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Abstract

In this short article we present concepts of indoor localization and navigation that are independent of
sensors embedded in the environment, and thus, standing against the tide of technology-based indoor
localization. The motivation for doing so is clear: We seek solutions that are independent of particular
environments, and thus globally applicable.

1 Introduction

Indoor localization and indoor navigation are frequent topics of SIGSPATIAL papers. The Special Interest
Group’s annual conference has even workshops specifically dedicated to this topic, and beyond this conference
there are other working groups and conferences established just on this domain. Why is indoor localization
and navigation taking so much attention and effort, and why should sensor-less methods be considered in this
context? There are several reasons for this.

First, in contrast to outdoor positioning and navigation there is no global system available (or even possi-
ble) for indoor localization, and thus no single frame of reference for navigation. Satellite radio signals rarely
penetrate buildings, thus indoor environments are GNSS deprived environments. Indoor localization methods,
however, are plenty – those based on WiFi, UWB, RFID, CCTV, wireless telecommunication networks, and
many more [13] – which all require a building to be equipped with a particular, tailored infrastructure, to which
the tracked visitor of the building has to connect.

Second, in contrast to outdoor traffic, most movements indoors occur in private spaces, with particular
access restrictions. Different groups of people have access to different parts of the environment, and thus require
highly tailored information supporting their particular navigation requirements. As access to buildings is often
regulated by times of the day, adding a dynamic component to the navigable mobility network is critical.

Third, indoor environments have particular structures that are different from outdoor structures. Most promi-
nently, indoor environments are multi-level environments, but then they are also more regularly structured within
each level and even across levels, down to grammars [4]. Since the mode of movement is mostly walking, which
is less restricted compared to road or rail traffic, there are challenges for modelling routes, especially in large,
open indoor spaces such as halls. However, for indoor localization and navigation the qualitative aspects of
information (level, room) are often more important than a quantitative position [19].

Fourth, people spend on average above 80% of their time indoors1, which would emphasize a case for
indoor localization and navigation. The navigation needs are more subtle, more oriented towards activities and

1A figure varying with culture and lifestyle, but [6] found that an average US employee spends 86.9% indoors, and 18.4% in indoor
environments other than home – more than twice as outdoors.



events, such as finding certain items in a supermarket or locating a meeting at a particular time in a particular
room, or an escape route if fire blocks usual egress paths. This is in contrast to routes that are to a large extent
pre-computable or predictable, as we know them from outdoor vehicular routing.

Fifth, a significant portion of the research on indoor localization and navigation is motivated by safety con-
siderations rather than by economic considerations (such as finding the least cost path). Safety considerations,
however, add to the challenge: Accidents and other disasters have an immediate and often rapidly changing
effect on accessibility in an indoor environment, and thus methods and systems are required that provide local-
ization and navigation in a dynamically changing indoor environment, even in environments people are familiar
with.

Last, the highly structured nature of indoor environments and the familiarity with the indoor addressing
patterns (e.g., a floor-room number pattern, and the clockwise order of room numbers on a floor) offer heuristics
that can be used in indoor route directions and wayfinding. This, however, also poses challenges where common-
sense assumptions have to be overridden, for example, when conditions change or the heuristics are not valid.
Examples of non-valid heuristics are counter-intuitive (room or level) numbering systems, such as a missing
13th floor in a building [17].

While all of the above reasons motivate research in indoor localization and navigation in general, this article
will concentrate on methods that are independent of sensor based technologies in the environment. The methods
discussed in this article allow only for sensors in the hands of people, and to varying degrees of connectivity to a
communication network, in short: smartphones, both for their sensors and their apps2. These smartphone-based
localization and navigation methods, even if they may appear in the first instance more cumbersome, or less
accurate (two assumptions that still need to be investigated), are interesting for two reasons:

• Firstly, they will be applicable in any indoor environment, independent from any sensor-based infrastruc-
ture. Thus, they are a step forward towards global solutions.

• Secondly, they are, as it will turn out, more closely integrated with ways how people perceive and interact
with their environments, and thus already close to cognitive concepts of human-computer interaction.

From a computational perspective these approaches provide unique challenges, which will be discussed in the
following.

2 Preliminaries

Our understanding of indoor environments is a broad one, referring generally to roofed and usually but not
necessarily walled spaces. Prototypical examples are the inside of a house (‘between doors’), but included are
also subway stations, malls, train stations, high-rising buildings, or stadiums. Indoor environments are at least
conceptually closed spaces [15], in contrast to outdoor environments, which are typically open at least in z-
direction. Thus, while the roofed platforms of a train station may count as indoor because they are conceptually
part of the train station, the space under a bridge is not considered indoor because it is conceptually not a closed
space: it is neither part of the road above the bridge nor part of the feature below the bridge.

In addition to the differences between indoor and outdoor spaces outlined in the introduction, indoor spaces
are usually narrower and less open than outdoor spaces. They may be considered to be more immediate, in the
sense that our ability to perceive the surroundings is more restricted; our view is blocked off by the walls, floors
and ceilings immediately next to us. In other words, it is typically impossible to get an overview of the larger
environment from a single viewpoint. This is reflected in the complex way even professionals (e.g., architects,

2In principle, the approaches discussed in the following work with only local processing directly on the smartphones, and local
connectivity, e.g., NFC technology between smartphones. In practice, however, they would likely still rely on at least occasional access
to the Internet, e.g., for downloading data on a specific building.



designers) design indoor spaces [8]. While wayfinding as an embodied experience is paramount for the users of
an indoor space, wayfinding performance is rarely approached with computer-aided, quantitative approaches as
is the case in outdoor environments.

It also seems that computational modeling of indoor spaces is more challenging than outdoor spaces. At
least there is less agreement on how to model these spaces with regard to human navigation, even if international
standards exist by now, for example, OGC’s CityGML for modeling at city level of granularity3 and IndoorGML
at indoor level of granularity4, or the Industry Foundation Classes5 (IFC) that are used to set up building infor-
mation models (BIM) with a special focus on facility management. Commonly, approaches to indoor modeling
for navigation inherit aspects of outdoor modeling, in particular, many approaches create some kind of graph of
indoor spaces in order to allowing for path planning and navigation support. Constructing such graphs brings
up several challenges that relate to the segregated and immediate nature of indoor spaces, e.g., conceptualiza-
tions of rooms in more open indoor environments, or of rooms with concave corners or other visibility issues,
representations of such rooms in the graph, and relating the location of an individual to the graph.

Tools supporting indoor navigation independent of sensor based technologies have been around for a long
time; in fact we are so used to them that we most likely do not think about them as navigation support anymore.
The tool we are talking about here is a systematic labeling of rooms, as they are commonly present in hotels and
public buildings, such as universities (with exceptions of course). In such buildings there is usually a logical
order to room labels, for example, all rooms on the first floor of a hotel starting with ‘1’, all those on the second
floor with ‘2’, and so on. Further, room numbers would appear one after the other, i.e., Room ‘100’ followed by
‘101’, followed by ‘102’, and so on. Such numbering combined with appropriate signage on which direction to
head for, for example, ‘100-116 to the left’, ‘117-135 to the right’ then allows for finding specific rooms (room
numbers) with relative ease. Thus, such combination of intuitive numbering and signage provides already a
sensor independent navigation system.

While these systems for navigating are sensor independent, they do not work well for all indoor environ-
ments, and they are also only able to encode certain static information. If people know the room number they
plan to go to, such a system is relatively easy to use. If their destination does not correspond to a proper room,
or all the information they have is something like ‘Stephan’s office’ or ‘the coffee room’, then this system will
likely fail people. The same holds for environments where allocations of functions to spaces are (highly) dy-
namic. For example, at airports gates in principle follow the systematic structure described above, but most
people hardly ever want to get to gate ‘A17’ or ‘B03’ specifically, but rather to the flight to ‘Melbourne’ or
‘Paris’, which might be allocated to these gates for a (specified) time period, but before or after that period other
flights will be assigned there.

Such dynamics, as well as the more semantic information often required to find a location in a building
(e.g., ‘Stephan’s office’) require more flexible, dynamic navigation support, such as potentially offered by those
smartphone apps mentioned in the introduction.

Another example of a navigation system based on ‘knowledge in the world’ is the traditional You-Are-Here
map put up at walls to help people orient themselves and navigate in emergency situations. These maps are
notorious for their difficult reading, requiring advanced mental rotation and orientation skills [9, 7, 11]. Putting
these maps on smartphones can overcome both challenges by centering and orienting the maps according to the
current location and movement direction – if the smartphone can localize itself without relying on sensors in the
environment; we will present such solutions below.

The remaining challenges of sensor-less navigation systems are then producing maps of relevant content for
navigation, in order to minimize the amount of information provided, thus maintaining low cognitive load on the
user. This means, the systems should consider the discussed highly structured characteristics of indoor spaces.

3http://citygml.org
4http://indoorgml.net/
5http://www.ifcwiki.org



3 Learning and sharing knowledge

Assuming a person familiar with the environment: This person would not need any navigation support, i.e.,
this would constitute sensor independent navigation. Learning a complex environment, however, is a time-
consuming process, even for robots. Obviously, if the environment is unknown to this person (and if she is not
likely to visit it more than once or twice), simply being asked to figure it out by herself might not be a particularly
helpful approach. But it would be conceivable that this person (or her smartphone) learns from others who are
more knowledgeable about the environment.

Such an approach requires some form of knowledge transfer, which in direct human-human interaction might
simply mean asking someone for directions. Between smartphones this knowledge transfer can be solved with
NFC technology. This would provide general information about the layout of the environment and/or navigation
instructions on how to reach a destination. However, it does not solve localization issues, i.e., such an approach
will not allow for a continuous updating of a user’s position. At best, such updates would only be possible when
meeting the next interaction partner.

Still, such an approach may be powerful in specific situations, especially in such undesirable ones where an
indoor environment may undergo rapid changes, i.e., in cases of disaster and the need for evacuation. Here, even
people with very good knowledge about the environment may get lost because passages may be blocked and
some areas of the environment may be rendered inaccessible. In such settings, we have shown in agent-based
simulations that employing a communication strategy as outlined above is as successful in evacuation as having
full global knowledge about the situation at least in some settings [14]. Any time two agents meet they exchange
information about blocked and unblocked pathways, and the location of the disaster; information they have
gathered in their attempts to evacuate the environment. Having this updating available allows agents avoiding to
use (shortest) paths that are actually blocked or to move in direction of the disaster.

In addition, evacuations from rapidly changing indoor environments, such as fire spreading in the building,
show improved performance if the age of the local knowledge in the smartphone is considered [22]: Older
knowledge is more likely to be outdated and should be less trusted by the routing algorithm, at the cost of
accepting longer (but safer) routes.

4 User interaction

Even when such a knowledge transfer technology is not available, or direct human-human interaction is not the
preferred option (i.e., when one just wanders around a shopping mall or an airport), there are still sensor-less
techniques available to use smartphones for self-localization and navigation in indoor environments. They are
based on smartphone map applications. Wijewardena et al. [18] use the topology of an indoor space supple-
mented with qualitative user input to achieve localization, and to support the navigation to other locations in
the environment. This is consistent with observations about human self-localisation, where also primarily local
information is used [10].

Topology describes the connectivity properties between entities in space – in case of indoor environments
these entities might be separate rooms and the corridors between them. In order to represent the topology of
indoor spaces, Worboys [20] defines the adjacency graph, the nodes and edges of which represent regions and
their neighborhood (i.e., rooms sharing a boundary wall), respectively. Based on the adjacency graph, Yang
and Worboys [21] develop the navigation graph as a foundational data structure for indoor navigation, in which
connectivity or accessibility relations between spatial entities, such as rooms, can be stored. In [18] a modified
version of this navigation graph is used, implemented in a graph database management system (Neo4j6) to
address both localization and navigation queries of a smartphone user. Nodes and edges in this extended graph

6https://neo4j.com/



get semantic properties, such as a unique room name for nodes, and categorized affordances for corridors (e.g.,
enabling a path between rooms).

The localization logic is simple: the user is asked to select from a list of possible property values the one that
corresponds to the location they are at – mostly, what she sees. For example, if a user is in a shopping center,
the user selects the name of the shop they were in or standing in front of. The user may refer to multiple shops
around, in order to resolve ambiguities. After the user’s input, her location is displayed on a map. If further the
user wants to navigate to a different location, she is asked to define the destination in the same manner. The
application can then compute the shortest path based on the navigation graph, and displays it.

Such a lightweight concept, if implemented in a mobile platform using a smartphone compatible graph
database (e.g., Sparksee mobile7) to store the navigation graph, has the following benefits when compared with
sensor based technologies: 1) There are no sensor signal transmission and processing time limitations, enabling
the derivation of a user’s location even in environments with no sensor infrastructure; 2) The application is cost
effective and easy to maintain, with a periodic need for updating the navigation graph according to changes of the
indoor layout; 3) It is energy efficient in contrast to battery depleting mobile sensors; 4) The graph DB efficiently
stores and can be queried on large volumes of connectivity data; and 5) It provides consistent localization and
navigation answers throughout the entire indoor space, independent of sensor-related measurement errors (see
for example Section 5). Its shortcomings are the lack of real-time provision of localization (i.e., the user needs
to ask for it) and the dependence on clear visibility of signs, names or numbers for the user to identify the room
they are in or in front of. In case visibility is hindered, users might need to move around in order to provide
more reliable information on their whereabouts.

5 Vision

With the widespread availability of smartphone cameras there is a great potential for indoor localization using
images. Cameras have been used already for localizing robots and moving platforms in indoor environments.
Two main approaches to image-based localization are visual odometry and simultaneous localization and map-
ping (SLAM). Visual odometry is essentially a local motion estimation method. It works based on extracting
salient image features and matching them across pairs of images. These feature correspondences are then used
to estimate the local motion of the camera [12]. In visual SLAM, the feature correspondences are typically used
to construct a map of the environment and estimate the pose of the camera with respect to the map [1]. The
problem with both visual odometry and SLAM is that localization is incremental, i.e. the location of the camera
is estimated relative to a previous location. Consequently, estimation errors accumulate and the estimated loca-
tion drifts from the true location [5]. State of the art SLAM algorithms detect loop closures to apply a correction
to the previously estimated camera locations. However, in the context of navigation, accurate location estimates
are needed in real time, and so loop closing is not practical.

Rather than relative localization, navigation requires absolute location estimation in a reference coordinate
frame. In indoor environments such a reference coordinate frame can be provided by a 2D map or a 3D building
information model (BIM). While 2D maps have been used in map matching methods to constrain the localization
error [16, 2], the application of BIMs for indoor localization has received little attention so far. Today, BIMs
are increasingly available for many large buildings and are an indispensable source for a variety of indoor
location-based services. The integration of visual sensing and BIM provides a promising approach to indoor
localization. By matching an image of the indoor environment with a corresponding view of the BIM the
location of the camera in the coordinate frame of the BIM can be estimated. The challenge is to automatically
establish correspondence between image features and BIM elements (e.g., corner points, edges or polylines).
Having an initial approximate estimate of the pose of the camera, e.g., by using the smartphone inertial sensors

7http://www.sparsity-technologies.com/



[3], can assist in finding correspondences. In addition, the algorithm for correspondence establishment and
location estimation should be computationally inexpensive to allow its implementation on smartphones.

This way, visual sensing in combination with BIMs has the potential to provide location information in
indoor environments where a localization infrastructure is not available.

6 Conclusions

This article discusses why localization methods for indoor environments that are relying on sensors embedded in
the environment may prove to be a roadblock for a widespread dissemination of indoor location-based services.
In comparison, methods of localization and navigation independent of sensor-based technologies are imme-
diately and ubiquituously applicable, at least to some degrees: decentralized knowledge sharing (Section 3)
requires only memory for the trajectories traveled in the environment, dialog-based localization (Section 4) re-
quires already a map of the environment, and vision-based localization (Section 5) then requires a BIM of the
environment.

Methods of indoor localization and navigation working independently of the physical infrastructure are
particularly relevant in environments that

• do not provide any external sensors for localization;

• do provide external sensors (such as WiFi) but lack their fingerprinting required for localization;

• do provide external sensors, but they are either blocked or damaged (such as in emergency situations);

and require navigation support for people. While many, if not most of indoor navigation systems are designed
for a specific environment, the case made here for sensor-independent solutions is a case for global indoor
navigation support.
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