aimed at reducing intraoperative bleeding and the need 
for post-operative blood transfusions in general surgical 
procedures, requires administration of multiple drugs to 
regulate key physiological variables, such as the level of 
unconsciousness, heart rate, mean arterial pressure (MAP), 
respiratory rates, and other vital parameters within desired 
limits (Jeong et al. 2016). The fast-acting vasodilating 
agent, sodium nitroprusside, is often used for the induction 
of hypotensive anesthesia to lower blood pressure using the 
recommended close-loop feedback control that involves 
fine tuning of the drug infusion rate according to the rate 
of pressure measurement. Under this circumstance, manual 
control by clinical personnel is not preferred because it is 

Abstract Linear controllers have been designed to regulate 
mean arterial pressure (MAP) in treating various cardiovas-
cular diseases. For patients with hemodynamic fluctuations, 
the MAP control system must be able to provide more sensi-
tive control. Therefore, in this paper, a model predictive con-
trol (MPC) approach is presented to improve the sensitivity 
of MAP control system. The MPC principle can effectively 
handle the dead times in nonlinear systems, and can also 
optimize the system responses when subjected to constraints 
of process states and control signals. Besides, particle swarm 
optimization (PSO) is employed to solve the optimization 
problem of MPC at each control interval. According to our 
simulations, the MAP control system with combined MPC–
PSO approach is superior in control qualities to the MAP 
control system with conventional linear control method. The 
MPC–PSO MAP control system is possible to be realized 
through a field-programmable gate array.

1 Introduction

Mean arterial pressure (MAP) is the average blood pres-
sure (BP) over a cardiac cycle and is determined by the car-
diac output (CO), systemic vascular resistance (SVR) and 
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both time-consuming and risky for patients because of the 
lack of accuracy in dosage control.

Previous studies (Luginbühl et al. 2006; Zhu et al. 2008; 
Hoeksel et al. 2001; Liu et al. 2009) have reported a num-
ber of classical approaches to realize the MAP control sys-
tems, and the MAP is an important clinical parameter to be 
kept within a narrow physiological range in the settings of 
anesthesia, surgery, and critical care. To refine the conven-
tional MAP control systems, soft computing approaches 
such as fuzzy logic, neural networks, reinforcement learn-
ing have been proposed (Furutani et al. 2004; Kumar et al. 
2009; Gao and Er 2003; Lin et al. 2008; Ferreira et al. 
2009; Padmanabhan et al. 2015). Some techniques of these 
MAP control systems rely on the use of proportional-inte-
gral-derivative (PID) controllers, for which rather complex 
design methodologies are used. Using field-programma-
ble gate array (FPGA) technology, the controllers can be 
realized as integrated circuits (ICs) (Sánchez-Durán et al. 
2012). This study tested the validity of an MAP control sys-
tem based on the combination of model predictive control 
(MPC) and particle swarm optimization (PSO). The control 
qualities of this approach were compared with those of the 
classical control approaches.

2  Model predictive control

Model predictive control, which is also known as reced-
ing horizon control or moving horizon control, bases on 
the past, present, and future information of the process 
and environment to generate the control actions (Holkar 
and Waghmare 2010). The principle of MPC is shown in 
Fig. 1 (Holkar and Waghmare 2010). Suppose the output’s 
reference value, w(t), is already known in the time range (t, 
t + N) in which t is the current time and N is the predictive 
horizon, a set of Nu (control horizon, Nu ≤ N) values of 
control variable u(t + j|t), 0 ≤ j ≤ Nu will be calculated to 

minimize the error between the predicted outputs ŷ(t + j|t) 
and the reference w(t + j) in the range 1 ≤ j ≤ N while 
subject to constraints of control variables. Consider the fol-
lowing cost function and constraints:

 
This problem is to minimize the cost function (1) with 

constraints (2–5), where Wy(i), W�u(i) are the weighted 
coefficient matrices of outputs and control variables; 
xmin, xmax are the lower bound and upper bound of state 
variables; umin, umax are the lower bound and upper bound 
of control variables, respectively. This optimization prob-
lem is either linear or nonlinear; the constraints also are 
linear or nonlinear, convex or non-convex. Nature-inspired 
metaheuristic optimization methods are alternative when 
the optimization problems are high-dimensional, nonlinear 
with the complex constraints.

The MPC algorithm is described in four steps (Holkar 
and Waghmare 2010).

Step 1: At the current time t, measure the current outputs 
y(t) and the current states x(t).

Step 2: Estimate the future states x(t + j) and outputs 
y(t + j)( j = 1, 2 , . . . , N). After that, construct the cost 
function and the constraints.

Step 3: Minimize the cost function and get the optimal 
control sequence:

Step 4: Apply u∗0(t) to the real process. In the next sam-
pling time t = t + 1, the algorithm is repeated from Step 1.

3  Particle swarm optimization

Particle swarm optimization (PSO) is a meta-heuristic opti-
mization algorithm inspired by food-seeking behaviors 
of bird flockings or fish schoolings. This method, which 
needs no gradient information of object function as well as 
its mathematical representation, is suitable for solving high 

(1)

J(t) =

N−1∑

i=0

∥∥Wy(i + 1)
[
w(t + i + 1)− ŷ(t + i + 1|t)

]∥∥

+

Nu∑

i=0

W�u(i)�u(t + i)− u(t + i − 1)�,

(2)x(t + 1) = f (x(t), u(t)),

(3)y(t) = g(x(t), u(t)),

(4)umin ≤ �u(t)� ≤ umax

(5)xmin ≤ �x(t)� ≤ xmax,

U∗(t) = (u∗0(t), u
∗
1(t), . . . , u

∗
Nu−1(t)).

Fig. 1  The principle of model predictive control (MPC)
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dimension, non-linear and non-convex optimization prob-
lems. The standard PSO algorithm works as follows: Imag-
ine that, a flock of birds is searching for food in an area. All 
of the birds do not know where exactly the food is but the 
sense of the distance from each one to the food. Their behav-
ior is following the birds that are closest to the food. PSO 
mimics that strategy to solve the optimization problems. In 
PSO, each ‘bird’ is modelled as a particle, which is a poten-
tial solution for the problem. The ‘distance from each bird 
to the food’ becomes the value of cost function (or fitness 
value) at the corresponding ‘particle’. The best position of 
each particle found until now is called the local best particle 
pi,best. The particle, which has optimum fitness value over-
all group of particles, is called the global best particle gbest. 
After each iteration, the position and velocity of each particle 
is updated following these ‘best’ particles pi,best and gbest.

The algorithm of minimizing f (x) in search space x ∈ D 
using PSO is presented through the following steps (Yang 
2010; Kennedy and Eberthart 1995):

Step 1: Randomly initialize P particles with its position p0i  
and velocity v0i , the best positions pi,best and gbest as follows:

Step 2: At the iteration j (1 ≤ j ≤ iterationmax), update the 
velocity of all particles as Eq. (6).

in which r1, r2 are the random numbers within [0, 1], c1, c2 
are the factors used to control the related weighting of the 
corresponding terms, ωj is the parameter which control the 
dynamic of velocity, determined as:

The use of random variables endows the PSO with the 
ability of stochastic searching. After updating, the veloci-
ties of all the particles should be checked and clamped to 
the legal range to avoid violent random walking as follows:

Step 3: Update the position of all the particles by formula 
(7):

xmin ≤ p
0
i ≤ xmax

vmin ≤ v
0
i ≤ vmax

p
0
i,best = p

0
i (1 ≤ i, k ≤ P)

g
0
best = {p0k |f (p

0
k) = min

1≤i≤P
f (p0i )}.

(6)v
j
i = ωj

v
j−1

i + c1r1(p
j−1

i,best − p
j−1

i )+ c2r2(g
j−1

best − p
j−1

i )

ωj = ωmax −
ωmax − ωmin

iterationmax

j, with ωmax,

ωmin are pre - defined positive values.

v
j
i =






v
j
i if vmin ≤ v

j
i ≤ vmax

vmin if v
j
i < vmin

vmax if v
j
i > vmax.

After updating, new positions should be checked and 
modified so that they still belong to the legal range, as 
follows:

Step 4: Update pi,best and gbest as (8) and (9):

Step 5: Repeat Step 2 to Step 4 until terminal conditions 
are met (usually a sufficient good fitness or a maximum 
number of iterations). Output the best particle and corre-
sponding best fitness value.

4  Mean arterial pressure model

The relationship between drug infusion rates and the rates 
of reduction in MAP is shown in the following transfer 
function (de Moura Oliveira et al. 2014):

where Y is the drop in pressure, due to the drug effect, U 
represents the rate of drug infusion. K is the system gain; 
T1, T2, T3 represent time constants associated with the drug 
action; θ is the system time delay and α is the fraction of 
recirculated drug. The parameters of the model depend 
directly on each specific patient. In most common cases, 
we can take K = 2.5 mmHg/ml/h, T1 = 50 s, T2 = 10 s, 
T3 = 30 s, θ = 60 s, α = 0.5.

The clear model for controller design is written in (10):

Figure 2 plots the response of the given system with a step 
change at t = 0 s. The rising time Tr ∼= 180 s, Ts ∼= 250 s . 
Fig. 3 shows the Bode plot of the model. It is observed that 
the cutting frequency is fc ∼= 0.011 rad/s.

The design objectives are to control the system repre-
sented by model (10) in order to achieve following time-
domain criteria: fast response, small overshoot, and zero 

(7)p
j
i = p

j−1
i + v

j
i .

p
j
i =






p
j
i if pmin ≤ p

j
i ≤ pmax

pmin if p
j
i < pmin

pmax if p
j
i > pmax.

(8)p
j
i,best =





p
j
i if f (p

j
i) < f (p

j−1

i,best)

p
j−1

i,best otherwise,

(9)

g
j
best =





p
j
i if f (p

j
i) < f (g

j
best) for all 1 ≤ i ≤ P

g
j−1

best otherwise.

Gp(s) =
Y(s)

U(s)
=

K(1+ T3s)e
−θs

((1+ T3s)(1+ T2s)− α)(1+ T1s)
,

(10)Gp(s) =
Y(s)

U(s)
=

5(1+ 30s)e−60s

1+ 130s+ 4600s2 + 30000s3



 Microsyst Technol

1 3

steady-state error. The designed controllers should also 
satisfy actuator clinical constraints such as saturation limits 
and drug infusion rate of change.

The PID control designs for MAP are proposed by 
many studies, and it worked well in most patients. For 
example, Fig. 4 shows the performances of an optimal 
PID controller design (de Moura Oliveira et al. 2014). The 
rise time of this PID control system is about 110 s. How-
ever, the settling time is about 200 s. For certain groups 
of patients, particularly those sensitive to drugs or those 
with fluctuating blood pressure, the system performance 
needs a significant improvement. In this design, we aim 
at improving system performances by using MPC–PSO 
approach.

5  Design of MPC–PSO controller

The first design step is changing the continuous model to 
discrete model. The sampling frequency should be at least 
two times bigger than the cutting frequency of the system 
or Ts ≤ 45 s. The higher the sampling frequency, the better 

the control quality with a higher calculation cost. In this 
design, we choose Ts = 10 s. The discrete model of the sys-
tem is:

The output of the system can be calculated as:

The second step is design the parameters of the MPC. 
The predicted horizon N should be bigger than the input 
delay. For a small value of N, the system response is very 
quick, but tends to have large overshoots. In contrast, if N 
is big, the system responds slower but without overshoot-
ing. For the good choice of N, the simulation software is 

(11)Gp(z) = z−6 0.1735z2 − 0.00075z − 0.08

z3 − 1.992z2 + 1.224z − 0.125
,

(12)

y(k) = 1.992y(k − 1)− 1.224y(k − 2)− 0.125y(k − 3)+ . . .

+ 0.1735u(k − 7)− 0.00075u(k − 8)− 0.08u(k − 9).
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Fig. 2  The step response of the given mean arterial pressure (MAP) 
system

Fig. 3  The Bode diagram of 
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used. The control horizon is fixed at Nc = 2. The cost func-
tion becomes:

The constraint for proposed controller is the limitation 
of the drug infusion rate:

The implemented procedures of the proposed controller 
are described through following steps:

Step 1: At the current time t, measure the current outputs 
y(t) and (or observe) the current states x(t).

Step 2: Estimate the future outputs ŷ(t + i|t) with 
i = 1, 2, . . . ,N by (12) assuming zero initial conditions. 
After that, form the cost function (13) and the constraint 
(14).

Step 3: Minimize the cost function (13) using PSO. The 
implementation procedure of PSO includes five steps 
described in Sect. 3. All the parameters of PSO are listed 
in Table 1. After finishing, the set of global best particles, 
which is also the best solution of optimization problem, is 
obtained:

Step 4: Only apply u0 to the real process.

(13)

J(t) =

N∑

i=1

((ŷ(t + i|t)− yref )2)

+

2∑

i=1

0.1(u(t + i)− u(t + i − 1))2.

(14)u ≤ 2 (ml/h).

U∗(t) = (u0, u1)

Step 5: In the next sampling time t + 1, repeat the Step 1 
to Step 4.

The simulation diagram using MATLAB/SIMULINK is 
shown in Fig. 5.

6  Simulation results and discussions

Figure 6 describes the typical convergence progress each 
time running PSO. Just after several iterations, the fitness 
value reaches the smallest one. As the simulation time 
long enough, these smallest values gradually converge 
to zero. It proves the strong ability of PSO in finding the 
optimal solutions without requiring complex mathematical 
transformations.

Table 1  Parameters of PSO

Parameters Values

Swarm size (P) 20

Iteration limit 40

Search space D [-2, 2]

c1 2

c2 2

ωmin 0.4

ωmax 0.9

Fig. 5  The simulation structure 
of the model predictive control–
particle swarm optimization
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Fig. 6  The typical convergence progress of the PSO algorithm
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Figures 7 and 8 show the outputs and control signals of 
the designed MPC–PSO control system with four different 
values of predicted horizon, N = 7, 10, 12, 15. For all the 
designed cases, the magnitudes of control signal are smaller 
than 2, which satisfy the constraints. With N = 7, both 
the output and control signal present some oscillations. 
Because of using largest control signal, the response of 
this system is faster than the others. However, the settling 
time is still significant. When N increases, the response gets 
slower but presenting less overshoots as observed in case of 
N = 10, 12 and 15. When the predicted horizon is N = 12, 
the overshoot is approximately zero while the settling time 
is smallest (about 100 s). At this point, the control perfor-
mance reaches climax.

The comparison in Fig. 9 clearly proves that, the control 
performances of MPC–PSO controller (in case of N = 12) 
is much better than that of the optimized PID controllers in 

de Moura Oliveira et al. (2014). It also should be noticed 
that, for all the simulated values of predicted horizon, the 
system always response faster than PID controllers. That is 
the main advantages of MPC principle. With the significant 
improvement in response, this control approach is prom-
ised for a wider range of patients.

7  Conclusions

The MPC–PSO approach has been used to design our 
MAP control system. The results showed that the substan-
tial delay between drug infusion and change in blood pres-
sure posed a real challenge for PID controller design in the 
MAP control system. In contrast, the MPC–PSO controller 
effectively handled the delay and the limitation of control 
signal. The simulation results clearly depicted the better 
performance of the MPC–PSO MAP control system com-
pared to that of the conventional PID MAP control system. 
Further studies are needed to deal with the variation of the 
model parameters and the disturbance from environments. 
The MPC–PSO MAP controller will be also able to design 
as a chip through a FPGA.
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