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Highlights 

 The proposed method improves search efficiency of the optimal solution.  

 The fitness function is based on energy consumption to improve energy efficiency. 

 The proposed method considers the load balancing.  

 Simulation shows that our proposed method is better than the existing algorithms. 
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Abstract:  

Wireless sensor networks have been employed widely in various fields, including military, health care, and 

manufacturing applications. However, the sensor nodes are limited in terms of their energy supply, storage capability, 

and computational power. Thus, in order to improve the energy efficiency and prolong the network life cycle, we 

present a genetic algorithm-based energy-efficient clustering and routing approach GECR. We add the optimal solution 

obtained in the previous network round to the initial population for the current round, thereby improving the search 

efficiency. In addition, the clustering and routing scheme are combined into a single chromosome to calculate the total 

energy consumption. We construct the fitness function directly based on the total energy consumption thereby 

improving the energy efficiency. Moreover, load balancing is considered when constructing the fitness function. Thus, 

the energy consumption among the nodes can be balanced. The experimental results demonstrated that the GECR 

performed better than other five methods. The GECR achieved the best load balancing with the lowest variances in the 

loads on the cluster heads under different scenarios. In addition, the GECR was the most energy-efficient with the 

lowest average energy consumed by the cluster heads and the lowest energy consumed by all the nodes. 

Keywords: wireless sensor networks; clustering algorithm; genetic algorithm; energy-efficiency; network life cycle; 

routing 

1. Introduction  

Wireless sensor networks (WSNs) integrate sensor technology, embedded computing technology, distributed 

information processing technology, and communication technology. WSNs have been employed widely in various fields, 

including military, national defence, environmental monitoring, traffic management, health care, manufacturing, and 

disaster prevention applications [1]. In a WSN, the sensor nodes collaboratively collect and process environmental and 

physical information from the area covered by the network and send the information to observers [2]. A monitoring area 

often requires the deployment of a large number of sensor nodes, but the sensor nodes are limited in terms of their 

computational, storage, and communication capacities in order to reduce costs. For instance, Micaz [3] developed by 

CrossBow is a representative type of sensor node, which is equipped with an Atmegal28L microprocessor, CC2420 chip, 

128 KB Flash, and 4 KB RAM. The sensor node is supplied with limited battery power and it is difficult to provide 

secondary energy to the nodes. Thus, network failure occurs after more than a certain percentage of the nodes die. 

Therefore, reducing the energy consumption of sensor nodes and prolonging the network life-cycle is the key challenge 

for WSNs. 

Previous studies have shown that the energy consumption required for transferring 1-bit is much more than that for 

processing 1-bit data [4]. Thus, reducing the transmitted or received data sizes for sensor nodes and optimizing data 

transmission routing between the nodes can effectively reduce the energy consumed by the network. Clustering 

algorithms [5] divide the network into multiple independent clusters, where each cluster comprises a cluster head (CH) 

node and multiple cluster member (CM) nodes. The CH node is responsible for receiving data from the CM nodes. By 

using effective data aggregation algorithms, the CH can remove redundant or incorrect data so the large amounts of 

collected data are merged into a small amount of meaningful information. Therefore, efficient clustering algorithms can 

reduce the data traffic and optimize the topology, thereby improving the energy efficiency of WSNs.  
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Cluster-based WSNs usually comprise two types: (i) those with temporary CHs [6] and (ii) those with permanent 

CHs [7]. In the first type, the sensor nodes have a relatively fair energy supply and equal status, and all the nodes have a 

chance of being selected as the CH. For instance, at moment t1, node A is selected to become the CH. However, at 

moment t2, node A may only act as the CM. In the second type, the CH nodes and CM nodes are permanent. The CH 

nodes are also called gateway nodes or relay nodes, which have a higher energy supply. During the operation of the 

network, the permanent CHs manage all of the sensor nodes in their corresponding clusters. The status of the CHs is 

stable, but the relationships between each CH and its CMs may change over time. For instance, at moment t1, the CH of 

CM a is node A. However, at moment t2, node a is likely to join CH B. We need to employ clustering algorithms with 

different mechanisms according to the two different types of cluster-based WSNs. In this study, we consider a clustering 

algorithm for the second type: WSNs with permanent CHs. Most previous studies of clustering algorithms have 

considered the first type, and the second type has rarely been investigated. The second type of WSNs are important for 

the research community because of the following reasons: (i) they are more energy efficient because CH nodes with a 

higher computing capacity can efficiently operate complex data aggregation algorithms; (ii) they are more secure 

because the CHs possess more storage and they have a higher capacity, and hence, complex encryption algorithms can 

be executed and some trusted hardware modules can be equipped [8]; and (iii) the ordinary nodes only need to send the 

collected data to their corresponding head nodes without conducting the work of CHs, and thus the network life cycle 

can be prolonged. 

It is important to note that devising an effective clustering algorithm with high energy efficiency and load 

balancing for the second type of large-scale WSNs is an NP-hard problem. If the network has a CH nodes and b 

ordinary nodes, then there will be a
b
 clustering schemes. If routing is considered and the average number of 

neighbouring nodes of each CH is c, then there will be c
a
 routing schemes. Therefore, for large-scale WSNs, calculating 

the optimal clustering and routing scheme has high time complexity. Metaheuristic algorithms [9] such as genetic 

algorithms (GAs) [10] can solve this problem quickly and efficiently.  

In this study, we propose a GA-based energy-efficient clustering and routing algorithm (GECR), which employs a 

GA to obtain the optimal solution. The main contributions of this study are as follows:  

 The network time is divided into multiple rounds. The sink node needs to run the GA separately in each round. 

The optimization objective for the clustering and routing schedule is related to the distances between the nodes. 

The locations of the nodes are fixed, so the optimal solution for a certain network round is related to the 

optimal solution for the previous round. In contrast to some traditional GA-based clustering and routing 

algorithms [11-13], we add the optimal solution from the previous network round to the initial population in 

the current network round to improve the search efficiency. 

 In order to guarantee the energy efficiency, the fitness functions of some algorithms [14-16] are based on the 

total transmission distances between the nodes. The energy consumption is related to but not absolutely equal 

to the distance. Algorithms that construct the fitness function based on the total distance can only obtain the 

final solution with the shortest total distance. In the proposed method, we combine the clustering and routing 

scheme into a single chromosome and calculate the total amount of energy consumed for clustering and routing 

together. The fitness function is constructed directly based on the energy consumption of the whole network. In 

this manner, we can finally obtain the solution with the lowest energy consumption, and thus the final energy 

efficiency can be improved. 

 Load balancing is an important criterion for evaluating clustering and routing algorithms. Many GA-based 

algorithms [15-18] do not consider load balancing. In addition, although some algorithms [14; 19; 20] do 

consider load balancing, they only count the number of CMs when calculating the loads on CHs. However, the 

CH needs to transmit the data from its previous hop nodes in addition to the data from its CMs. In the proposed 

method, we add the previous hops to the loads on each CH, thereby improving the accuracy of the load 

calculations.  
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 Simulations indicated that the performance of our proposed algorithm was better than that of some existing 

algorithms [14-17; 20] in terms of load balancing, network life cycle, and energy consumption. Thus, the 

proposed GECR always had the lowest variances in the loads on the CHs under different scenarios. In terms of 

the network life cycle, GECR had the most living nodes at most times. In addition, GECR consumed the 

smallest amount of energy in all of the network rounds. 

The remainder of this paper is organized as follows. In Section 2, we discuss related research. In Section 3, we 

present the network model and some terminology. In Section 4, we give some preliminary details used in this study. In 

Sections 5 and 6, we present the proposed algorithm and the experimental results. In Section 7, we give our conclusions. 

2. Related Work 

2.1 WSNs with Temporary CHs 

Many studies [21-25] have investigated clustering and routing algorithms for WSNs with temporary CHs. The 

low-energy adaptive clustering hierarchy (LEACH) algorithm [6] is one of the best known hierarchical routing 

protocols based on clustering, where it divides the network time into multiple rounds. In each round, all of the sensor 

nodes start to calculate a probability value that determines whether the sensor node can be a CH or not. The nodes that 

can become CHs broadcast their own information to notify other nodes to join their corresponding clusters. However, 

LEACH only considers a single-hop network model and it is only suitable for small scale WSNs. In addition, LEACH 

does not consider the residual energy of the nodes. Some of the nodes with a low amount of residual energy may 

become a CH, and thus, the protocol can speed up the failure of the network. In order to improve the LEACH algorithm 

[6], a large number of LEACH-based clustering and routing algorithms [26-31] have been proposed such as LEACH 

centralized clustering (LEACH-C) [26], hybrid energy-efficient distributed clustering (HEED) [27], balanced clustering 

algorithm with distributed self-Organization (DSBCA) [19], LEACH medium access control algorithm (LEACH-MAC) 

[28], and LEACH affinity propagation clustering (LEACH-AP) [29]. The first type of WSNs with temporary CHs can 

be divided into homogeneous and heterogeneous variants according to the initial energy of the nodes. All of these 

aforementioned algorithms assume that the sensor nodes are homogeneous and they are not suitable for heterogeneous 

WSNs. Therefore, many studies have attempted to develop suitable algorithms for heterogeneous WSNs. Distributed 

energy-efficient clustering [32] is a suitable clustering algorithm for multi-level heterogeneous networks. This algorithm 

estimates the average energy by considering all the nodes in the network, before selecting the CHs based on the ratio 

between the average energy and the residual energy of the sensor nodes. Saini et al. [33] proposed a heterogeneous 

network model that divides the network into five levels by calculating a single parameter value. This model estimates 

the life cycle for different levels as the 0-level, 1-level, 2-level, 3-level, and 4-level. Elbhiri et al. [34] proposed an 

energy prediction-based clustering tree control algorithm that considers the link quality and packet loss rate as two 

important factors that can affect the energy consumption.  

Metaheuristic algorithms such as GAs are good solutions to the clustering and routing problems in WSNs. Many 

previous studies [11; 16-18; 35] have focused on GA-based clustering and routing methods for WSNs with temporary 

CHs. Liu et al. [17] proposed a LEACH with GA (LEACH-GA) clustering method, where each sensor node needs to 

generate a random number in the set-up phase. If the random number for a node is less than a threshold, the node can 

become a candidate CH. All of the candidate nodes send their information to the sink node. The sink node then runs the 

GA to determine the clustering result with the lowest energy consumption. However, LEACH-GA only considers the 

total energy consumption, and not the residual energy of the nodes. Elhoseny et al. [11] proposed a GA-based method 

that optimizes the clustering result of heterogeneous WSNs, where the residual energy, total energy consumption, and 

data transmission distance are all considered in the fitness function. Peiravi et al. [18] proposed an optimal clustering 

method that uses a multi-objective two-level GA. The top level obtains clustering schemes where the network life cycle 

is optimized and the low level used in each cluster aims to obtain the most efficient topology for data transmission. 

Shokouhifar et al. [16] introduced a hybrid clustering-based routing protocol called application-specific low power 
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routing (ASLPR), which can optimally balance the energy consumption among the sensors. In order to select the 

optimal CHs, ASLPR considers all the factors that can affect the network performance, e.g., distances from the sensors 

to the sink, residual energy, and distances between CHs. However, ASLPR requires that all the sensor nodes know the 

situations of all the other nodes, which wastes energy and storage capacity. 

2.2 WSNs with Permanent CHs 

Several clustering and routing algorithms have been proposed for WSNs with permanent CHs. Younis et al. [36] 

presented the load-balanced clustering (LBC) algorithm, which employs gateway nodes as the administration centre to 

process the data from ordinary nodes and forward it to the remote nodes. Based on LBC, Kuila et al. [37] proposed an 

energy efficient LBC algorithm called EELBCA, which combines the remaining energy of the CH nodes with the 

number of their neighbouring nodes as the clustering parameter. Low et al. [38] developed a clustering algorithm that 

uses a breadth-first search tree to find the CH with the minimum load. Other studies [39-43] have shown that 

metaheuristic algorithms (e.g., GA [10], particle swarm optimization algorithm [44], ant colony algorithm [45]) can 

solve the clustering and routing problem for WSNs. 

Some studies have applied metaheuristic algorithms to WSNs with permanent CHs [14; 15; 20; 46]. In one method 

[46], the particle swarm optimization algorithm is employed to determine the energy efficient clustering and routing 

schemes. The fitness function of the clustering scheme is based on the ratio of the estimated life cycle and average 

transmission distance. The total distance and hops for data transmission are used to construct the fitness function in the 

routing scheme. 

Gupta et al. [15] developed an energy efficient routing algorithm called GA-based routing (GAR) by using a GA to 

compute a new routing schedule. Gateway nodes are grouped into a chromosome in the network. The initial population 

is a collection of randomly generated chromosomes, where each gene represents the next hop of the corresponding 

gateway node. The energy consumed by sensor nodes is related to the data transmission distances, so GAR employs the 

following distance-related fitness function: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑘) =
1

∑ 𝐷𝑖𝑠𝑡(𝐶𝑖,𝐶𝑟𝑜𝑚(𝑘,𝑖))𝑁−1
𝑖=0

,                             (1) 

where 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑘) denotes the fitness value of the k-th chromosome in the population, 𝐶𝑟𝑜𝑚(𝑘, 𝑖) is the value of the 

i-th gene in the k-th chromosome, and 𝐷𝑖𝑠𝑡(𝐶𝑖, 𝐶𝑟𝑜𝑚(𝑘, 𝑖)) denotes the distance between node i and its next hop. Thus, 

the chromosome with the highest fitness value can be selected. The final selected routing schedule has low energy 

consumption because the transmission distance is optimal. However, GAR only considers the energy consumption 

between the gateways, whereas it ignores the energy consumption between the ordinary nodes and gateways.  

 In order to balance the network loads, Kuila et al. proposed a GA-based clustering method called the genetic 

algorithm-based load balanced clustering algorithm (GALBCA) [20], where each chromosome represents a clustering 

schedule in the population. In a chromosome, the value of the i-th gene denotes the CH for node i. The algorithm can 

obtain a load-balanced clustering schedule by minimizing the standard deviation (𝜎) of the CHs, which is given by: 

𝜎 = √
∑ (𝜇;𝑊𝑗)

𝑚
𝑗=1

𝑚
 ,                                     (2) 

where 𝜇 = ∑ 𝑑𝑖/𝑚
𝑛
𝑖<1 , 𝑑𝑖 is the load on sensor node 𝑠𝑖, 𝑚 is the number of CHs, and 𝑊𝑗 is the overall load of CH 

𝑔𝑗. GALBCA considers load balancing but it ignores the energy consumption factor, which is very important in WSNs.  

 A GA-based clustering and routing algorithm (GACR) [14] was proposed to solve the combined energy and load 

balancing problem. GACR applies a GA to clustering and routing. The fitness function for clustering is related to the 

average transmission distance and the standard deviation of the ratio of the residual energy. The fitness function for 

routing is constructed based on the total transmission distances and hops between the CHs. GACR computes the 

optimal clustering and routing schedules separately, and thus the load on each CH can only comprise the number of CM 

nodes. However, the CHs in the network also need to transmit the data from the previous hop CHs in addition to 

collecting the data from the CMs. Thus, the load on the CHs is not fully balanced. 
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Load balancing is an important criterion for evaluating clustering and routing algorithms. However, when 

calculating the loads on a CH, most of the aforementioned algorithms [14; 19; 20] that consider load balancing only 

take the CMs into account. In addition, some GA-based algorithms [14-16] try to minimize the transmission distance to 

reduce the energy consumption. However, in some cases, the distance is not equal to the energy consumption in the 

network. Moreover, these algorithms encode clustering and routing separately. Therefore, the energy consumption 

cannot be estimated globally. By contrast, our proposed GECR algorithm encodes clustering and routing in the same 

chromosome, and it directly uses the amount of energy consumed as one of the parameters for the fitness function. In 

addition, GECR adds the number of previous hops (previous CHs) when balancing the load on the CHs. 

3. Network Model and Terminology

In this section, we first introduce the network topology and energy model for the proposed GECR algorithm,

before providing the terminology used in this study. 

3.1 Network Topology 

Based on the characteristics of routing connections, the topologies of WSNs can be classified according to two 

categories: flat and hierarchical [47]. A flat network includes a sink node and multiple ordinary nodes, as shown in Fig. 

1(a). The ordinary nodes have the same status and functions. In flat routing protocols [48-50], these nodes transmit data 

directly or through multiple hops to the sink node. The flat topology is simple and highly robust. However, all of the 

sensors in this topology need to keep updating the routing tables, so the network has poor scalability and low efficiency. 

In addition, the energy of the nodes may be wasted sometimes because there are no managers (e.g., CHs) in the flat 

topology. 

sink

s i n k

C H  o f  

C l u s t e r2

C H  o f  C l u s t e r1

1

2

3

4

(a) Flat topology                         (b) Hierarchical topology 

Fig. 1 Examples of a flat topology network and hierarchical topology network 

In the hierarchical topology network, the sensor nodes are divided into multiple clusters. Each cluster comprises

one CH and multiple CMs. The CH is responsible for managing its cluster by collecting and aggregating information 

from the CMs, and then sending the fused data to its next hop node or the sink node. Fig. 1(b) shows an example of a

hierarchical topology network, where the large clusters are divided into multiple small clusters and the small clusters 

can continue to be divided into smaller subsets. The division process is repeated until the clusters satisfy certain 

conditions. In Fig. 1(b), sensor nodes 3 and 4 send the collected data to CH 2, which aggregates the data from cluster 2 

(nodes 2, 3, and 4) and forwards the fused data to CH 1. CH 1 then aggregates the data from cluster 1 (nodes 1, 2, 3, and 

4) and forwards the fused data to the sink node. The hierarchical topology has the following advantages: 1) by running

an effective data aggregation algorithm, the CHs can reduce the amount of redundant and faulty data, thereby reducing 

the energy consumption; and 2) CMs only need to communicate with their own CHs. In addition, the CHs only need to 

communicate with their CMs and the next hops. Therefore, the hierarchical routing scheme can eliminate unnecessary 

interactions between nodes to improve the stability of the network. In general, hierarchical topologies can achieve better 
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performance compared with flat topologies [51]. Our proposed GECR algorithm employs a hierarchical topology. 

In the proposed method, the gateways are equipped with more computing power, larger amounts of storage, and 

better energy supplies, and thus they play the role of CHs. However, the energy supply is still limited for the CHs 

because the nodes are battery-driven. After a CH dies, no node can replace it. Therefore, the CHs in the network are

more important than the ordinary nodes. In our method, similar to the LEACH protocol, the network’s time is divided 

into multiple rounds. Each round comprises a set-up phase and a steady-state stage. In the set-up phase, the optimal

clustering and routing scheme for the current round is calculated using the proposed GECR algorithm in the sink node. 

In the steady-state stage, according to the calculated optimal clustering and routing scheme, the CHs collect and 

aggregate data from the CMs and send the aggregated data to the sink node through multi-hops. 

3.2 Energy Model 

Energy plays an important role in the construction and operation of networks because the network life cycle

depends on the residual energy of each sensor node. The sensor nodes have limited energy and they need to consume

some of this energy when sending or receiving data. We need to adopt suitable energy consumption model to calculate 

the energy consumption of nodes. In the research of clustering and routing in WSNs, the first-order radio model [6] is 

the most common energy consumption model and it has been widely used in many methods, e.g. GACR [14], GALBCA 

[20], HEED [27] and LEACH-MAC [28]. Thus, in the proposed method, we use the first-order radio model as the 

energy consumption model, as shown in Fig. 2. 

Fig. 2 Energy consumption model 

The amount of energy consumed when transmitting an l-bit packet from node i to node j can be represented by: 

 𝐸𝑇𝑋(𝑙, 𝑑𝑖𝑗) = 𝐸𝑒𝑙𝑒𝑐 ∗ 𝑙 + 𝐸𝑎𝑚𝑝(𝑑𝑖𝑗) ∗ 𝑙 = {
𝐸𝑒𝑙𝑒𝑐 ∗ 𝑙 + 𝜀𝑓𝑠 ∗ 𝑙 ∗ 𝑑𝑖𝑗

2    𝑖𝑓 𝑑𝑖𝑗 < 𝑑0

𝐸𝑒𝑙𝑒𝑐 ∗ 𝑙 + 𝜀𝑚𝑝 ∗ 𝑙 ∗ 𝑑𝑖𝑗
4   𝑖𝑓 𝑑𝑖𝑗 ≥ 𝑑0

 , (3) 

where 𝐸𝑒𝑙𝑒𝑐 is the energy required for driving and controlling electronic components, 𝐸𝑎𝑚𝑝(𝑑𝑖𝑗) represents the energy

consumed by signal amplification when transmitting 1-bit data, 𝜀𝑓𝑠 and  𝜀𝑚𝑝 are factors for the free space model and

multipath model, respectively, and 𝑑0 is the distance threshold, which is calculated as:

 𝑑0 = √𝜀𝑓𝑠 𝜀𝑚𝑝⁄  . (4) 

According to Eq. 3, 𝐸𝑇 (𝑙, 𝑑𝑖𝑗) depends on 𝑑𝑖𝑗 , which is the Euclidean distance between node i and node j. If the

distance 𝑑𝑖𝑗  is less than the threshold 𝑑0, the propagation of the wireless signal follows the free space model and the

transmission energy is proportional to the square of 𝑑𝑖𝑗; otherwise, the propagation of the wireless signal follows the

multipath model and the transmission energy is proportional to the fourth power of 𝑑𝑖𝑗 . If we assume that the

coordinates of nodes i and node j are (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗), respectively, then the distance between them can be

expressed as: 

        𝑑𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)
2 + (𝑦𝑖 − 𝑦𝑗)

2.        (5) 

The node consumes the following amount of energy when receiving an l-bit packet: 



ACCEPTED MANUSCRIPT
 

 

                                                                     𝐸  (𝑙)  =  𝐸𝑒𝑙𝑒𝑐  𝑙.                                                 (6) 

3.3 Terminology 

Some of the terminology used in the proposed algorithm is listed below. 

1) The set of CHs is denoted by 𝐻 = *𝑕1, 𝑕2, … , 𝑕𝑛𝐻+ and nH indicates the number of CHs. The sink node is 

the final destination of the data, so it acts as a special CH and it is denoted by 𝑕𝑛𝐻:1.  

2) The set of ordinary nodes is denoted by 𝑀 = *𝑚1, 𝑚2, … ,𝑚𝑛𝑀+ and nM indicates the number of ordinary 

nodes. 

3) n denotes the number of all nodes in the network: 

                                           𝑛 = 𝑛𝐻 + 𝑛𝑀 + 1.                                                                                      (7) 

4) sumE denotes the total energy consumed in the 𝑟-th round where it comprises the energy used for clustering 

and routing: 

𝑠𝑢𝑚𝐸 = 𝑐𝑙𝑢𝑡𝑒𝑟𝑖𝑛𝑔𝐸 + 𝑟𝑜𝑢𝑡𝑖𝑛𝑔𝐸.                                                                 (8) 

5) mhEij denotes the energy consumed during communication between CM mi and CH hj. If the energy required 

for sending data from mi to hj is denoted by sendmhEij and the energy required for receiving data from hj to mi 

is denoted by recmhEji, then mhEij is formulated as: 

𝑚𝑕𝐸𝑖𝑗 = 𝑠𝑒𝑛𝑑𝑚𝑕𝐸𝑖𝑗 + 𝑟𝑒𝑐𝑚𝑕𝐸𝑖𝑗 , 1 ≤ 𝑖 ≤ 𝑛𝑀, 1 ≤ 𝑗 ≤ 𝑛𝐻.                                          (9) 

6) hhEij denotes the energy consumed during communication between CH hi and CH hj. If data are transmitted 

from hi to hj, the energy required for sending data is denoted by sendhhEij and the energy required for 

receiving data is denoted by rechhEji, then hhEij is formulated as: 

𝑕𝑕𝐸𝑖𝑗 = 𝑠𝑒𝑛𝑑𝑕𝑕𝐸𝑖𝑗 + 𝑟𝑒𝑐𝑕𝑕𝐸𝑗𝑖 , 1 ≤ 𝑖 ≤ 𝑛𝐻, 1 ≤ 𝑗 ≤ 𝑛𝐻 + 1.                                  (10) 

7) dmax denotes the maximum communication range of the sensor nodes. 

8) d(hi, hj) denotes the distance between CH nodes hi and hj. d(mi, hj) denotes the distance between CM mi and 

CH hj. 

9) 𝑝𝐶𝐻(𝑚𝑖) is the set of potential CHs for CM mi. The CHs are within the communication range of mi. Hence, 

𝑝𝐶𝐻(𝑚𝑖) = {𝑕𝑗| 𝑕𝑗  𝐻   < 𝑑(𝑚𝑖 , 𝑕𝑗) < 𝑑𝑚𝑎 }.                                            (11) 

10) CH_𝑚𝑖 denotes the CH selected for CM mi. Thus, we can obtain CH_𝑚𝑖  𝑝𝐶𝐻(𝑚𝑖) 

11) 𝑟𝐶𝐻(𝑕𝑖) is the set of all the CHs within the communication range of CH 𝑕𝑖. The sink node may also be a 

member of 𝑟𝐶𝐻(𝑕𝑖). Therefore, 

𝑟𝐶𝐻(𝑕𝑖) = {𝑕𝑗| 𝑕𝑗  𝐻  𝑕𝑛𝐻:1   < 𝑑(𝑕𝑖 , 𝑕𝑗) < 𝑑𝑚𝑎 }.                                  (12) 

12) 𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝑠(𝑕𝑖) is the set of the potential next hop nodes of CH 𝑕𝑖. To avoid wasting energy, the next hop 

must be closer to the sink node than 𝑕𝑖, i.e., 

𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝑠(𝑕𝑖) = {𝑕𝑗| 𝑕𝑗  𝑟𝐶𝐻(𝑕𝑖)  𝑑(𝑕𝑗 , 𝑕𝑛𝐻:1) < 𝑑(𝑕𝑖 , 𝑕𝑛𝐻:1)}.                (13) 

13) 𝑛𝑒𝑥𝑡𝐻𝑜𝑝_𝑕𝑖  denotes the next hop selected for node CH 𝑕𝑖 . Then, we can obtain 𝑒𝑥𝑡𝐻𝑜𝑝_𝑕𝑖 

 𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝑠(𝑕𝑖). If the sink node is within the communication range of 𝑕𝑖, then it may become the next hop 

of 𝑕𝑖. 

14) 𝑛𝐿(𝑕𝑖) indicates the number of loads on CH 𝑕𝑖. If the number of the member nodes of 𝑕𝑖 is denoted by 

𝑛𝐶𝑀(𝑕𝑖) and 𝑛𝐻𝑜𝑝𝑠(𝑕𝑖) denotes the number of CHs that select 𝑕𝑖 as their next hop, then 𝑛𝐿(𝑕𝑖) is 
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formulated as: 

𝑛𝐿(𝑕𝑖) = 𝑛𝐶𝑀(𝑕𝑖) + 𝑛𝐻𝑜𝑝𝑠(𝑕𝑖).                                                            (14) 

15) 𝐸̀𝑕𝑖𝑕𝑛𝐻+1
 denotes the total energy consumed when data are transmitted from CH 𝑕𝑖 to the sink node through 

multiple hops. 

16) 𝐸𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙(𝑕𝑖) denotes the residual energy of CH 𝑕𝑖 and 𝐸𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙(𝑚𝑖) denotes the residual energy of CM 

𝑚𝑖. 

4. Preliminaries 

4.1 Overview of GA 

A GA is a type of metaheuristic that searches for an optimal solution by simulating the natural process of evolution. 

Fig. 3 illustrates the general process employed by a GA. First, some solutions are initialized randomly to form an initial 

population. These solutions are called individuals and each solution comprises one or more chromosomes made of a set 

of characters or strings. In an individual chromosome, each unit (a character or a string) is called a gene. After 

generating the initial population, a fitness function is used to select the individuals with higher performance. Two 

individuals are then selected randomly as parents to generate two new individuals as children based on a crossover 

operation. A mutation operation is executed to produce new children. Next, the fitness function is used to evaluate the 

fitness of the new children and the parents. It should be noted that the new children are generated after mutation and the 

parents are generated after selection. Finally, the algorithm selects half the individuals with better performance and adds 

them to the new population. If the new population meets the termination condition, the algorithm ends; otherwise, the 

algorithm enters the next generation. 

 

Fig. 3 General process employed by a GA 

4.2 Problem Formulation 

The sensor nodes are provided with limited energy, so improving the energy efficiency and maximizing the 

network life cycle is the main target of clustering and routing algorithms. In our proposed method, the network’s time is 

divided into multiple rounds. If the energy consumption during each round is minimized, then the energy efficiency 

within the life cycle can be guaranteed. A Boolean variable cij is first defined to assess whether CM node mi is assigned 

to CH node hj. Then, cij can be calculated as follows. 

𝑐𝑖𝑗 = {

1,  𝑓 𝑚𝑖  𝑖𝑠  𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑕𝑗𝑑𝑓𝑠𝑑𝑑𝑓

  𝑖, 𝑗 1 ≤ 𝑖 ≤ 𝑛𝑀, 1 ≤ 𝑖 ≤ 𝑛𝐻
 , 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

                                      (15) 

Eq. 8 shows that the total energy consumed in each round comprises 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔𝐸 and 𝑟𝑜𝑢𝑡𝑖𝑛𝑔𝐸. 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔𝐸 

is the communication energy consumed between all the members and their corresponding CHs:  
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𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔𝐸 = ∑ ∑ 𝑚𝑕𝐸𝑖𝑗
𝑛𝐻
𝑗<1

𝑛𝑀
𝑖<1 ∗ 𝑐𝑖𝑗 .                                                                   (16) 

𝑟𝑜𝑢𝑡𝑖𝑛𝑔𝐸 is the energy consumed when transmitting the data from all the CHs to the sink node: 

𝑟𝑜𝑢𝑡𝑖𝑛𝑔𝐸 = ∑ 𝐸̀𝑕𝑖𝑕𝑛𝐻+1
𝑛𝐻
𝑖<1 .                                                                            (17) 

Then, the optimization objective for the clustering and routing problems is: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑠𝑢𝑚𝐸 = ∑ ∑ 𝑚𝑕𝐸𝑖𝑗
𝑛𝐻
𝑗<1

𝑛𝑀
𝑖<1 ∗ 𝑐𝑖𝑗 + ∑ 𝐸̀𝑕𝑘𝑕𝑛𝐻+1

𝑛𝐻
𝑘<1 ,                                          (18) 

 𝑠𝑢 𝑗𝑒𝑐𝑡 𝑡𝑜  ∑ 𝑐𝑖𝑗
𝑛𝐻
𝑗<1 = 1, 1 ≤ 𝑖 ≤ 𝑛𝑀                                                                                                  (19) 

                  ∑ 𝑑(𝑚𝑖 , 𝑕𝑗) ∗ 𝑐𝑖𝑗
𝑛𝐻
𝑗<1 < 𝑑𝑚𝑎 , 1 ≤ 𝑖 ≤ 𝑛𝑀,𝑚𝑖  𝑀, 𝑕𝑗  𝐻.                 (20) 

Eq. 19 states that any CM node can only join one CH node hj. Eq. 20 states that the distance between mi and hj must be 

within the maximum communication range of mi if mi is assigned to hj. 

5. Proposed Algorithm 

Next, we present the detailed design of the proposed GECR algorithm. The chromosome representation (Section 

5.1) is introduced first. We then present the population initialization method (Section 5.2) and the fitness function 

(Section 5.3). Finally, the crossover operator and mutation operator are explained in Section 5.4. 

5.1 Chromosome Representation 

Before the design of the chromosome, the identities of the nodes should be checked and updated.  𝐷(𝑕𝑖) denotes 

the new identity of the CH nodes: 

 𝐷(𝑕𝑖) = {
𝑖, 𝑓𝑓𝑓  𝑓 𝑖 ≤ 𝑛𝐻       
𝑛, 𝑓𝑓𝑓 𝑓 𝑖 = 𝑛𝐻 + 1

   ,                                            (21) 

where i is the original identity of the CH nodes. If node 𝑕𝑖 is an ordinary CH (𝑖 ≤ 𝑛𝐻), then its new identity remains 

the same; otherwise, if 𝑕𝑖 is a sink node (𝑖 = 𝑛𝐻 + 1), then its new identity is n. For example, in the WSN in Fig. 4, 

the new identity of CH node 𝑕3 is still 3, but the new identity of sink node 𝑕5 becomes 17. The new identity of CM 

node 𝑚𝑖 is denoted by:  

 𝐷(𝑚𝑖) = 𝑖 + 𝑛𝐻  ,                                                                                      (22) 

where i is the original identity of the CM nodes. For example, the new identity of CM node 𝑚5 becomes 9. 

In the proposed GECR algorithm, we encode the clustering scheme and the routing scheme in the same 

chromosome, which is called a scheme. The length of the scheme chromosome is n-1, which is the number of all the 

sensor nodes except the sink node. 𝑠𝑐𝑕𝑒𝑚𝑒,𝑘- denotes the k-th gene of the scheme chromosome and k denotes the new 

identities of the sensor nodes, which are calculated using Eq. 21 and Eq. 22. The scheme chromosome comprises two 

parts. The first part is the routing scheme and 𝑘 ≤ 𝑛𝐻. As shown in Eq. 23, the next hop of the CH node 𝑕𝑘 has two 

options: 

𝑛𝑒𝑥𝑡𝐻𝑜𝑝_𝑕𝑘 = {
𝑕𝑗𝑎𝑎𝑎 ,      𝑖𝑓 𝑠𝑐𝑕𝑒𝑚𝑒,𝑘- = 𝑗, 𝑘 ≤ 𝑛𝐻, 𝑗 ≤ 𝑛𝐻,

𝑕𝑛𝐻:1,      𝑖𝑓 𝑠𝑐𝑕𝑒𝑚𝑒,𝑘- = 𝑛, 𝑘 ≤ 𝑛𝐻.        
                                             (23) 

If the k-th gene is j and both k and j are less than or equal to 𝑛𝐻, then the next-hop node of the head node 𝑕𝑘 is 𝑕𝑗. 

However, if the k-th gene is n and k is less than or equal to 𝑛𝐻, then the next-hop node of 𝑕𝑘 is the sink node 𝑕𝑛𝐻:1. 

The second part of the scheme chromosome is the clustering scheme and 𝑛𝐻 < 𝑘 < 𝑛. The CH node of member 

node 𝑚𝑘;𝑛𝐻 is calculated as follows: 

CH_𝑚𝑘;𝑛𝐻 = 𝑕𝑗 , 𝑖𝑓 𝑠𝑐𝑕𝑒𝑚𝑒,𝑘- = 𝑗, 𝑛𝐻 < 𝑘 < 𝑛, 𝑗 ≤ 𝑛𝐻.                                            (24) 
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If the k-th gene is j and j is less than or equal to 𝑛𝐻, then the CM node 𝑚𝑘;𝑛𝐻 with identity k is assigned to the CH 

node 𝑕𝑗. It is important to note that if there are multiple genes with the same value in this part, then the CM nodes 

corresponding to the genes are assigned to the same CH node. 

An example of a WSN clustering and routing scheme is illustrated in Fig. 4. The internal numbers of the nodes 

indicate the identities of the sensor nodes. Transmissions from CM nodes to their corresponding CH nodes are indicated 

by the solid arrows and the routing between CH nodes are indicated by dashed arrows. In total, the WSN has 17 sensor 

nodes, which comprise one sink node, four CH nodes (𝐻 = *𝑕1, 𝑕2, 𝑕3, 𝑕4+) and 12 CM nodes (𝑀 = *𝑚1, 𝑚2, … ,𝑚12+). 

Fig. 5 illustrates the corresponding chromosome scheme for the clustering and routing scheme in Fig. 4. In Fig. 5, the 

numbers in the ‘ID’ row indicates the identities of sensor nodes, which are related to the corresponding gene position. 

The chromosome scheme consists of two parts: routing scheme and clustering scheme. The gene positions in the first 

part indicate the identities of the CHs in the network. The allele of a gene position is the identity of the next hop of the 

corresponding CH. For example, the allele of the gene position 2 in scheme is 17, which indicates that the next hop of 

the CH (identity: 2, corresponding to the CH 𝑕2 in Fig. 4) is the node whose identity is 17 (corresponding to the sink 

node 𝑕5 in Fig. 4); the allele of the gene position 3 in scheme is 4, which indicates that the next hop of the CH (identity: 

3, corresponding to the CH 𝑕3 in Fig. 4) is the node whose identity is 4 (corresponding to the CH 𝑕4 in Fig. 4). The 

gene positions in the second part indicate the identities of the CMs in the network. The allele of a gene position is the 

identity of the CH of the corresponding CMs. For example, the allele of gene position 7 in scheme is 2, which indicates 

that the CM (identity: 7, corresponding to the CM 𝑚3  in Fig. 4) is assigned to the CH whose identity is 2 

(corresponding to the CH 𝑕2 in Fig. 4); the allele of the gene position 12 in scheme is 1, which indicates that the CM 

(identity: 12, corresponding to the CM 𝑚8 in Fig. 4) is assigned to the CH whose identity is 1 (corresponding to the 

CH 𝑕1 in Fig. 4). 

 

Fig. 4 Example of a WSN clustering and routing scheme 

 

Fig. 5 The scheme chromosome 

5.2 Population Initialization 

The initial population comprises multiple randomly generated scheme chromosomes. However, due to the limited 

communication range of the sensor nodes, the validity of each scheme chromosome should be guaranteed. For the first 

part of the chromosome, all the genes must satisfy: 

𝑠𝑐𝑕𝑒𝑚𝑒,𝑘-  𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝑠(𝑕𝑘),  𝑓 𝑘 ≤ 𝑛𝐻  ,                                                        (25) 
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where the value of the k-th gene scheme must belong to the set of potential next hop nodes for the k-th CH 𝑕𝑘. In 

addition, if the k-th gene is located in the second part of the chromosome, then its value must belong to the set of the 

potential CHs for CM 𝑚𝑘;𝑛𝐻: 

𝑠𝑐𝑕𝑒𝑚𝑒,𝑘-  𝑝𝐶𝐻(𝑚𝑘;𝑛 ),  𝑓 𝑛𝐻 < 𝑘 < 𝑛.                                                     (26) 

Algorithm1 Population initialization 

1: Procedure Scheme = Init_Population(previous_scheme, flag, H, M, nP) 

2:    Scheme = []; 

3:    n = length(H) + length(M) + 1; 

4:    nH = length(H); 

5:    for i = 1 to nP do  

6:       if i == 1 && flag == 1 do   

7:          Scheme(1,:) = previous_scheme;     

8:       else 

9:          for j = 1 to n-1 do  

10:            if j <= nH do 

11:               nextHop_𝑕𝑗 = rand(𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝑠(𝑕𝑗));   

12:               Scheme(i, j) = nextHop_𝑕𝑗; 

13:            else   

14:               CH_𝑚𝑗;𝑛𝐻 = rand(𝑝𝐶𝐻(𝑚𝑗;𝑛𝐻));          

15:               Scheme(i, j) = CH_𝑚𝑗;𝑛𝐻; 

16:            end if         

17:         end for 

18:      end if 

19:   end for 

20: end Procedure 

Fig. 6 Population initialization algorithm 

In this paper, the network time is divided into multiple network rounds. In each network round, the optimal 

clustering and routing scheme is calculated through the proposed GECR method. The optimal scheme is different for 

each network round with the change of the energy of the sensor nodes. Eq. 18 shows that the optimization objective is 

related to the energy consumption, which is determined by the distance between the nodes. The geographical locations 

of the sensor nodes in the network are fixed, so the optimal clustering and routing scheme for the 𝑟+1-th network round 

is related to the optimal scheme for the 𝑟-th network round. Therefore, in order to reduce the number of iterations in the 

GA, the optimal scheme for the 𝑟-th network round is added to the initial population for the 𝑟+1-th network round. 

Algorithm1 in Fig. 6 illustrates the process followed to initialize the population. In Algorithm1, the optimal scheme 

obtained in the previous round is denoted as previous_scheme. To note there are two cases that previous_scheme should 

not be added into the initial population: (1) the network is in the first round; and (2) one or more failure nodes exist in 

the previous network round. In Algorithm1, we use the variable flag (flga=0) to represent these two cases. H denotes 

the set of all the CH nodes except the sink node and M denotes the set of all the CM nodes. H and M are preset before 

the network operation. The number of the chromosomes in the population is denoted by nP. The output of the algorithm 

is the initial population Scheme, which comprises of all the scheme chromosomes. In Algorithm1, line 2 initializes the 

population Scheme as an empty set, and lines 3 and 4 calculate the number of all nodes and the number of all CH nodes, 

respectively. Next, from line 5, the algorithm assigns the nP chromosomes. If the assigned object is the first 

chromosome and the value of flag is 1 (line 6), then the first chromosome in the population is set to previous_scheme 
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(line 7); otherwise, from line 8, the algorithm assigns the j-th gene of i-th chromosome in the population. In the first part 

of the chromosome (the routing scheme part), a node from the set 𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝑠(𝑕𝑗) is selected randomly as the next hop 

for CH 𝑕𝑗, and 𝑛𝑒𝑥𝑡𝐻𝑜𝑝_𝑕𝑗 is assigned to Scheme(i, j) (lines 10–12). In the second part of the chromosome (the 

clustering scheme part), a node is selected randomly from the set 𝑝 �� (𝑚𝑗;𝑛𝐻) as the CH for CM 𝑚𝑗;𝑛𝐻, and 

CH_𝑚𝑗;𝑛𝐻 is assigned to Scheme(i, j) (lines 13–15). 

5.3 Fitness Function  

In WSNs, all of the sensor nodes have limited energy supply and each node needs to consume some energy when 

sending and receiving data from other nodes. If the total amount of energy consumption is reduced, the energy can be 

saved. Thus, we need to reduce the total amount of energy consumption for all of the nodes. In this paper, the proposed 

GECR method is applied for the WSNs with Permanent CHs. In this type of WSNs, the CHs are responsible for 

receiving and transmitting the data from its CMs and previous hops. Load balancing for CHs in the network is another 

important factor that can affect the network life cycle. If a CH consumes energy too rapidly because of its excessive 

load, the node will deplete prematurely, and the stability and energy efficiency of the network will both be affected. 

Thus, we also need to balance the energy consumed by each CH. Different clustering and routing schemes can lead to 

different amount of energy consumption and different load balancing of CHs. Therefore, in this paper the fitness of a 

single chromosome in the population is related to the total energy consumption and load balancing of the CHs. 

The total energy consumption under the corresponding clustering and routing scheme is denoted by 𝑠𝑢𝑚𝐸. Eq. 18 

shows that 𝑠𝑢𝑚𝐸  depends on 𝑚𝑕𝐸𝑖𝑗  and 𝐸̀𝑕𝑘𝑕𝑛𝐻+1
. Eq. 9 shows that 𝑚𝑕𝐸𝑖𝑗  is the sum of 𝑠𝑒𝑛𝑑𝑚𝑕𝐸𝑖𝑗  and 

𝑟𝑒𝑐𝑚𝑕𝐸𝑖𝑗 . If the length of the transmitted data is l-bit, then we can calculate 𝑠𝑒𝑛𝑑𝑚𝑕𝐸𝑖𝑗  from Eq. 3: 

𝑠𝑒𝑛𝑑𝑚𝑕𝐸𝑖𝑗(𝑙) = {
𝐸𝑒𝑙𝑒𝑐 ∗ 𝑙 + 𝜀𝑓𝑠 ∗ 𝑙 ∗ 𝑑2(𝑚𝑖 , 𝑕𝑗),     𝑓 𝑑(𝑚𝑖, 𝑕𝑗) < 𝑑0,

𝐸𝑒𝑙𝑒𝑐 ∗ 𝑙 + 𝜀𝑚𝑝 ∗ 𝑙 ∗ 𝑑4(𝑚𝑖 , 𝑕𝑗),    𝑓 𝑑(𝑚𝑖, 𝑕𝑗) ≥ 𝑑0.
                             (27) 

Using Eq. 6, we can obtain the energy consumed by hj to receive l-bit data from mi: 

𝑟𝑒𝑐𝑚𝑕𝐸𝑖𝑗 = 𝐸𝑒𝑙𝑒𝑐 ∗ 𝑙.                                                                                    (28) 

Then, we combine Eq. 27 and Eq. 28 to calculate 𝑚𝑕𝐸𝑖𝑗: 

𝑚𝑕𝐸𝑖𝑗(𝑙) = {
 𝐸𝑒𝑙𝑒𝑐 ∗ 𝑙 + 𝜀𝑓𝑠 ∗ 𝑙 ∗ 𝑑2(𝑚𝑖, 𝑕𝑗),     𝑓 𝑑(𝑚𝑖 , 𝑕𝑗) < 𝑑0,

 𝐸𝑒𝑙𝑒𝑐 ∗ 𝑙 + 𝜀𝑚𝑝 ∗ 𝑙 ∗ 𝑑4(𝑚𝑖 , 𝑕𝑗),    𝑓 𝑑(𝑚𝑖 , 𝑕𝑗) ≥ 𝑑0.
                                        (29) 

The energy consumed during transmitting data from the CH 𝑕𝑘  to the sink 𝑕𝑛𝐻:1  through multi-hops is 

calculated as follows: 

𝐸̀𝑕𝑘𝑕𝑛𝐻+1
= {

𝑕𝑕𝐸𝑘 𝑛𝐻:1, 𝑦𝑦𝑦𝑦𝑦𝑦 𝑓 𝑛𝑒𝑥𝑡𝐻𝑜𝑝_𝑕𝑘 = 𝑕𝑛𝐻:1,

𝑕𝑕𝐸𝑘 + 𝐸̀𝑕 𝑕𝑛𝐻+1
,  𝑓 𝑛𝑒𝑥𝑡𝐻𝑜𝑝_𝑕𝑘 = 𝑕 . 𝑦𝑦𝑦

                                          (30) 

If the next hop of 𝑕𝑘 is the sink node, then 𝐸̀𝑕𝑘𝑕𝑛𝐻+1
 equals the energy consumed by 𝑕𝑘 when directly transmitting 

data to the sink node; otherwise, 𝐸̀𝑕𝑘𝑕𝑛𝐻+1
 equals the sum of the communication energy required between all CHs and 

the energy used by the previous CH to transmit data to the sink node. 

The sink node 𝑕𝑛𝐻:1 has an adequate energy supply, so the energy consumed by 𝑕𝑛𝐻:1 to receive data is 

ignored. Therefore, the communication energy between 𝑕𝑘 and 𝑕𝑛𝐻:1 only comprises the energy used by 𝑕𝑘 to 

transmit data. If the length of the transmitted data is 𝑙 -bit, then the method used for calculating 𝑕𝑕𝐸𝑘 𝑛𝐻:1(𝑙
 ) is as 

follows: 

𝑕𝑕𝐸𝑘 𝑛𝐻:1(𝑙
 ) = {

𝐸𝑒𝑙𝑒𝑐 ∗ 𝑙 + 𝜀𝑓𝑠 ∗ 𝑙 ∗ 𝑑2(𝑕𝑘 , 𝑕𝑛𝐻:1),    𝑓 𝑑(𝑕𝑘 , 𝑕𝑛𝐻:1) < 𝑑0,

𝐸𝑒𝑙𝑒𝑐 ∗ 𝑙 + 𝜀𝑚𝑝 ∗ 𝑙 ∗ 𝑑4(𝑕𝑘 , 𝑕𝑛𝐻:1),  𝑓 𝑑(𝑕𝑘 , 𝑕𝑛𝐻:1) ≥ 𝑑0.
             (31) 

Eq. 10 shows that the communication energy between 𝑕𝑘 and its next hop 𝑕  comprises the energy used by 𝑕𝑘 to 
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transmit data (𝑠𝑒𝑛𝑑𝑕𝑕𝐸𝑘 ) and the energy used by 𝑕  to receive data (𝑟𝑒𝑐𝑕𝑕𝐸 𝑘 ). Similarly, if the length of 

transmitted data is 𝑙 -bit, then 𝑕𝑕𝐸𝑘 (𝑙 ) is calculated as: 

𝑕𝑕𝐸𝑘 (𝑙 ) = {
 𝐸𝑒𝑙𝑒𝑐 ∗ 𝑙 + 𝜀𝑓𝑠 ∗ 𝑙 ∗ 𝑑2(𝑕𝑘, 𝑕 ),     𝑓 𝑑(𝑕𝑘, 𝑕 ) < 𝑑0,

 𝐸𝑒𝑙𝑒𝑐 ∗ 𝑙 + 𝜀𝑚𝑝 ∗ 𝑙 ∗ 𝑑4(𝑕𝑘 , 𝑕 ),    𝑓 𝑑(𝑕𝑘, 𝑕 ) ≥ 𝑑0.
                         (32) 

The scheme chromosome for Fig. 5 is used as an example to calculate the total energy consumption under the 

corresponding clustering and routing scheme. We assume that the distances between all sensor nodes are less than 𝑑0 

and the length of the transmitted data from CM nodes to their corresponding CH node is l-bit. In addition, the length of 

the transmitted data from CHs to their next hops is 𝑙 -bit and the transmitted data can be calculated by aggregating the 

collected data from the CM nodes. According to Fig. 4, the number of CM nodes nM and the number of CH nodes nH 

are 12 and four, respectively. Using Eq. 18, we can obtain the total energy consumption 𝑠𝑢𝑚𝐸(𝑙, 𝑙 ): 

𝑠𝑢𝑚𝐸(𝑙, 𝑙 ) = ∑ ∑ 𝑚𝑕𝐸𝑖𝑗(𝑙)
4
𝑗<1

12
𝑖<1 ∗ 𝑐𝑖𝑗 + ∑ 𝐸̀𝑕𝑘𝑕𝑛𝐻+1

(𝑙 ).4
𝑘<1                                      (33) 

The previous part ∑ ∑ 𝑚𝑕𝐸𝑖𝑗(𝑙)
4
𝑗<1

12
𝑖<1 ∗ 𝑐𝑖𝑗 is the clustering energy (denoted by 𝐸1), which comprises the energy 

consumed by all of the CMs when transmitting the collected data and the energy used by all of the CHs to receive the 

data. 𝐸1 is related to the second part of the scheme chromosome in Fig. 5, and it can be calculated as 

𝐸1 = 𝑚𝑕𝐸11(𝑙) + 𝑚𝑕𝐸24(𝑙) + 𝑚𝑕𝐸32(𝑙)  +  𝑚𝑕𝐸41(𝑙) + 𝑚𝑕𝐸52(𝑙) + 𝑚𝑕𝐸64(𝑙) 

      + 𝑚𝑕𝐸72(𝑙) + 𝑚𝑕𝐸81(𝑙)  + 𝑚𝑕𝐸93(𝑙) + 𝑚𝑕𝐸10 4(𝑙)  + 𝑚𝑕𝐸11 1(𝑙) + 𝑚𝑕𝐸12 3(𝑙) 

 =  4𝑙𝐸𝑒𝑙𝑒𝑐 + 𝑙𝐸𝑓𝑠(𝑑
2(𝑚1, 𝑕1) + 𝑑2(𝑚2, 𝑕4)+𝑑2(𝑚3, 𝑕2)+𝑑2(𝑚4, 𝑕1) 

     +𝑑2(𝑚5, 𝑕2) + 𝑑2(𝑚6, 𝑕4) + 𝑑2(𝑚7, 𝑕2) + 𝑑2(𝑚8, 𝑕1)+𝑑2(𝑚9, 𝑕3) 

     +𝑑2(𝑚10, 𝑕4) + 𝑑2(𝑚11, 𝑕1) + 𝑑2(𝑚12, 𝑕3)). (34) 

The remainder of Eq. 33, ∑ 𝐸̀𝑕𝑘𝑕𝑛𝐻+1
(𝑙 )4

𝑘<1  , is the routing energy (denoted by 𝐸2), which comprises the total 

communication energy used when transmitting data from all of the CHs to the sink node. 𝐸2 is related to the first part 

of the scheme chromosome in Fig. 5, and it can be calculated as: 

𝐸2 = 𝐸̀𝑕1𝑕5
(𝑙 ) + 𝐸̀𝑕2𝑕5

(𝑙 ) + 𝐸̀𝑕3𝑕5
(𝑙 )  + 𝐸̀𝑕4𝑕5

(𝑙 ) 

 = 𝑕𝑕𝐸12(𝑙
 ) + 𝑕𝑕𝐸25(𝑙

 )  + 𝑕𝑕𝐸25(𝑙
 ) + 𝑕𝑕𝐸34(𝑙

 )  + 𝑕𝑕𝐸45(𝑙
 ) + 𝑕𝑕𝐸45(𝑙

 ) 

 = 8𝑙𝐸𝑒𝑙𝑒𝑐 + 𝑙 𝜀𝑓𝑠(𝑑
2(𝑕1, 𝑕2) +  𝑑2(𝑕2, 𝑕5)+𝑑2(𝑕3, 𝑕4)+ 𝑑2(𝑕4, 𝑕5)). (35) 

Due to the limited energy of the sensor nodes in the network, we need to minimize the energy consumed in each 

round to prolong the network life cycle. Thus, the chromosomes should be selected that consume lower amounts of 

energy. In fact, a chromosome with lower energy consumption usually has a smaller fitness value. Therefore, the fitness 

function is proportional to the total energy consumption 𝑠𝑢𝑚𝐸: 

𝐹𝑖𝑡  𝑠𝑢𝑚𝐸.                                                                                 (36) 

Then we calculate the parameter that is related to the load balancing of the CHs. We define  𝑣𝑟𝑔𝑖  as the average 

remaining energy assigned to each load on the CH 𝑕𝑖, which can be calculated as: 

 𝑣𝑟𝑔𝑖 =
𝐸   𝑖   𝑙(𝑕𝑖)

𝑛 (𝑕𝑖)
 .                                                                                      (37) 

The average value 𝜇 of  𝑣𝑟𝑔𝑖  for all CHs can then be calculated: 
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𝜇 =
∑  𝑣𝑟𝑔𝑖

𝑛𝐻
𝑖=1

𝑛𝐻
 .                                                                                             (38) 

Based on the value of  𝑣𝑟𝑔𝑖  and 𝜇, we can obtain the standard deviation of the average residual energy  𝑣𝑟𝑔𝑖: 

𝜎 = √
∑ (𝜇; 𝑣𝑟𝑔𝑖)

2𝑛𝐻
𝑖=1

𝑛𝐻
 .                                                                                       (39) 

A smaller value for the standard deviation 𝜎 will balance the energy consumption and increase the network life cycle. 

Therefore, 𝜎 is proportional to the fitness value: 

𝐹𝑖𝑡  𝜎 .                                                                                                (40) 

By combining Eq. 36 and Eq. 40, we can obtain the following fitness function: 

𝐹𝑖𝑡  𝑠𝑢𝑚𝐸 + 𝜎.                                                                                            (41) 

𝑠𝑢𝑚𝐸 and 𝜎 are not in the same range, so these two values should be normalized as follows: 

𝑠𝑢𝑚𝐸 =
𝑠𝑢𝑚𝐸;𝑠𝑢𝑚𝐸𝑚𝑖𝑛

𝑠𝑢𝑚𝐸𝑚  ;𝑠𝑢𝑚𝐸𝑚𝑖𝑛
   ,                                                                                   (42) 

𝜎 =
 ; 𝑚𝑖𝑛

 𝑚  ; 𝑚𝑖𝑛
  .                                                                                         (43) 

𝑠𝑢𝑚𝐸    and 𝑠𝑢𝑚𝐸    are the maximum and minimum of 𝑠𝑢𝑚𝐸 , respectively, and 𝜎𝑚𝑎  and 𝜎𝑚𝑖𝑛  are the 

maximum and minimum of 𝜎. The two parameters 𝑠𝑢𝑚𝐸 and 𝜎 affect the fitness to different degrees, so we add a 

weight   to the fitness function: 

𝐹𝑖𝑡   ∗ 𝑠𝑢𝑚𝐸 + (1 −  ) ∗ 𝜎.                                                                          (44) 

5.4 Crossover and Mutation  

The design of the genetic operators is a critical step in GA. The genetic operators include the crossover and 

mutation operators. After entering a new generation, the chromosomes with lower fitness are selected using the roulette 

wheel algorithm. These selected chromosomes are the parent chromosomes for the crossover operator and they are used 

to produce new children chromosomes. 

 

Fig. 7 Crossover between two parent chromosomes 

In the proposed GECR algorithm, there is only one chromosome scheme for the individuals in the population. Fig. 

5 shows that the chromosome contains two parts, which are used to generate the optimal routing scheme and the 
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optimal clustering scheme. In order to produce better genes in the two parts at the same time, we employ two-point 

crossover and randomly select a crossover point in the first part and the second part of scheme. Fig. 7 illustrates the 

crossover between two parent chromosomes. In this study, the crossover operator always takes place. As introduced in 

Section 4.1, the algorithm selects the higher performance chromosomes from the parent chromosomes and the new 

children chromosomes. Thus, the best solutions can be preserved for the next generation in this manner. 

It should be noted that the child chromosomes produced by the crossover operation are still valid. In the first part 

of scheme, Eq. 25 shows that the k-th gene is randomly selected from the set 𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝑠(𝑕𝑘). After crossover, the k-th 

gene still belongs to 𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝑠(𝑕𝑘). Similarly, if the k-th gene belongs to the second part of scheme, Eq. 26 shows that 

the k-th gene belongs to the set 𝑝𝐶𝐻(𝑚𝑘;𝑛𝐻). 

Mutation is used to produce better chromosomes in the GA. In the proposed GECR method, we use the basic bit 

mutation operator. Each gene in the chromosome might mutate. We assume that the k-th gene needs to mutate. If the 

k-th gene is in the first part of the chromosome, then we need to randomly select a new allele from the set 

𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝑠(𝑕𝑘) to replace the previous k-th allele. If the k-th gene is located in the second part of the chromosome, then 

a new allele needs to be randomly selected from the set 𝑝𝐶𝐻(𝑚𝑘;𝑛𝐻) to replace the previous allele. 

Fig. 8 illustrates the mutation of the chromosome scheme. In this figure, the chromosome after mutation is scheme’. 

There are two genes (the 3rd gene and the 15th gene) that need to mutate. The 3rd gene is located in the first part of the 

chromosome, the set 𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝑠(𝑕3) = * , 4,17+.Then the number 17 is chosen to replace the previous allele 4. 

Meanwhile, the 15th gene is located in the second part, the set 𝑝𝐶𝐻(𝑚11) = *1, +. Then the number 2 is chosen to 

replace the previous allele 1. 

 

Fig. 8 Mutation of the chromosome scheme 

6. Experimental Results 

In experiments, we compare the proposed GECR algorithm with five clustering and routing algorithms: GACR 

[14], GAR [15], ASLPR [16], LEACH-GA [17] and GALBCA [20]. These algorithms are all based on GA. 

6.1 Parameter Settings 

MATLAB R2014a and the C programming language were used to simulate the clustering algorithms. MATLAB 

R2014a was operated on a system with an Intel CPU Core i7-3770, 16 GB RAM, and Windows 7. We used the same 

energy model and the corresponding typical parameters that are employed in most of the current routing algorithms for 

WSNs (e.g., [6; 14; 16; 28]). Table 1 illustrates the simulation parameters where 𝐸𝑒𝑙𝑒𝑐, 𝜀𝑓𝑠, 𝜀𝑚𝑝, and 𝐸𝐷  are energy 

consumption-related parameters. Control packet size is the length of some notification messages. Message packet size is 

the length of the data messages collected by the sensor nodes. There are two sensing fields: Area1 and Area2. The 

smaller Area1 is deployed with 100 nodes and the larger Area2 has 200 sensor nodes. The sink node is in the centre of 

the network area and its coordinates in Area1 and Area2 are (50, 50) and (100, 100), respectively. dmax denotes the 

maximum communication range of the sensor nodes. The nodes are divided into two categories: CMs and CHs. The 

initial energy of the ordinary CMs is 0.1 J. The CHs are used as gateways, so they require more initial energy. And the 

setting of proportion and initial energy for CHs could be different [14; 15; 20]. To evaluate the adaptability to different 
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areas and different setting for CHs by the algorithms, we tested four simulation scenarios: WSN#1, WSN#2, WSN#3, 

and WSN#4, which were set as: WSN#1 = (Area1, 20 CHs, 0.6 J/CH), WSN#2 = (Area1, 40 CHs, 0.3 J/CH), WSN#3 = 

(Area3, 40 CHs, 0.6 J/CH), and WSN#4 = (Area1, 80 CHs, 0.3J/CH). To ensure that the comparisons were fair, all of 

the algorithms (GAR, GACR, GALBCA, LEACH-GA, ASLPR, and the proposed GECR) used the same parameter 

settings. According to the reference [52], in the proposed GECR method the mutation probability is set as 1/(n-1), where 

(n-1) is the length of the chromosome. 

Table 1 Experimental parameter settings 

Parameter Value 

𝐸𝑒𝑙𝑒𝑐  50 (nJ/bit) 

𝜀𝑓𝑠 10 (pJ/bit/m
2
) 

𝜀𝑚𝑝 0.0013(pJ/bit/m
4
) 

𝐸𝐷  (Energy for data 

aggregation)  
5 (nJ/bit) 

Control packet size 200 (bits) 

Message packet size 4000 (bits) 

Area1 (L*L) 100*100 (m
2
) and 100 nodes 

Area2 (L*L) 200*200 (m
2
) and 200 nodes 

Location of sink node Centre of the network area 

dmax L/2 

Initial energy of CMs 0.1 J 

Proportion of CHs 20%/40% 

Initial energy of CHs 0.6 J/0.3 J 

6.2 Comparison of the Weight λ 

The GECR algorithm used a GA to determine the clustering and routing scheme for WSNs. The fitness of an 

individual in the population depends on the energy consumption and the variance in the loads on the CHs under the 

corresponding clustering and routing scheme. Eq. 44 shows that the weight λ determines the ratio of the energy 

consumption and the variance in the load. Thus, the value of λ influences the calculation of the optimal clustering and 

routing scheme. We selected an appropriate value of λ that obtained the best results in comparative experiments. The 

main objective of the GECR algorithm is to extend the network life cycle, so we selected a value of λ with a longer 

network life cycle. To define the life cycle of WSNs, we use three metrics [53-55]: first node death (FND), half nodes 

alive (HNA), and last node death (LND). The three metrics are fit for different scenarios. In some scenarios (intrusion 

or fire detection) the network quality decreases considerably as soon as one node dies, thus, all nodes should stay alive 

as long as possible. In these cases, it is important to know the value of FND. Meanwhile, in some scenarios, the sensors 

can be placed in proximity to each other and adjacent sensors could record related or identical data, thus, the loss of a 

single or few nodes does not automatically diminish the quality of service of the network. In these cases, HNA and 

LND are effective in the analysis the network life cycle.  

In order to reduce the running time of the algorithm, we decreased the initial energy levels of the sensor nodes in 

the experiments when determining the value of  : WSN#1 and WSN#3 (0.12 J/CH; 0.02 J/CM), and WSN#2 and 

WSN#4 (0.06 J/CHs; 0.02 J/CM). Table 2 illustrates the network life cycles for different values of λ in various 

scenarios. Fig. 9 shows the number of living nodes with different values of λ in various scenarios. The top three values 

are highlighted in bold in each row of Table 2. A larger number of bold values indicates the better performance for a 

specific value of  . Table 2 shows that  =  .8 and  =  .9 obtained the most bold values with 10. In Fig. 9, the 

curve for  =  .8 is shown in black and the curve for  =  .9 is shown in brown. For WSN#4, the black curve and 

brown curve are adjacent to each other. For WSN#2, the black curve is above the brown curve at most time points, but 
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the brown curve is slightly better within a short time period close to 300 rounds. For WSN#1 and WSN#3, the black 

curve is significantly above the brown curve. Therefore,  =  .8  with black curve is optimal. In subsequent 

experiments, the value of   was set as 0.8. 

Table 2 Comparison of the network life cycle using different values of λ in various scenarios 

Scenario Life cycle  =    =  .1  =  .   =  .3  =  .4  =  .5  =  .6  =  .7  =  .8  =  .9  = 1 

WSN#1 

FND 36 72 72 73 73 73 73 74 74 62 35 

HNA 45 80 80 80 81 81 81 83 84 86 86 

LND 47 96 196 234 239 252 264 261 254 267 463 

WSN#2 

FND 31 70 73 74 73 75 75 75 76 76 56 

HNA 59 83 83 83 82 82 81 83 83 84 87 

LND 62 108 161 190 218 248 261 299 299 313 437 

WSN#3 

FND 20 43 45 46 46 47 47 51 51 50 46 

HNA 33 57 56 57 58 58 61 63 64 65 63 

LND 36 69 133 161 188 192 214 164 161 170 203 

WSN#4 

FND 17 31 33 45 43 45 46 49 51 51 49 

HNA 56 59 59 60 60 60 60 61 61 64 67 

LND 118 229 262 286 312 328 349 365 385 396 445 

 

 

Fig. 9 Comparisons in terms of the number of living nodes using different values of λ in various scenarios 

6.3 Clustering and Routing Structure 

Fig. 10-15 compares the proposed GECR method with GACR, GALBCA, GAR, LEACH-GA, and ASLPR in 

terms of the clustering and routing structure under the scenario WSN#1. In these figures, the symbol ‘o’ denotes the CH 

node, the symbol ‘*’ denotes the CM node, and the symbol ‘x’ denotes the sink node. The blue line denotes the 

communication between the CMs and their corresponding CHs. The red line denotes the routing between the CHs.  

(b)  WSN#2 (a)  WSN#1 

(c)  WSN#3 (d)  WSN#4 
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Fig. 10 Clustering and routing structure of GECR in WSN#1 

 

Fig. 11 Clustering and routing structure of GACR in WSN#1 

 

Fig. 12 Clustering and routing structure of GALBCA in WSN#1 

 

Fig. 13 Clustering and routing structure of GAR in WSN#1 

(a) GECR Clustering (b) GECR Routing 

(a) GACR Clustering (b) GACR Routing 

(a) GALBCA Clustering (b) GALBCA Routing 

(a) GAR Clustering (b) GAR Routing 
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Fig. 14 Clustering and routing structure of LEACH_GA in WSN#1 

 

Fig. 15 Clustering and routing structure of ASLRP in WSN#1 

From Fig. 10-15, we can draw the following conclusions. Firstly, for GECR in Fig. 10, the CH nodes have almost 

the same number of loads and the CMs are close to their corresponding CHs. Thus, the CH nodes can consume energy 

evenly and the amount of consumed energy for CHs and CMs are small. In addition, the CH nodes transmit data to their 

close CHs without greatly increasing the burden of the next hop nodes. Secondly, for GACR and GALBCA in Fig. 11 

and Fig. 12, the clustering distributions of the two methods are more rambling than GECR. For GALBCA, the distances 

between some CMs and CHs are even longer than half of the edge length. Meanwhile, the two methods calculate the 

optimal routing schedule separately and do not consider the load balancing of routing. Thus, some CHs need to 

consume a large amount of extra energy to receive and transmit data from their previous hop CHs. In this way, the CHs 

cannot consume energy evenly. Thirdly, for GAR, LEACH-GA and ASLPR methods in Fig. 13, Fig. 14 and Fig. 15, 

there exist many single CHs, which do no connect with any CMs. Thus, the data aggregation function of the single CHs 

has been underused. In addition, these three methods have the load imbalance problem, which leads to the uneven 

energy consumption. For the routing result of GAR in Fig. 13(b), the data from the most CHs are transmitted multiple 

hops before reaching the sink node. Too many times of data transmission leads to the increase of drop rate and energy 

consumption. For the routing results of LEACH-GA and ASLPR in Fig. 14(b) and Fig. 15(b), some CHs send their data 

to their next hops, which are farther away from the sink node. In this circumstance, the energy of these CHs will be 

wasted. In conclusion, the proposed method has more appropriate clustering and routing structure.  

6.4 Load Balancing 

Load balancing determines the uniformity of energy consumption and communication load on CH nodes. Fig. 16 

compares the proposed GECR method with GACR, GALBCA, GAR, LEACH-GA, and ASLPR in terms of the 

variance in the number of loads on CHs under different scenarios (WSN#1, WSN#2, WSN#3, and WSN#4). In order to 

make the comparison clearer, we only show the variance in the loads in the algorithms over 20–80 rounds. It should be 

noted that the energy consumption by CHs comprises the energy used for receiving and forwarding the messages in 

previous hops as well as the energy required for receiving message from CMs. In this study, the load on a CH included 

(a) ASLPR Clustering (b) ASLPR Routing 

(a) LEACH_GA Clustering (b) LEACH_GA Routing 
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all of the sensor nodes within the cluster as well as the previous hops for the CH. Fig. 16 shows clearly that the 

variances in the loads were far greater using GAR, LEACH-GA, and ASLPR compared with the other clustering 

algorithms in all the scenarios. Thus, load balancing is not sufficient in GAR, LEACH-GA, and ASLPR. In WSN#1, the 

variances in the loads were similar for GECR and GACR, and they were both less than that using GALBCA. In WSN#2, 

WSN#3, and WSN#4, the variances in the loads were smallest using the proposed GECR method, and the fluctuations 

were relatively stable. The average variances using GECR in WSN#2, WSN#3, and WSN#4 were 0.43, 0.29, and 1.45 

smaller, respectively, than those with the second most optimal algorithm. In all the scenarios, the variances with GECR 

were 20–30 times lower than those when using LEACH-GA and ASLPR. Therefore, load balancing is optimal with the 

proposed GECR algorithm. 

 

 

Fig. 16 Comparisons of GECR with GACR, GALBCA, GAR, LEACH-GA, and ASLPR in terms of load balancing 

6.5 Network Life Cycle 

Fig. 17 compares the proposed GECR with GACR, GALBCA, GAR, LEACH-GA, and ASLPR in terms of the 

number of living nodes under different scenarios (WSN#1, WSN#2, WSN#3, and WSN#4). Fig. 17 clearly shows that 

the failure time and rate of sensor nodes were earlier and faster, respectively, when using GAR, LEACH-GA, and 

ASLPR. In particular, when using LEACH-GA and ASLPR, some nodes were still alive but there were no living nodes 

with the other four algorithms. This difference is mainly because the nodes with more initial energy do not always act as 

CHs in LEACH-GA and ASLPR. Moreover, these two algorithms do not consider the residual energy of sensor nodes. 

Thus, the last living nodes were the nodes with higher initial nodes. Fig. 17(a) shows that the failure rate for sensor 

nodes was slowest with GACR within the period of time when the nodes began to die. However, when more than half 

of the nodes were dead, the failure rate with GACR was significantly faster than that using the proposed GECR. Fig. 

17(c) shows that the number of living nodes was largest when using GALBCA within the short period of time before all 

the nodes dead. However, before this stage, the failure rate with GALBCA was much faster than that when using GACR 

and GECR. In WSN#1 the proposed GECR had the largest number of living nodes after about the 310th round, 

excluding LEACH-GA and ASLPR. In WSN#2 and WSN#3, the failure rate of sensor nodes was slowest most of the 

(a)  WSN#1 (b)  WSN#2 

(c)  WSN#3 (d)  WSN#4 
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time when using GECR. In addition, in WSN#4, the failure time and rate of sensor nodes were the latest and slowest, 

respectively, when using GECR. 

 

 

Fig. 17 Comparisons of GECR with GACR, GALBCA, GAR, LEACH-GA, and ASLPR in terms of the number of living nodes 

 

Table 3 illustrates the network life cycle (FND, HNA, and LND) when using the proposed GECR method, GACR, 

GALBCA, GAR, LEACH-GA, and ASLPR in different scenarios. To compare this metric among the different 

algorithms, the top three values are highlighted in bold in each row of Table 3. The optimal HNA values with GECR 

were always the best results, where they were 2.7% and 21% longer than those using the second most optimal algorithm 

in WSN#2 and WSN#4, respectively. To further compare the network life cycle, the count for each algorithm is shown 

in bold in Fig. 18, which demonstrates that the frequency of the network life cycle was the longest among the different 

Table 3 Comparisons of GECR with GACR, GALBCA, GAR, LEACH-GA, 

and ASLPR in terms of the network life cycle 

Scenario 
Life 

cycle 
GACR GALBCA GAR LEACH-GA ASLPR GECR 

WSN#1 

FND 232 203 51 67 231 192 

HNA 318 291 190 168 253 306 

LND 319 293 221 >350 >350 333 

WSN#2 

FND 197 182 26 59 212 155 

HNA 330 336 180 248 240 345 

LND 335 339 244 >380 >380 372 

WSN#3 

FND 94 88 28 39 161 201 

HNA 229 237 121 150 208 237 

LND 231 252 136 >260 >260 239 

WSN#4 

FND 57 56 14 38 159 206 

HNA 219 216 133 195 190 265 

LND 224 261 143 >270 >270 268 

 

(c)  WSN#3 (d)  WSN#4 

(a)  WSN#1 (b)  WSN#2 

 

Fig. 18 Comparisons of GECR with GACR, 

GALBCA, GAR, LEACH-GA, and ASLPR in 

terms of the network life cycle 
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clustering algorithms. The frequencies for GACR, GALBCA, GAR, LEACH-GA, ASLPR, and GECR were 8, 5, 0, 4, 9, 

and 10, respectively. Therefore, our proposed GECR method has advantages in terms of the network life cycle 

compared with the other clustering algorithms. 

6.6 Energy Consumption 

In the proposed method, the CH nodes that act as gateways are supplied with more energy than the ordinary nodes 

(CM nodes). However, the energy supply is still limited for the CHs. In the network operation process, the CHs need to 

consume more energy than the ordinary nodes during each round. Therefore, reducing the energy consumed by CH 

nodes is an important evaluation criterion for clustering algorithms. In LEACH-GA and ASLPR, the numbers of CHs 

are not fixed in different rounds. Thus, we compared the average energy consumed by the CHs in each round. Fig. 19 

compares the proposed GECR with GACR, GALBCA, GAR, LEACH-GA, and ASLPR in terms of the energy 

consumed by CHs under different scenarios (WSN#1, WSN#2, WSN#3, and WSN#4). Clearly, the energy consumed by 

the CHs was the lowest using GECR in all of the scenarios. The average energy consumption levels in the four 

scenarios were 0.8%, 9.4%, 4%, and 19% lower when using GECR compared with the second most optimal algorithm. 

Therefore, the proposed GECR method has advantages in terms of improving the energy efficiency of the CH nodes. 

 

 

Fig. 19 Comparisons of GECR with GACR, GALBCA, GAR, LEACH-GA, and ASLPR in terms of total energy consumed by CHs 

Fig. 20 compares GECR with GACR, GALBCA, GAR, LEACH-GA, and ASLPR in terms of the energy 

consumed by all nodes during different rounds in four scenarios (WSN#1, WSN#2, WSN#3, and WSN#4). Clearly, the 

energy consumed in each round was highest when using GAR and ASLPR, followed by LEACH-GA, GALBCA, and 

GACR, whereas the proposed GECR method had the lowest energy consumption. Fig. 21 compares GECR with GACR, 

GALBCA, GAR, LEACH-GA, and ASLPR in terms of the total energy consumed by all nodes in all of the previous 

rounds under different scenarios. In all of the scenarios, the curve obtained for the proposed GECR was always below 

the curves for the other algorithms. Therefore, compared with the other clustering algorithms, the proposed GECR 

algorithm had the lowest energy consumption, i.e., 2.6%, 5.6%, 9%, and 14% lower than that by the second best 

algorithm in WSN#1, WSN#2, WSN#3, and WSN#4, respectively, and the average energy consumed by GECR in the 

four scenarios was 28.7%, 40.6%, 27.8%, and 35.8% lower than that by the worst algorithm. Thus, the GECR algorithm 

(a)  WSN#1 (b)  WSN#2 

(c)  WSN#3 (d)  WSN#4 
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has the highest energy efficiency.  

 

 

Fig. 20 Comparisons of GECR with GACR, GALBCA, GAR, LEACH-GA, and ASLPR in terms of the energy consumed by all 

nodes in different rounds 

 

 

Fig. 21 Comparisons of GECR with GACR, GALBCA, GAR, LEACH-GA, and ASLPR in terms of the total energy consumed by all 

nodes in all previous rounds 

(a)  WSN#1 (b)  WSN#2 

(c)  WSN#3 (d)  WSN#4 

(a)  WSN#1 (b)  WSN#2 

(c)  WSN#3 (d)  WSN#4 



ACCEPTED MANUSCRIPT
 

 

6.7 Experimental Results in OMNeT++ 

To validate the experimental results in the MATLAB simulator, we use OMNeT++ simulator to compare the 

proposed method and the GACR method, which is the second optimal method in the MATLAB simulator. OMNeT++ is 

an open source object-oriented modular discrete event network simulator consisting of hierarchically nested modules. It 

occupies a very important position in the field of network simulation and it has been widely adopted in the area of 

WSNs [56-59]. Fig. 22 illustrates the comparisons of GECR with GACR in terms of the total energy consumed by all 

nodes in different rounds by OMNeT++. From Fig. 22, we can see that the proposed GECR method had the lower 

energy consumption than the compared GACR method. Therefore, the experimental results in OMNeT++ simulator and 

the MATLAB simulator have good consistency. 

  

 

  

 

Fig. 22 Comparisons of GECR with GACR in terms of the total energy consumed by all nodes in different rounds by OMNeT++ 

7. Conclusions 

In this study, we proposed a GECR algorithm to calculate globally the total energy consumed by all sensor nodes 

where the algorithm encodes the clustering scheme and routing scheme together in the same chromosome. GECR treats 

the total energy consumed by all nodes as a parameter in the fitness function. In cluster-based WSNs, CHs need to 

transmit the data from the previous hop nodes in addition to the data from the CMs. In the proposed method, we add the 

previous hops to the loads on each CH, which makes the calculation of the load more accurate. Simulation experiments 

indicated that the performance of our proposed algorithm was better than that of other GA-based clustering and routing 

algorithms (GAR, GACR, GALBCA, LEACH-GA, and ASLPR) in terms of load balancing, the network life cycle, and 

energy consumption. With respect to load balancing, the proposed GECR always had the lowest variances in the loads 

on the CHs under different scenarios, where the loads were 20–30 times lower than those when using LEACH-GA and 

ASLPR. In terms of the network life cycle, GECR had the most living nodes at most times. Meanwhile, the HNA values 

were always among the optimal results with GECR. In addition, GECR consumed the smallest amount of energy in all 

of the network rounds. The average amounts of energy consumed by the CHs when using GECR in the four scenarios 

were 0.8%, 9.4%, 4%, and 19% lower, respectively, than those by the second most optimal algorithm, while the average 

amounts of energy consumed by all nodes using GECR in the four scenarios were 28.7%, 40.6%, 27.8%, and 35.8% 

(a)  WSN#1 (b)  WSN#2 

(c)  WSN#3 (d)  WSN#4 
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lower than those by the worst algorithm. In summary, GECR performed well in terms of load balancing, network life 

cycle and energy consumption. In practical applications, sensor nodes are usually energy-constrained, and thus, GECR 

would be more efficient for WSNs with permanent CHs. 

Many metaheuristic algorithms have been developed and applied successfully in WSNs. In future research, we will 

focus on testing and applying suitable metaheuristic algorithms for clustering and routing in WSNs with permanent 

CHs. 

References 

[1] Leu J S, Chiang T H, Yu M C, et al. Energy Efficient Clustering Scheme for Prolonging the Lifetime of Wireless 

Sensor Network With Isolated Nodes[J]. IEEE Communications Letters, 2015, 19(2): 259-262. 

[2] Akyildiz I F, Su W, Sankarasubramaniam Y, et al. Wireless sensor networks: a survey[J]. Computer Networks, 2002, 

38(4): 393-422. 

[3] Ali N A, Drieberg M, Sebastian P. Deployment of MICAz mote for Wireless Sensor Network applications[C]. IEEE 

International Conference on Computer Applications and Industrial Electronics, 2012: 303-308. 

[4] Abbasi A A, Younis M. A survey on clustering algorithms for wireless sensor networks[J]. Computer 

communications, 2007, 30(14): 2826-2841. 

[5] Singh S P, Bhanot K, Sharma S. Critical Analysis of Clustering Algorithms for Wireless Sensor Networks[M].  

Springer Singapore, 2016. 

[6] Heinzelman W R, Chandrakasan A, Balakrishnan H. Energy-efficient communication protocol for wireless 

microsensor networks[C]//System sciences, 2000. Proceedings of the 33rd annual Hawaii international conference on. 

IEEE, 2000: 10 pp. vol. 2. 

[7] Mohapatra N P, Behera S K. Relay Node and Cluster Head Placement in Wireless Sensor Networks[J]. International 

Proceedings of Computer Science & Information Tech, 2012. 

[8] Wang T, Zhang G, Yang X, et al. A Trusted and Energy Efficient Approach for Cluster-Based Wireless Sensor 

Networks[J]. International Journal of Distributed Sensor Networks,2016,(2016-4-10), 2016, 2016: 1-13. 

[9] Yang X S. Nature-Inspired Metaheuristic Algorithms[M]. Luniver Press, 2008. 

[10] Goldberg D E. Genetic Algorithm in Search, Optimization, and Machine Learning[J], 1989, xiii(7): 2104–2116. 

[11] Elhoseny M, Yuan X, Yu Z, et al. Balancing Energy Consumption in Heterogeneous Wireless Sensor Networks 

Using Genetic Algorithm[J]. IEEE Communications Letters, 2015, 19(12): 2194-2197. 

[12] Lai C C, Ting C K, Ko R S. An effective genetic algorithm to improve wireless sensor network lifetime for 

large-scale surveillance applications[C]. Evolutionary Computation, 2007. CEC 2007. IEEE Congress on, 2007: 

3531-3538. 

[13] Rao P C S, Banka H. Energy efficient clustering algorithms for wireless sensor networks: novel chemical reaction 

optimization approach[J]. Wireless Networks, 2015, 23: 1-20. 

[14] Gupta S K, Jana P K. Energy Efficient Clustering and Routing Algorithms for Wireless Sensor Networks: GA 

Based Approach[J]. Wireless Personal Communications, 2015, 83(3): 1-21. 

[15] Gupta S K, Kuila P, Jana P K. GAR: An Energy Efficient GA-Based Routing for Wireless Sensor Networks[C]. 

International Conference on Distributed Computing and Internet Technologies, 2013: 267-277. 

[16] Shokouhifar M, Jalali A. A new evolutionary based application specific routing protocol for clustered wireless 

sensor networks[J]. AEU - International Journal of Electronics and Communications, 2015, 69(1): 432-441. 

[17] Liu J L, Ravishankar C V. LEACH-GA: Genetic Algorithm-Based Energy-Efficient Adaptive Clustering 

Protocolfor Wireless Sensor Networks[J], 2011, 1(1): 79-85. 

[18] Peiravi A, Mashhadi H R, Javadi S H. An optimal energy-efficient clustering method in wireless sensor networks 

using multi-objective genetic algorithm[J]. International Journal of Communication Systems, 2013, 26(1): 114–126. 

[19] Liao Y, Qi H, Li W. Load-Balanced Clustering Algorithm With Distributed Self-Organization for Wireless Sensor 



ACCEPTED MANUSCRIPT
 

 

Networks[J]. IEEE Sensors Journal, 2013, 13(5): 1498-1506. 

[20] Kuila P, Gupta S K, Jana P K. A novel evolutionary approach for load balanced clustering problem for wireless 

sensor networks[J]. Swarm & Evolutionary Computation, 2013, 12: 48-56. 

[21] Kumar V, Jain S, Tiwari S. Energy Efficient Clustering Algorithms in Wireless Sensor Networks: A Survey[J]. 

International Journal of Computer Science Issues, 2011, 8(5). 

[22] Al-Karaki J N, Kamal A E. Routing techniques in wireless sensor networks: a survey[J]. IEEE Wireless 

Communications, 2004, 11(6): 6-28. 

[23] Raja B, Rajakumar R, Dhavachelvan P, et al. A survey on classification of network structure routing protocols in 

wireless sensor networks[C]. IEEE International Conference on Computational Intelligence and Computing Research, 

2017: 1-5. 

[24] Boyinbode O, Le H, Mbogho A, et al. A Survey on Clustering Algorithms for Wireless Sensor Networks[C]. 

International Conference on Network-Based Information Systems, 2010: 2826-2841. 

[25] Rostami A S, Badkoobe M, Mohanna F, et al. Survey on Clustering in Heterogeneous and Homogeneous Wireless 

Sensor Networks[J]. Journal of Supercomputing, 2017. 

[26] Heinzelman W B, Chandrakasan A P, Balakrishnan H. An application-specific protocol architecture for wireless 

microsensor networks[J]. IEEE Transactions on Wireless Communications, 2000, 1(4): 660-670. 

[27] Younis O, Fahmy S. HEED: A Hybrid, Energy-Efficient, Distributed Clustering Approach for Ad Hoc Sensor 

Networks[J]. IEEE Transactions on Mobile Computing, 2004, 3(4): 366-379. 

[28] Batra P K, Kant K. LEACH-MAC: a new cluster head selection algorithm for Wireless Sensor Networks[J]. 

Wireless Networks, 2016, 22(1): 1-12. 

[29] Sohn I, Lee J H, Sang H L. Low-Energy Adaptive Clustering Hierarchy Using Affinity Propagation for Wireless 

Sensor Networks[J]. IEEE Communications Letters, 2016, 20(3): 558-561. 

[30] Lindsey S, Raghavendra C S. PEGASIS: Power-efficient gathering in sensor information systems[C]. Aerospace 

conference proceedings, 2002. IEEE, 2002: 3-3. 

[31] Manjeshwar A, Agrawal D P. TEEN: a routing protocol for enhanced efficiency in wireless sensor networks[C]. 

null, 2001: 30189a. 

[32] Li Q, Zhu Q, Wang M. Design of a distributed energy-efficient clustering algorithm for heterogeneous wireless 

sensor networks[J]. Computer Communications, 2006, 29(12): 2230-2237. 

[33] Singh S, Chand S, Kumar B. Energy Efficient Clustering Protocol Using Fuzzy Logic for Heterogeneous WSNs[J]. 

Wireless Personal Communications, 2016, 86(2): 1-25. 

[34] Elbhiri B, Saadane R, Fldhi S E, et al. Developed Distributed Energy-Efficient Clustering (DDEEC) for 

heterogeneous wireless sensor networks[C]. International Symposium on I/v Communications and Mobile Network, 

2010: 1-4. 

[35] Rajeswari K, Neduncheliyan S. Genetic algorithm based fault tolerant clustering in wireless sensor network[J]. Iet 

Communications, 2017, 11(12): 1927-1932. 

[36] Gupta G, Younis M. Load-balanced clustering of wireless sensor networks[C]. IEEE International Conference on 

Communications, 2003: 1848-1852 vol.3. 

[37] Kuila P, Jana P K. Energy Efficient Load-Balanced Clustering Algorithm for Wireless Sensor Networks [J]. 

Procedia Technology, 2012, 6(4): 771-777. 

[38] Low C P, Fang C, Ng J M, et al. Efficient Load-Balanced Clustering Algorithms for wireless sensor networks [J]. 

Computer Communications, 2008, 31(4): 750-759. 

[39] Mohajerani A, Gharavian D. An ant colony optimization based routing algorithm for extending network lifetime in 

wireless sensor networks[J]. Wireless Networks, 2016: 1-11. 

[40] Singh A, Behal S. Ant Colony Optimization For Improving Network Lifetime In Wireless Sensor Networks[J]. 

Research Cell An International Journal of Engineering Sciences, 2013, 8(June 2013): 1-12. 



ACCEPTED MANUSCRIPT
 

 

[41] Rajeswari K, Neduncheliyan S. Genetic Algorithm based Fault Tolerant Clustering in Wireless Sensor Network[J]. 

Iet Communications, 2017. 

[42] Rejinaparvin J, Vasanthanayaki C. Particle Swarm Optimization-Based Clustering by Preventing Residual Nodes in 

Wireless Sensor Networks[J]. IEEE Sensors Journal, 2015, 15(8): 4264-4274. 

[43] Elhabyan R S Y, Yagoub M C E. Two-tier particle swarm optimization protocol for clustering and routing in 

wireless sensor network[J]. Journal of Network & Computer Applications, 2015, 52: 116-128. 

[44] Kennedy J, Eberhart R. Particle swarm optimization[C]. IEEE International Conference on Neural Networks, 1995. 

Proceedings, 2002: 1942-1948 vol.4. 

[45] Dorigo M, Gambardella L M. Ant colony system: a cooperative learning approach to the traveling salesman 

problem[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53-66. 

[46] Kuila P, Jana P K. Energy efficient clustering and routing algorithms for wireless sensor networks: Particle swarm 

optimization approach[J]. Engineering Applications of Artificial Intelligence, 2014, 33(1): 127-140. 

[47] Jamatia A, Chakma K, Kar N, et al. Performance Analysis of Hierarchical and Flat Network Routing Protocols in 

Wireless Sensor Network Using Ns-2[J]. International Journal of Modeling and Optimization, 2015, 5(1): 40. 

[48] Perkins C, Belding-Royer E, Das S. Ad hoc on-demand distance vector (AODV) routing[R]. 2003. 

[49] Intanagonwiwat C, Govindan R, Estrin D, et al. Directed diffusion for wireless sensor networking[J]. IEEE/ACM 

Transactions on Networking (ToN), 2003, 11(1): 2-16. 

[50] Haas Z, Halpern J Y, Li L. Gossip-based ad hoc routing[J], 2006, 14(3): 479-491. 

[51] Chiti F, Fantacci R, Mastandrea R, et al. A distributed clustering scheme with self nomination: proposal and 

application to critical monitoring[J]. Wireless Networks, 2015, 21(1): 329-345. 

[52] Zhu Z, Zhang G, Li M, et al. Evolutionary Multi-Objective Workflow Scheduling in Cloud[J]. IEEE Transactions 

on Parallel & Distributed Systems, 2016, 27(5): 1344-1357. 

[53] Gherbi C, Aliouat Z, Benmohammed M. An adaptive clustering approach to dynamic load balancing and energy 

efficiency in wireless sensor networks[J]. Energy, 2016, 114: 647-662. 

[54] Handy M J, Haase M, Timmermann D. Low energy adaptive clustering hierarchy with deterministic cluster-head 

selection[C]. International Workshop on Mobile and Wireless Communications Network, 2002: 368-372. 

[55] Raghuvanshi A S, Tiwari S, Tripathi R, et al. Optimal number of clusters in wireless sensor networks: a FCM 

approach[J]. International Journal of Sensor Networks, 2011, 12(1). 

[56] Faye S, Chaudet C. Characterizing the Topology of an Urban Wireless Sensor Network for Road Traffic 

Management[J]. IEEE Transactions on Vehicular Technology, 2016, 65(7): 5720-5725. 

[57] Zhang J, Chen J, Fan J, et al. OMNeT++ based Simulation for Topology Control in Wireless Sensor Network: A 

Case Study[C]. Wireless Communications and Mobile Computing Conference, 2008. IWCMC '08. International, 2008: 

1130-1134. 

[58] Li W, Zhu C, Zhu C, et al. Scheduling and routing methods for cognitive radio sensor networks in regular 

topology[J]. Wireless Communications & Mobile Computing, 2016, 16(1): 47-58. 

[59] Kucuk K, Kavak A, Yigit H. A Smart Antenna Module Using OMNeT++ for Wireless Sensor Network 

Simulation[C]. International Symposium on Wireless Communication Systems, 2007: 747-751. 

 

 

  



ACCEPTED MANUSCRIPT
 

 

Tianshu Wang, was born in Jiangsu Province, China, in 1989. She received her Ph.D. candidate of School of 

Computer Science and Engineering in Nanjing University of Science and Technology in China. She is currently a 

lecturer of School of Information Technology in Nanjing University of Chinese Medicine. Her main research 

interests include embedded system, wireless sensor networks, clustering and routing, and trusted computing. 

Gongxuan Zhang, was born in Jiangxi Province, China, in 1961. He received his Ph.D. in School of 

Computer Science and Engineering from Nanjing University of Science and Technology, Nanjing, China. He is 

currently a professor in the School of Computer Science and Engineering at the Nanjing University of Science and 

Technology. His research interests include cloud computing, trusted computing, wireless sensor networks. 

Xichen Yang, was born in Jiangsu Province, China, in 1989. He received his Ph.D. in School of Computer 

Science and Engineering in Nanjing University of Science and Technology in China. He is currently a lecturer of 

School of Computer Science and Technology in Nanjing Normal University in China. His main research interests 

include Image quality assessment, Image processing and computer vision. 

Ahmadreza Vajdi, was born in Iran, in 1988. He is a Ph.D. candidate of School of Computer Science and 

Engineering in Nanjing University of Science and Technology in China. His main research interests include 

clustering and routing, wireless sensor networks. 

 

 


