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Abstract

Sustained stimulation of G-protein-coupled receptors
(GPCRs) typically causes receptor desensitisation, which is
mediated by phosphorylation, often within the C-terminal
tail of the receptor. The consequent binding of �-arrestin
not only prevents the receptor from activating its G protein
(causing desensitisation), but can also target it for internal-
isation via clathrin-coated vesicles and can mediate
signalling to proteins regulating endocytosis and mitogen-
activated protein kinase (MAPK) cascades. GnRH acts via
phospholipase C (PLC)-coupled GPCRs on pituitary
gonadotrophs to stimulate a Ca2+-mediated increase in
gonadotrophin secretion. The type I GnRH receptors
(GnRH-Rs), found only in mammals, are unique in that
they lack C-terminal tails and apparently do not undergo
agonist-induced phosphorylation or bind �-arrestin; they
are therefore resistant to receptor desensitisation and
internalise slowly. In contrast, the type II GnRH-Rs,
found in numerous vertebrates, possess such tails and show
rapid desensitisation and internalisation, with concomitant
receptor phosphorylation (within the C-terminal tails) or
binding of �-arrestin, or both. The association with
�-arrestin may also be important for regulation of dy-
namin, a GTPase that controls separation of endosomes
from the plasma membrane. Using recombinant adeno-
virus to express GnRH-Rs in Hela cells conditionally
expressing a dominant negative mutant of dynamin
(K44A), we have found that blockade of dynamin-
dependent endocytosis inhibits internalisation of type II

(xenopus) GnRH-Rs but not type I (human) GnRH-Rs.
In these cells, blockade of dynamin-dependent internal-
isation also inhibited GnRH-R-mediated MAPK acti-
vation, but this effect was not receptor specific and
therefore not dependent upon dynamin-regulated
GnRH-R internalisation. Although type I GnRH-Rs do
not desensitise, sustained activation of GnRH-Rs causes
desensitisation of gonadotrophin secretion, and we have
found that GnRH can cause down-regulation of inositol
(1,4,5) trisphosphate receptors and desensitisation of Ca2+

mobilisation in pituitary cells. The atypical resistance of
the GnRH-R to desensitisation may underlie its atypical
efficiency at provoking this downstream adaptive response.
GnRH-Rs are also expressed in several extrapituitary sites,
and these may mediate direct inhibition of proliferation of
hormone-dependent cancer cells. Infection with type I
GnRH-R-expressing adenovirus facilitated expression of
high-affinity, PLC-coupled GnRH-R in mammary and
prostate cancer cells, and these mediated pronounced
antiproliferative effects of receptor agonists. No such effect
was seen in cells transfected with a type II GnRH-R,
implying that it is mediated most efficiently by a non-
desensitising receptor. Thus it appears that the mammalian
GnRH-Rs have undergone a period of rapidly accelerated
molecular evolution that is of functional relevance to
GnRH-Rs in pituitary and extrapituitary sites.
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Introduction

Gonadotropin-releasing hormone (GnRH) is a neuro-
peptide that acts via G-protein-coupled receptors
(GPCRs) on gonadotrophs to control the secretion and
synthesis of luteinising hormone and follicle-stimulating
hormone (Conn & Crowley 1994, Stojilkovic & Catt
1995, Sealfon et al. 1997). The peptide first discovered

(pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2) is
designated GnRH I, or simply GnRH, but most verte-
brates express at least two forms. Typically, the highly
conserved chicken GnRH-II (cGnRH-II or simply
GnRH II) is found along with one or more additional
forms of the peptide, and these distinct forms may play
different physiological roles (e.g. regulation of reproduc-
tion and neuromodulation). The different forms of GnRH
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have apparently evolved in parallel with distinct forms of
the GnRH receptor (GnRH-R), and the known receptors
can be broadly divided into two groups (Sealfon et al.
1997). The type I GnRH-Rs have greater affinity for
GnRH-I than for GnRH-II and do not possess
C-terminal tails; this group contains all known mammalian
GnRH-Rs except for the recently described primate type
II GnRH-R (Millar et al. 2000, 2001, Neill et al. 2001a).
Type II GnRH-Rs have greater affinity for the GnRH-II
and possess C-terminal tails of varying length; this group
contains all the known receptors from non-mammalian
vertebrates (catfish, goldfish, chicken, goldfish, Xenopus,
etc.) in addition to the type II primate GnRH-Rs. Types
I and II GnRH-Rs show considerable sequence homology
in a number of key areas (Troski et al. 2000), including
conserved disulphide bridges between the first and second
extracellular loops, and conservation of amino acids impli-
cated in ligand binding and effector coupling. There are,
however, important structural differences: for example,
type I GnRH-R function is dependent upon interacting
asparagine and aspartate residues in transmembrane regions
II and VII (Asn87 and Asp318 in the hGnRH-R), but these
are not conserved in type II GnRH-R (where aspartic acid
may be found in both positions). Nevertheless, the most
striking feature is the absence of C-terminal tails in type I
GnRH-R (Fig. 1). Such tails are present in all other
cloned GPCRs, and are crucial for receptor coupling and
regulation. Their absence from type I mammalian
GnRH-R implies that these receptors have undergone a
(relatively) recent period of rapidly accelerated molecular
evolution, and provides a unique opportunity for compara-
tive studies investigating GPCR structure and function
within the context of normal (non-mutated) receptors.
The purpose of this review is to outline the roles attributed
to C-terminal tails of GPCRs and the likely functional
consequences of their absence or presence in GnRH-Rs.

Functional roles of GPCR C-terminal tails

GPCRs act via heterotrimeric G proteins to regulate
effector proteins including phospholipase C (PLC) and
adenylyl cyclase. On sustained or intense stimulation,
GPCR-mediated responses typically desensitise. De-
sensitisation is defined as a waning of response in the
presence of a constant, or repeated, stimulus; adaptive
responses at the level of the receptor provide the most
rapid and well described cause of such desensitisation
(Zhang et al. 1997, Ferguson 2001). Activation of GPCRs
is typically followed by their desensitisation and internal-
isation, and these processes involve receptor phosphory-
lation (Fig. 2). This phosphorylation is stimulated by
agonist binding, is typically rapid (seconds to minutes) and
may be mediated by specific G-protein receptor kinases
(GRKs), by second messenger-regulated kinases (e.g.
protein kinase C (PKC) or PKA), or by casein kinases
(Tobin et al. 1997, Hanyaloglu et al. 2001). For many
GPCRs, this phosphorylation facilitates or stabilises the
association with �-arrestin, which stearically hinders
G-protein binding and thereby prevents effector activation
(Zhang et al. 1997, Ferguson 2001). As this effect is
seen within seconds to minutes, and is specific to the
activated receptor, it is termed rapid homologous receptor
desensitisation, or simply receptor desensitisation.

�-Arrestin also acts as an adapter, targeting desensitised
GPCRs for internalisation (Goodman et al. 1996, Ferguson
2001). GPCRs are internalised from the cell surface by
endocytosis, most often via clathrin-coated vesicles
(CCVs). The formation of these vesicles is typically
controlled by a dynamin collar, which separates the vesicle
from the plasma membrane by pinching off (or stretching)
the neck of the vesicle (Schmid 1998). After internalis-
ation, the receptors are either recycled to the cell surface or
targeted to lysosomes for degradation. In addition to

Figure 1 C-terminal amino acid sequences of 10 cloned GnRH-Rs, aligned according to the putative seventh transmembrane regions
(bold). The C-terminal sequences of all known type I receptors (e.g. cow, pig, rat, sheep, horse, dog, marmoset type I and possum) are
identical to those of the mouse and human. In contrast, all cloned type II receptors have C-terminal tails with potential phosphorylation
sites. Sequences from PubMed (nucleotide).
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GPCRs, �-arrestins bind several proteins involved in
receptor cycling and signalling. Indeed, �-arrestins are
believed to function as scaffolds, mediating the assembly of
a complex including the GPCR and a number of proteins
(Lefkowitz 1996, Miller & Lefkowitz 2001) controlling
endocytic receptor internalisation (such as activator protein
(AP)-2 and clathrin) and proteins mediating mitogen-
activated protein kinase (MAPK) activation (such as Src).
These last proteins are of particular interest, because it now
appears that mechanisms previously thought of in terms of
switching receptor signalling off may actually be switching
between two distinct modes of receptor signalling, because
a receptor desensitised in terms of heterotrimeric
G-protein activation may actually be activated in terms
of �-arrestin-mediated MAPK activation. Binding and
activation of �-arrestin involve association with several
sites on GPCRs (Ferguson 2001), but the amino acids
phosphorylated to facilitate �-arrestin binding are most
often located within the C-terminal tail of the GPCR.
This region is therefore believed to have a crucial role in
agonist-stimulated desensitisation, internalisation, down-
regulation and �-arrestin-mediated signalling.

Functional relevance of C-terminal tails in
GnRH-Rs

It has long been known that that sustained exposure to
GnRH causes desensitisation of GnRH-stimulated
gonadotrophin secretion and that this is associated
with receptor down-regulation and internalisation of
GnRH-Rs via coated pits (Jennes et al. 1983, 1986, Conn
et al. 1987). Indeed, exploitation or avoidance of such
effects is crucial for the clinical applications of GnRH
analogues (Barbieri 1992, Conn & Crowley 1994). It
had therefore been anticipated that desensitisation and
internalisation of GnRH-R would follow the model
depicted in Figure 2, but this proved not to be so. As
GnRH-Rs are coupled via Gq/11 to PLC�1, their activity
can be measured by quantification of [3H]inositol
phosphate (IP) accumulation (in cells pre-labelled with
[3H]inositol and stimulated in the presence of LiCl).
When GnRH-stimulated [3H]IP accumulation was
measured in the gonadotroph-derived �T3-1 cell line
(Davidson et al. 1994), the initial rate of [3H]IP accumu-
lation was maintained for at least 90 min. As such
accumulation is typically not maintained beyond 1 min
with desensitising receptors, these data implied that the
endogenous murine GnRH-Rs of these cells do not
desensitise rapidly. GnRH also caused a sustained increase
in inositol (1,4,5) trisphosphate (IP3) and a sustained
reduction in phosphatidylinositol bisphosphate (PIP2) mass
in these cells, in contrast to the transient responses typically
seen with receptors that do desensitise rapidly (Willars
et al. 1998). Moreover, the resistance of these receptors to
desensitisation is clearly a consequence of receptor struc-

ture (rather than cell type), because type I GnRH-Rs have
subsequently been shown not to desensitise in numerous
systems (McArdle et al. 1995, 1996, 1999, Heding et al.
1998, 2000, Forrest-Owen et al. 1999, Willars et al. 1999,
2001, Hislop et al. 2000, Neill et al. 2001b), whereas other
GPCRs have been shown to desensitise rapidly in �T3-1
cells (McArdle et al. 1996, Evans et al. 1997, McArdle &
Forrest-Owen 1997, Willars et al. 1998).

The obvious question raised by the lack of desensitis-
ation of these endogenous type I GnRH-Rs is whether
this can be attributed to the lack of the C-terminal tail.
Unlike type I GnRH-Rs, [3H]IP responses mediated by
catfish GnRH-R do rapidly desensitise (Heding et al.
1998, Blomenrohr et al. 1999, Willars et al. 1999), and
these receptors undergo agonist-induced phosphorylation
within the C-terminal tail. They also mediate agonist-
induced translocation of green fluorescent protein (GFP)-
tagged �-arrestin from the cytosol to the plasma mem-
brane. Such translocation provides a marker for receptor
activation and phosphorylation. Moreover, the internal-
isation of these receptors is slowed by removal of a
phosphate acceptor site from the C-terminus (Blomenrohr
et al. 1999) and accelerated by increasing expression of
�-arrestin. Thus it appears that these type II GnRH-Rs
undergo agonist-induced phosphorylation with conse-
quent �-arrestin binding, desensitisation and targeting of
the desensitised receptors for internalisation via CCVs, as
outlined in the general model (Fig. 2). In contrast, rat
GnRH-Rs do not desensitise rapidly, and do not undergo
agonist-induced phosphorylation or cause �-arrestin–GFP
translocation. They do show agonist-induced internalis-
ation, but this is much slower and is not influenced
by expression of �-arrestin (Heding et al. 1998, 2000,
Vrecl et al. 1998, Willars et al. 1999). When the
C-terminal tail of the catfish GnRH-R was added to the
rat GnRH-R, this chimeric receptor did show agonist-
induced phosphorylation and rapid desensitisation (Willars
et al. 1998). The lack of desensitisation, phosphorylation
and �-arrestin translocation with type I GnRH-R stands
in apparent contrast to studies showing that over-
expression of GRKs or �-arrestin can inhibit GnRH-
stimulated IP3 responses in (COS) cells (Neill et al. 1998)
and that over-expression of a GRK can inhibit GnRH-
stimulated gonadotrophin secretion from primary cultures
of pituitary cells (Neill et al. 1999). However, it is
important to recognise that these inhibitory effects were
seen at all time points and without the change in temporal
profile expected if receptor desensitisation (and the
consequent waning of response) had been stimulated. This
is in stark contrast to classic studies of �2-adrenergic
receptors in which desensitisation was revealed by the
diminution of rates of cAMP accumulation during
stimulation, and prevention of receptor phosphorylation
prevented the waning of the response on maintained
stimulation (Liggett et al. 1989). Thus, although type I
GnRH-R signalling can be inhibited by GRK or
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�-arrestin expression, this inhibition does not necessarily
reflect enhanced or accelerated receptor desensitisation
(Neill et al. 1998).

Although other GnRH-Rs have not been extensively
compared, we have found that human GnRH-Rs are
resistant to desensitisation, internalise slowly and do not
cause �-arrestin–GFP translocation, as compared with
xenopus GnRH-Rs, which desensitise and internalise
rapidly (Hislop et al. 2000) and do translocate �-arrestin/
GFP (Fig. 3). Most of our own comparative work has been
performed using recombinant adenovirus containing
GnRH-R DNA, a system that facilitates expression of

these receptors at defined density in �T4 cells (a gonado-
troph lineage cell line lacking endogenous GnRH-R).
This has enabled us to establish that the functional
distinctions between these type I and type II GnRH-Rs
(differing propensity for desensitisation and internalisation)
are maintained in gonadotroph-lineage cells, do not reflect
differences in receptor density (below) and are observed in
the presence of physiological receptor numbers (Hislop
et al. 2000). Finally, a type II primate GnRH-R recently
was shown to desensitise under conditions in which a type
I human GnRH-R did not (Neill et al. 2001a). Thus,
although other features may well prove relevant, the

Figure 2 Rapid homologous desensitisation and cycling of G-protein-coupled receptors (GPCRs) – general model. (1) Agonist (A) binding
stabilises the receptor conformation that activates the heterotrimeric G-protein which, in turn, activates its effector(s) (E). (2) The active
receptor conformation is a preferred substrate for phosphorylation (e.g. by a G-protein receptor kinase (GRK)), which facilitates binding
of �-arrestin (�-ARR). This prevents further G-protein activation. (3) The �-arrestin has recognition sites for clathrin, AP-2 and various
kinases, in addition to distinct sites for binding to phosphorylated and unphosphorylated sites within the GPCR. Binding to clathrin and
AP-2 targets the �-arrestin-bound (desensitised) receptor for internalisation via clathrin-coated vesicles (CCVs). (4) The vesicle is pinched
off from the membrane by a dynamin collar (D), yielding a CCV containing GPCRs. These may remain complexed (via �-arrestin) to other
signalling proteins after internalisation. (5) and (6) Coat proteins are removed from the CCV and the uncoated vesicle fuses with early
endosome. During these processes, the ligand dissociates from the receptor, the GPCR-associated proteins are removed, and the GPCR
is dephosphorylated. The control and sequence of these events is poorly understood, although dephosphorylation may involve specific
GPCR phosphatases (GRP). (7) and (8) The dephosphorylated GPCR is then cycled (via transport vesicles) to the lysosome for
degradation (receptor down-regulation) or to the plasma membrane (resensitisation). P, phosphate.
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existing data are consistent with the suggestion (Davidson
et al. 1994) that absence of C-terminal tails in type I
GnRH-Rs underlies their atypical resistance to desensitis-
ation. Moreover, as primates may express type I and type
II receptors (Millar et al. 2000, 2001, Neill et al. 2001a),
these functionally distinct receptors may exist in the same
species and cells.

Desensitisation downstream of the GnRH-R

GnRH-stimulated gonadotrophin secretion shows pro-
nounced desensitisation, whereas type I mammalian
GnRH-Rs do not. Accordingly, desensitisation of
GnRH-stimulated GnRH secretion must reflect down-
stream adaptive responses, and gonadotrophs may well
provide a unique opportunity for investigation of such
responses, in the absence of receptor desensitisation. In
exploring this, we have found that sustained stimulation
of �T3-1 cells with GnRH causes a pronounced
desensitisation of Ca2+ responses (McArdle et al. 1995,
1996). In control cells, GnRH causes a spike–plateau
type increase in the cytosolic [Ca2+]I concentration in
which the spike phase reflects IP3-mediated mobilisation
of Ca2+ from intracellular stores and the plateau phase
reflects entry of Ca2+ across the plasma membrane
(McArdle et al. 1992), as previously reported for primary

cultures of rat pituitary cells (Naor et al. 1988). Focusing
on the mobilisation of intracellular Ca2+, we observed a
relatively rapid desensitisation of GnRH-stimulated Ca2+

mobilisation (Fig. 4). As this occurs in the absence of
receptor desensitisation and is not attributable to
depletion of the intracellular Ca2+ pool, it appears to
reflect a reduction in the efficiency with which IP3
mobilises Ca2+ from this pool (McArdle et al. 1996).
This effect was associated with, and apparently
dependent upon, a GnRH-stimulated reduction in the
number of IP3 receptors (IP3-Rs) (Willars et al. 2001).
Sustained activation of several PLC-activating GPCRs
has been shown to cause IP3-R down-regulation, an
effect attributed to the ligand-stimulated ubiquitinylation
and consequent proteolysis of the activated IP3-R
(Wojcikiewicz & Oberdorf 1996, Zhu & Wojcikiewicz
2000). However, this effect is typically slow and modest
as compared with the pronounced and rapid effect of
GnRH (e.g. 80% reduction within 20–30 min). Thus it
appears that this receptor, which is atypically resistant to
desensitisation, is atypically efficient at provoking this
novel form of post-receptor desensitisation (Willars et al.
2001). It is important to recognise, however, that the
relevance of this effect to desensitisation of gonado-
trophin secretion has not been established. Other
effects (such as depletion of releasable gonadotrophin
pools, down-regulation of GnRH-R and inhibition of

Figure 3 GnRH-R mediation of �-arrestin translocation. As agonist-induced phosphorylation of GPCRs facilitates or stabilises the binding
of �-arrestin, the consequent translocation of �-arrestin–green fluorescent protein (GFP) fusion proteins to membranes containing
GPCRs can be used as a marker for receptor activation, phosphorylation and desensitisation. The Figure shows confocal images of
COS-1 cells transfected with �-arrestin–2-GFP and either xenopus GnRH-Rs (type II receptor, left panel) or human GnRH-Rs (type I
receptor, right panel) at 0, 5, 10 and 15 min (a–d) after stimulation with GnRH (human GnRH-R) or cGnRH-II (xenopus GnRH-R). Note
that the type II receptor mediates �-arrestin translocation, whereas the type I receptor does not.
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gonadotrophin synthesis) may well prove to be more
important for long-term desensitisation of gonadotrophin
secretion in vivo.

�-Arrestin-mediated GPCR signalling

As noted above, �-arrestins can act as scaffolds, facilitating
the interaction of phosphorylated GPCRs with other
regulatory proteins (Lefkowitz 1996, Miller & Lefkowitz
2001). The �-arrestin-mediated coupling of GPCRs to
clathrin, AP-2 and N-ethylamide sensitive factor (NSF)
directs GPCRs for internalisation via CCVs, and the
binding to kinases such as c-Jun N-terminal kinase, ASK1,
Src, extracellular-signal regulated kinase (ERK) and Raf
can mediate MAPK signalling in a heterotrimeric
G-protein-independent manner (Lefkowitz 1996, Miller
& Lefkowitz 2001). These effects may be interrelated,
because Src-mediated phosphorylation of dynamin can be
requisite for receptor internalisation (Luttrell et al. 2001)
and blockade of dynamin-dependent receptor internalisa-
tion can inhibit GPCR-stimulated MAPK activation
(Daaka et al. 1998). The implication is not only that the
‘desensitised’ receptor may actually signal via �-arrestin,
but also that it may continue to do so after receptor
internalisation. Such signalling may differ (quantitatively
and qualitatively) from that of the cell surface receptor
(Vieira et al. 1996). Such observations prompted us to
compare ERK2 phosphorylation mediated by human and
xenopus GnRH-R in Hela cells (Hislop et al. 2001). This

revealed no difference in amplitude or time-course of
response, so it is unlikely that �-arrestin mediates signifi-
cant xenopus GnRH-R-mediated MAPK activation in
this system. Indeed, ERK2 activation in �T3-1 cells is
largely attributed to PKC activation (Naor et al. 2000),
and kinetics of the response are determined largely by
phosphatase activation (Zhang et al. 2001). This may
therefore hold true for responses to both receptors in Hela
cells.

Because �-arrestin-mediated recruitment of Src may
also underlie activation of dynamin (Lefkowitz 1996,
Miller & Lefkowitz 2001), the dynamin-dependence of
GnRH-R internalisation has also been explored by
expression of GnRH-Rs and GTPase-deficient mutants of
dynamin, which can act as dominant negatives, inhibiting
dynamin-dependent receptor internalisation (Vieira et al.
1996, Heding et al. 2000). In COS cells, co-transfected
with GnRH-R and a GTPase-deficient mutant of
dynamin (Heding et al. 2000), the mutant had a more
pronounced inhibitory effect on the internalisation of
catfish GnRH-R than on that of rat GnRH-R (e.g.
approximately 67% and 23% inhibition at 60 min respect-
ively). Using recombinant adenovirus to express human
and xenopus GnRH-R in Hela cells conditionally express-
ing the same dominant-negative mutant (K44A) of
dynamin (Hislop et al. 2001), we have obtained similar
results, except that the internalisation of the type I receptor
was uninfluenced by prevention of dynamin-dependent
internalisation (Fig. 5). Thus it appears that the C-terminal
tail not only facilitates agonist-induced �-arrestin trans-
location, but may also target the receptor for dynamin-
dependent internalisation, precisely as expected if
�-arrestin mediates communication between the receptor
and dynamin (Miller & Lefkowitz 2001). Recent studies
have demonstrated that inhibition of dynamin can reduce
GnRH-stimulated ERK activation in �T3-1 cells
(Bernard et al. 2001), and we have found that the
dominant-negative K44A dynamin inhibits ERK2 phos-
phorylation mediated by human or xenopus GnRH-R.
This occurs in spite of the fact that the dynamin mutant
only inhibits internalisation of the xenopus GnRH-R
(Hislop et al. 2001) and this uncoupling clearly implies that
the dynamin-dependence of ERK2 activation is unrelated
to dynamin-dependent receptor internalisation. Indeed, it
most probably reflects the dynamin-dependence of Ras
activation, as shown in �T3-1 cells (Bernard et al. 2001) or
of MAPK kinase signalling to ERK2 (Kranenburg et al.
1999). We have also found that the ERK2 activation
stimulated by a protein kinase C-activating phorbol
ester is inhibited by K44A dynamin (Hislop et al. 2001),
confirming that the site of dynamin dependence lies
distal to the GnRH-R and is therefore not specific to
receptor-mediated responses.

The implication of the data above is that type I
GnRH-Rs not only have reduced rates of desensitisation
and internalisation, but may also have a reduced repertoire

Figure 4 Desensitisation of Ca2+ responses in pituitary cells. Main
panel: Cytosolic Ca2 concentration, measured by video imaging
in �T3-1 cells stimulated (bar), with 10�7 M GnRH. In control
cells (�), GnRH caused a characteristic spike–plateau type
response, but in cells pretreated for 60 min with 10�7 M GnRH
(�), the spike response was lost and the plateau phase was
reduced. Inset: The relationship between duration of pretreatment
and amplitude of the spike response on subsequent stimulation.
From McArdle et al. 1996, with permission.
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of signalling possibilities, as compared with type II recep-
tors. Although type I GnRH-Rs would not be expected
to signal via �-arrestin, it seems likely that �-arrestin-
mediated signalling to dynamin occurs with type II
GnRH-Rs. �-Arrestin-mediated signalling to MAPK
could conceivably also occur with type II GnRH-Rs, but
has not yet been demonstrated. Indeed, heterotrimeric
G-protein-mediated signalling to MAPK pathways may
well mask any gross differences in �-arrestin-mediated
MAPK signalling via type I and type II GnRH-Rs
(Fig. 6).

GnRH-Rs in hormone-dependent cancers

GnRH and GnRH-Rs are also found in many gonadal
steroid-dependent cancers, including those of the breast,
endometrium, prostate and ovary (Eidne et al. 1985, Miller
et al. 1985, Emons et al. 1993, 1997, 1998, Emons &
Schally 1994, Imai et al. 1997, Limonta et al. 1999, 2001,
Schally 1999, Schally & Nagy 1999, Imai & Tamaya 2000,
Grundker et al. 2001). Interest in these receptors stems
primarily from the fact that GnRH analogues and cyto-
toxic derivatives of GnRH analogues can inhibit prolifer-
ation of cancer-derived cell lines, suggesting that such
direct effects may contribute to the beneficial effects of
GnRH analogues in cancer therapy. Although GnRH-R
transcripts detected in various cancer cells are identical to
those of the pituitary (Kakar et al. 1994), the receptors may
differ functionally. In binding studies, pituitary GnRH-Rs
have high affinity for agonists such as buserelin (nM Kd
values), whereas the majority of GnRH-Rs in extra-
pituitary sites have low affinity (µM Kd values). Pro-
nounced differences in signalling and ligand specificity
have also been reported. Whereas GnRH-Rs in gonado-
trophs act via Gq/11 to stimulate PLC, and via PKC to
stimulate MAPK, those in ovarian and endometrial cancer
cell lines appear not to activate PLC and, in the presence
of epidermal growth factor (EGF), actually inhibit ERK
phosphorylation (Emons et al. 1997, 1998). Although
GnRH-Rs are believed not to activate Gi in gonado-
trophs, a Gi-mediated activation of protein tyrosine phos-
phatase(s) may underlie antiproliferative effects of GnRH
analogues in human cancer cells (Grundker et al. 2001).
Moreover, the antiproliferative effects of GnRH-R
agonists in some cancer cell models can be mimicked by
analogues that are competitive antagonists at pituitary
GnRH-Rs (Emons et al. 1997, 1998), suggesting that the
agonist/antagonist dichotomy established for pituitary
GnRH-Rs may not apply in extrapituitary sites.

With the wide range of models and responses explored,
it is difficult to generalise about mechanisms of action, but
there are three obvious possibilities. The first is that
GnRH-R activation is inhibitory, such that activation of
this receptor slows cancer cell proliferation. This is perhaps
the most intriguing possibility, because of the major
differences reported between GnRH-Rs and response
characteristics in pituitary and extrapituitary sites. This
interpretation requires that the GnRH-R displays extreme
context- or density-dependence, and begs the question of
the molecular reasons for such dependence. The second
possibility is that locally produced GnRH actually
stimulates cancer cell proliferation, and that this is pre-
vented by GnRH-R antagonists or by down-regulation
with agonists. This provides a simple explanation for
inhibition of cancer cell proliferation by antagonists, but is
only applicable where endogenous agonist is known to
support proliferation. The third possibility is that effects of
GnRH analogues are mediated by additional forms of the

Figure 5 Dynamin dependence of GnRH-R internalisation.
Receptor internalisation was measured by radioligand binding
(37 �C) in K44A Hela cells transfected (infection with recombinant
adenovirus) with either human GnRH-R (type I, hGnRH-R) or
xenopus GnRH-R (type II, XGnRH-R). These cells express a
dominant-negative mutant of dynamin (K44A) under control of the
tet-off system: when cultured with tetracycline, they do not
express the transgene, but dynamin-dependent internalisation can
be inhibited simply by omitting the tetracycline. Internalisation of
the hGnRH-R (upper panel) was relatively slow in control cells (�)
and was not influenced by omission of tetracycline (�), whereas
internalisation of the XGnRH-R (lower panel) was rapid in control
cells (�) and was dramatically reduced when dynamin-dependent
internalisation was blocked (�). Data from Hislop et al. 2001, with
permission.
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GnRH-R (or related receptors). The recently cloned
primate type II GnRH-R is the obvious candidate,
because it is expressed outside the pituitary and because of
the known differences in ligand specificity between pri-
mate type I and II GnRH-Rs (Millar et al. 2000, 2001,
Neill et al. 2001a). Moreover, it has been shown that
antagonists of type I GnRH-Rs can act as agonists at
type II GnRH-Rs (Sun et al. 2001).

We have begun to examine the possible context-
dependence of GnRH-R signalling by comparing responses
of pituitary GnRH-Rs with those in cell lines derived from
hormone-dependent cancers. In human breast cancer cells
(MCF-7), we have found too few endogenous GnRH-Rs
for pharmacological characterisation and no effect of GnRH
(or analogues) on proliferation of control cells (Everest et al.
2001). In contrast, when recombinant adenovirus was used
to express type I GnRH-Rs, they were pharmacologically
indistinguishable from those in the pituitary and were able
to mediate pronounced antiproliferative effects of GnRH-R
agonists (Fig. 7). We have subsequently obtained similar
results in several hormone-dependent cancer cell lines

(T47D, PC3, Du145 and Ishikawa; data not shown). This
effect may be specific for extrapituitary GnRH-R, because
we have observed no inhibition of proliferation by GnRH
in gonadotroph-derived �T3–1 cells (Schomerus et al.
1994), although others have found that (-Lys6)GnRH
inhibits the proliferation of these cells (Kakar et al. 1997).
This peptide also inhibits proliferation of human embryonic
kidney cells transfected with human GnRH-Rs (Kakar
1998), demonstrating that GnRH-R-mediated inhibition of
proliferation is not confined to hormone-dependent cancer
cells.

Although such studies can clearly not reveal the
mechanism of action of any endogenous GnRH-R in
hormone-dependent cancer cells, they have unambigu-
ously demonstrated that such cells are capable of expressing
high-affinity GnRH-Rs that can distinguish between
agonists and antagonists, are positively coupled to PLC and
ERK2, and do mediate inhibition of proliferation (Everest
et al. 2001). Interestingly, inhibition of proliferation in
these mammary cancer cells requires sustained stimulation
with agonists and would therefore be expected to be

Figure 6 Possible GnRH-R signalling modes. It is important to recognise that type I GnRH-R would not be expected to show
�-arrestin-mediated signalling. Only the first of these modes of signalling has been established for any GnRH-R, and the second and third
could presumably only be available to type II receptors. Thus the molecular evolution of these receptors may well have dramatically limited
their signalling repertoire. (1) G-protein-mediated signalling. In pituitary gonadotrophs, the heterotrimeric G-protein is Gq/11 and the effector
is PLC�1. This cleaves phosphatidylinositol 4,5-bisphosphate (PIP2), producing inositol trisphosphate (IP3), which mobilises Ca2+ and
thereby acutely regulates exocytosis. It also yields diacylglycerol (DAG), which activates PKC, feeding in to mitogen-activated protein kinase
(MAPK) regulation and consequent regulation of gene expression. (2) �-Arrestin-mediated signalling. Receptor phosphorylation facilitates
�-arrestin binding. The �-arrestin acts as a scaffold, mediating effects on proteins regulating endocytosis and on kinases in MAPK pathways.
One of these (Src) may also control dynamin-dependent endocytosis. (3) �-Arrestin-mediated signalling after internalisation. Proteins on the
�-arrestin scaffold may continue to signal after internalisation, providing a mechanism for cellular compartmentalisation of signalling. For
other receptors, signals carried by the plasma membrane and internalised receptors can differ both quantitatively and qualitatively (Vieira
et al. 1996). A, agonist; P, phosphate.
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susceptible to modulation by receptor desensitisation.
Indeed, we have found that GnRH-II can inhibit
mammary cancer cell proliferation by virtue of its
cross-reactivity at a type I GnRH-R, but fails to do so in
cells expressing a type II (xenopus) GnRH-R, in spite of
its greater affinity for the latter receptor and the greater
levels of expression of xenopus GnRH-R achieved in
these experiments (data not shown). The implication is
that the lack of desensitisation of endogenous GnRH-R
may be essential for such direct antiproliferative effects,
and that endogenous desensitising type II receptors
would therefore be unlikely to mediate inhibition of
proliferation.

Overview

The GnRH-Rs appear to have undergone a relatively
recent period of rapidly accelerated molecular evolution
that may have been important for the development of
mammalian reproductive strategies, and the unanticipated
characteristics of these receptors have provided unique
opportunities for investigation – notably, the opportunities
to explore the relationship between receptor structure and
function, within the context of normal (non-mutated)
GPCRs, and to study post-receptor adaptive mechanisms
(in the absence of receptor desensitisation). Although
relatively few GnRH-Rs have been investigated in detail,
the available data imply that type II GnRH-Rs follow the

general scheme outlined in Figure 2, whereas type I
GnRH-Rs do not, and that the presence or absence of
C-terminal tails is the major functional determinant of this
dichotomy. We are now faced with a number of funda-
mental questions, including (a) what are the physiological
roles of the type II GnRH-R, (b) how are type I
GnRH-Rs targeted for �-arrestin-independent but CCV-
mediated internalisation, (c) does the binding to �-arrestin
increase the range of signalling pathways regulated by type
II GnRH-Rs, and (d) does the resistance of type I
GnRH-Rs to desensitisation leave them particularly suited
as targets for inhibition of proliferation in hormone-
dependent cancer cells? Clearly, a great deal is yet to be
learned from study of these unique GPCRs.
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