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Abstract: The present paper proposes a multiphase flow approach for capturing the time-resolved collapse course of bubble clusters 
in various geometrical configurations. The simulation method is first verified by computing the dynamic behavior of an isolated 
vapor bubble placed in a uniform ambient pressure. The comparison between the numerical result and the theoretical solution 
indicates that the method can accurately capture the bubble shape, the characteristic time and the extremely high pressure induced by 
the collapse. Then the simulation method is applied to investigate the behavior of two kinds of bubble clusters in hexagonal and cubic 
geometrical configurations. The predicted collapsing sequence and the shape characteristics of the bubbles are generally in agreement 
with the experimental results. The bubbles transform and break from the outer layer toward the inner layers. In each layer, the 
bubbles on the corner first change into a pea shape and cave before collapsing, then the bubbles on the sides begin to shrink. It is also 
found that, in comparison with the case of an isolated single bubble, the central bubble in the cluster always contracts more slowly at 
the early stage and collapses more violently at the final stage. 
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Introduction 
Cavitation often occurs in a wide range of hydrau- 

lic devices when the static pressure in the fluids drops 
greatly due to the local high speed. The cavitation ero- 
sion effect is caused by the cyclic impact loads of the 
bubble cluster collapse acting on the tiny area of the 
solid surface in a very short time. The cavitation ero- 
sion was extensively studied, especially, experimenta- 
lly. It has been a common sense that the internal stru- 
cture of the bubble cluster inside the cavitation cloud 
and its collapse process should be more precisely stu- 
died, if one intends to go further in the erosion mecha- 
nism research. However, the microscopic scale of the 
bubbles makes experimental techniques impractical in 
studying the interaction between the bubbles in the 
course of collapse. 

In these days, numerical approaches are playing a 
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key role in the bubble cluster dynamics investigation. 
A great deal of numerical studies of the bubble evolu- 
tion were based on solving the Rayleigh-Plesset equa- 
tion or its modified forms[1,2]. In the cavitating flows, 
the local vapor fraction often exceeds the dilute limit 
and the Rayleigh-Plesset equation does not hold true. 
Therefore the bubble-bubble interaction is an impor- 
tant effect in the bubble flows, as shown by the studies 
of Seo et al.[3]. Also, some studies concentrated on 
how the collapse of the neighboring bubbles is affected 
by their conjunct interaction[4]. Nevertheless, the bu- 
bble dynamics equations alone are not enough to well 
resolve the interaction between the bubbles. 

The boundary element method (BEM) based on 
the inviscid fluid model was widely used for the com- 
putation of the bubble dynamics and the bubble-boun- 
dary interaction in axisymmetric cases[5-7] and in full 
3-D geometric configurations[8,9]. In the multiphase 
flow framework, the mixture models based on the ma- 
croscopic conservation laws coupled with simplified 
bubble equations were used to simulate the bubble 
cluster behavior[10]. The most essential issue for such 
methods is the technique of capturing the bubble sur- 
faces, such as with the VOF method, the level-set me- 
thod, and the front-tracking method. They were used 
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to study dilute bubbly flows and were shown to be 
capable of resolving the flow features. The radial dyna- 
mics of the bubbles in compressible fluids were also 
studied extensively[11-14], where the main focus is on 
the final stage of the collapse. Recently, Zhang et al.[15] 
developed a complete model for studying the mutual 
interaction between cavitation bubbles with the effects 
of liquid compressibility fully included. 

In this paper, the multiphase flow approach based 
on the homogeneous cavitation model is used to cap- 
ture the collapse course of the bubble clusters in va- 
rious geometrical configurations. The primary objec- 
tive is to investigate the dynamic behavior of the 
bubble clusters during their collapse and the intera- 
ction between the bubbles. 
 
 
1. Multiphase flow approach 
 
1.1 Volume fraction function 

In the traditional bubble dynamics approach, the 
differential equation for the bubble size or even its 
spatial distribution function is directly solved, the resu- 
lts obtained are not field-resolved and the bubble sur- 
face is regarded as a discontinuous interface. In real 
flows, the finite distance between the bubbles and the 
non-symmetric environment invalidate the basis upon 
which the bubble dynamics equation is founded. Fur- 
thermore, the deformation of the bubbles is hard to be 
taken into account in the traditional way. 

This shortcoming can be overcome by using the 
multiphase flow approach. The transient location and 
shape of each bubble surface in the cluster are inter- 
polated from the vapor’s volume fraction function, 

( , )t r , which denotes the local proportion of the 

vapor phase inside the liquid/vapor mixture at the coo- 
rdinates r  and at any given instant t . The distribu- 
tion of ( , )t r  in the 3-D domain is directly resolved 

and can be written as: 
 

00 ( , )t  r  inside bubble                (1a) 

 

0( , ) =t r  bubble surface                  (1b) 

 

0 ( , ) 1t  r  outside bubble               (1c) 

 
where 0 (0,1)   is a selected value which determines 

the geometry of the bubble surfaces. 
In another way, the discrete bubble surface   

encircling any vaporous region can be instantaneously 
constructed from the continuous distribution of ( , r  

)t : 
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  n                            (2) 
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2
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                                  (3) 

 
where 0  is not required to be explicitly specified. 

Equation (2) reveals the fact that the gradient of 
( , )t r  across the bubble surface always vertically 

points out. Numerous contour lines of   can be 
determined in this way. Using Eq.(3) we can select the 
most reasonable contour line from those described by 
Eq.(2). This is because that the change rate of / n   
along the radial direction of any bubble reaches its 
inflection point in the middle of the density transitional 
region around the bubble interface. Therefore a middle 
surface for the bubble is picked out through Eq.(3). 
Additionally, the influence of the interaction between 
the bubbles on the bubble shapes is also directly obser- 
ved. 
 
1.2 One-fluid homogeneous model 

The volume fraction function ( , )t r  is governed 

by a phase change process suggested by Zwart et al.[16], 
and is derived from the Rayleigh-Plesset bubble dyna- 
mics equation. A transport equation of the volume fra- 
ction is solved, where the mass transfer between the 
liquid and vapor phases is modeled through the evapo- 
ration and condensation source terms: 
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= + (1 )v l                             (7) 
 

= + (1 )v l                             (8) 
 

where eC  and cC  are the empirical constants, which 

are chosen as 50 and 0.01, respectively, 0  denotes 

the initial void fraction of the water due to the dissol- 
ved gas nucleus, and BR  denotes the nucleus radius. 

With this model, the evolution of the bubble sha- 
pes is computed according to the time-dependent dyna- 
mic equilibrium between the non-uniform ambient pre- 
ssure outside any bubble and the vapor pressure inside 
the bubble. When the local ambient pressure p  be- 

comes lower than the vapor pressure vp , the evapora- 

tion source described in Eq.(5) works. In this way, the 
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outer liquid close to the bubble may be turned into 
vapor. The different source intensities distributed 
along the entire bubble surface produce the 3-D shape 
of the bubble during its expansion. On the other hand, 
when the relation vp p  holds, the condensation sou- 

rce in Eq.(6) works and the bubble is changed in the 
opposite direction. 
 
 
2. Mathematical model and equations 
 
2.1 Governing equations for bubble cluster simulation 

The present study considers the dynamic behavior 
of the bubbles of initial radius in the millimeter scale. 
For the collapsing bubbles placed in an initially sta- 
tionary pressure field, the induced flow is assumed to 
be entirely in the laminar state, therefore, the turbu- 
lence effect is not required to be modeled. 

To simulate the evolution of the bubble clusters 
in any geometrical configuration with the one-fluid 
homogeneous model, the laminar Navier-Stokes equa- 
tions are to be solved: 
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where   and   denote the density and the viscosity 

of the two-phase mixture, respectively, to be calcula- 
ted by Eqs. (7) and (8). The gravity effect is neglected 
because it is one order of magnitude smaller than the 
pressure and viscous effects, especially, while the bu- 
bble radius tends to zero. 

Additionally, many experiments indicated that, an 
extremely high temperature can be produced inside 
the bubble at the final stage of collapse. Thus the ene- 
rgy conservation is coupled into the model to consider 
the thermal effect 
 

( )( ) 1 d
+ = + + +

d
j

j p j j

u TT T P
K T q

t x C x x t

  
    
         

 

(11) 
 
where   denotes the dissipation term in the energy 

equation, and   is the thermal expansion coefficient, 

which is equal to 1/T  for an ideal gas. 
The specific heat and the thermal conductivity of 

the mixture are also evaluated as the arithmetic means 
between the liquid and the vapor values: 
 

, ,( ) = ( ) + (1 ) ( )p p v p lC T C T C T              (12) 

 
( ) = ( ) + (1 ) ( )v lK T K T K T                (13) 

 
The vapor density inside the bubble responds to 

the local pressure, which may change several orders of 
magnitude during the bubble evolution. An ideal gas 
law is employed for the vapor phase. Additionally, to 
make the pressure-velocity correction algorithm exe- 
cutable, an auxiliary parameter is used to link the den- 
sity and the pressure, as follows 
 

= =v

p
C p

RT                             (14) 

 
2.2 Bubble dynamics model and formulation 

The bubble dynamics equation was established 
by Rayleigh and Plesset in the last century for the 
behavior of an isolated bubble in a uniform ambient 
pressure 
 

3

2 0
0

3 2
+ = + 4

2l v g

R S R
RR R p p p

R R R



 
           

   

(15) 
 

where R  denotes the radius of the bubble, p  denotes 

the ambient pressure far away from the bubble, 0gp  

denotes the initial partial pressure of the air inside the 
bubble, and S  denotes the surface tension coefficient. 
In the equation, the effect of the viscosity, the surface 
tension or the air content inside the bubble can be neg- 
lected in different situations to acquire the respective 
approximate solution. 

The change rate of the radius can be obtained by 
integrating the Rayleigh equation, for which only the 
pressure term in the right hand side of Eq.(15) is con- 
sidered. The following is the ultimate normalized ex- 
pression in the Rayleigh theory: 
 

3
0

d 1 2 1
= 1

d 3
v

l

p pr

t R r
     

 
               (16) 

 

0

=
R

r
R

                                  (17) 

 

where 0R  denotes the initial radius of the bubble in 

equilibrium. 
Zhang et al.[17] provided an approximate analytic 

relation between the radius and the time. If the dimen- 

sionless quantity 3= 1 r   is substituted into 
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Eq.(16), we have 
 

1/ 6 1/ 6
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The term 
1/ 6(1+ ) 

 in the above equation is close 

to unity due to the range [0,1]  . Thus if this term 

is replaced by its mean value 0.94, Eq.(18) can be in- 
tegrated to obtain an explicit expression of the radius 
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 (19) 

 
This expression will be used in the following 

study to verify the numerical simulation result of the 
collapse of a single bubble. 
 
 
3. Numerical strategy 

The numerical strategy is based on the pressure- 
based segregated solver developed using the node-cen- 
tered finite volume method, accelerated by an alge- 
braic multigrid (AMG) method, to solve the governing 
equations with a fully implicit discretization at any 
given time step. A SIMPLE-type coupling correction 
method for arbitrary Mach number is employed, where 
the correction equation of the pressure contains the 
convective and unsteady terms, i.e., we have a con- 
vected wave equation. 

Experiments and mathematical deductions[18-21] 
both indicate that the speed of sound in the bubbly flow 
is reduced to several meters per second, much lower 
than that in single phases. Thus the local Mach num- 
ber in the entire field will distribute in a wide range. 
At a low Mach number, the Laplacian term in the 
correction equation dominates and it is reduced to the 
Poisson equation. At a high Mach number, the con- 
vective term dominates, reflecting the hyperbolic na- 
ture of the flow. Thus the coupling correction method 
automatically adjusts the local nature of the flow and 
the same method can be applied to the entire flow. 

A least squares cell-based evaluation method 
using the Gram-Schmidt process is used to compute 
the gradients of the variables appearing in the gover- 
ning equations. 
 
3.1 Spatial and temporal discretizations 

The governing equations in the integral form are 
used in the finite volume method. To help describe the 
algorithm, the equation of the scalar   ( u , v , w , 

T  and  ) on any computational cell with the volume 
V  restricted by its faces with the outward area vector 

A , can be written in the half-discretized form as 

Faces Faces

( )
+ ( ) ( ) = ( )P

P

V S V
t 
             

 u A A

(20) 
 

A second order upwind scheme is used to calcu- 
late the convection in the momentum equation. The 
QUICK scheme is used when solving the volume fra- 
ction equation describing the evolution of the bubble 
cluster. These convective terms are treated by using a 
deferred correction approach, where the convective 
term is written as the hybrid of an implicit upwind 
scheme (UDS) and the higher-order convection (HOC) 
schemes explicitly calculated from the variables obtai- 
ned in the last iteration. This treatment has advantages 
in both the computational robustness and the numeri- 
cal accuracy. 
 

UDS IMP. HOC UDS EXP.
Face = ( ) + ( )               (21) 

 
The third-order accuracy will automatically be 

achieved when the iteration is converged. Some itera- 
tive algorithms fail to converge when being applied to 
the algebraic equation system. This is because the ma- 
trix may not be diagonally dominant. In our study, we 
obtain an algebraic equation having strictly diagonally 
dominated matrix. The implicit part of the convective 
term can be split into two parts: 
 

UDS ( )c c P c NBF F F                    (22) 

 

( )d NB P

A
F

N

                            (23) 

 
where cF  denotes the mass flux through one of faces 

on the cell, and dF  denotes the diffusive flux. The cF   

and cF   denote the outward and inward mass fluxes. 

The continuity equation can be written in a half- 
discretized form as 
 

++ [( + ) ]= 0P c c P
P

V F F
t

     
           (24) 

 
A second order implicit transient formulation is 

used in the time-dependent computation, to achieve a 
relatively accurate capture for the bubble collapse. The 
scheme is discretized as 
 

+3 1 1
= 2 +

2 2
t t t t t
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              
         (25) 

 
By substituting these Equations into Eq.(20), the 

linearized algebraic equation for the variable   is ob- 

tained as 
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( ) =P P NB NB PB               (26) 

where the coefficient matrix is diagonally dominated 
as shown below: 

3
= + +

2P P c

V A
F

t N

    
   
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      (28) 

3.2 Pressure-velocity-density coupling Algorithm 
Two basic computational procedures are adopted 

at every step within the iteration cycle of the time step 
+t t . First the discretized momentum equation is 

solved by iteration, as shown below for the iteration 
step n  

1 1
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where 1

i

n
uB   denotes the source term minus the contri- 

bution of the pressure. 
As n

iu  and 1n   do not satisfy the mass conser- 

vation condition, a coupling correction procedure for 
the pressure, the velocity and the density fields is ado- 

pted. The equation for the imbalance quantity nQ  is 

as follows 

1 + 1 +

Faces

( ) ( ) + [( ) ] =n t t t n t t n n
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V
u A Q

t
            (30) 

where iA  denotes the normal area vector of the face. 

The discretized continuity equation and the corre- 
ctions for the variables are: 
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1= +n np p p  (34) 

The approximate relations between the correctio- 
ns for the quantities are 
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= C p  (36) 

By combining all equations from Eqs.(29) throu- 
gh (36), with the higher order quantities neglected, the 
final coupling correction equation is obtained as 
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 

(37) 

The corrections for the pressure, the velocity and 
the density can be ultimately computed using this 
equation and the compressibility relation between   
and p , then the corrections of the velocity and the 

density can be obtained. 

4. Collapse of isolated single bubble
First of all, we have verified the simulation me- 

thod by computing the dynamic process of an isolated 
vapor bubble placed in a stationary uniform pressure 
field. The typical size of the bubble in the cavitating 
flow is less than 1 mm, and the duration of collapse of 
the bubble of 1 mm in radius under an external pre- 
ssure of one bar is about 0.1 ms. We put this bubble in 
the center of a cubic computational domain with the 
length of each side being 20 mm. 

Fig.1 The computational meshes for a single bubble placed in 
uniform pressure field 

The configurations of the computational domain 
and the meshes are shown in Fig.1. The volume occu- 
pied by the initial bubble is cut out in a spherical shape 
and is divided into six blocks of structured meshes. 
The center of the sphere is embedded with a micro 
cube divided into Cartesian meshes with a minimal 
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cell size of 0.5 m. The rest of the domain is filled 
with the tetrahedral unstructured meshes. The number 
of the total computational nodes is 6.8105. 

A zero velocity is initialized in the whole domain, 
and a uniform pressure of 510  Pa is set outside the 
bubble with an initial pressure = 3540 Pavp . A con- 

stant pressure 
5= 10 Pap  is specified on the outside 

boundary of the domain. Since the shrinkage of the 
bubble keeps accelerating during the collapse, the time 

step of a variable size is employed from 6= 10 st   

at the initial stage to 8=10 st   at the final stage of 

the collapse. 
The simulated variation process of the bubble 

shape is shown in Fig.2. The numerical result reflects 
the primary feature described by the bubble dynamics 
theory that, the bubble contracts slowly at the early 
stage and collapses violently to disappear at the final 
stage. The characteristic time and the time history of 
the bubble radius are verified quantitatively. The resu- 
lts are shown in Fig.3, in comparison with the theore- 
tical solution and the approximate formula in Eq.(19). 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2 (Color online) A series of snapshots of bubble shapes 

during the collapse 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3 Time histories of the non-dimensional bubble radius 
 

In this figure the bubble radius is normalized by 
the initial radius, 0 = 1 mmR . It is indicated that there 

is almost no difference between the results of the 
Rayleigh-Plesset equation with any effect neglected or 
not. Also, our numerically predicted radius is accepta- 
ble compared with the theoretical ones, especially the 

acceleration trend in the collapse period and the so- 
called Rayleigh time which is the total time duration 
of the collapse. The Rayleigh time obtained in our 
study is about = 90 sRT  , very close to the 91.5 s 

predicted by the theory. 
According to the bubble dynamics theory with 

neglect of the fluid viscosity, the distribution of pre- 
ssure coefficient outside the bubble can be calculated 
as 
 

3 34
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  (38) 

 
where R  denotes the bubble radius at any instant, and 
r  is the local radial coordinate from the center of the 
bubble. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4 Comparison between the numerical and analytical pressu- 

re distributions outside the bubble at several instants 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5 Capturing of the extremely high pressure around the colla- 

pse moment 

 
Figure 4 shows the comparison between the 

numerically obtained pressure represented by the lines 
and the analytical ones represented by the symbols. It 
is indicated that the numerical method can provide a 
good prediction for the focusing process of the high 
pressure during the collapse period. The deviation be- 
tween the parts of the relatively low pressure on the 
curves is due to the fact that the fluid viscosity is con- 
sidered in the numerical solution. The curves in Fig.5 
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reflect the fact that the extremely high pressure up to 
thousands of atmospheric pressure around the collapse 
moment can be well captured by our numerical simu- 
lation. 
 
 
5. Bubble cluster in planar configuration 

Subsequently, we simulate the evolution of a clu- 
ster of 37 bubbles placed in a planar hexagon configu- 
ration as shown in Fig.6. Bremond et al.[22] produced 
this multi-bubble system using a negative pressure 
pulse on a silicon plate with micro-cavities, and inve- 
stigated the dynamic behavior of this bubble cluster. 
To compare with their experimental results, the initial 
size of each bubble in our simulation is 0 =R   

0.0667 mm, and the interval between the centers of 
two neighboring bubbles is = 0.2 mmr . 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.6 Configuration of the planar bubble cluster composed of 

37 bubbles 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.7 Computational meshes for the planar bubble cluster 
 

The bubbles shown in Fig.6 can be classified into 
6 types according to their respective positions marked 
by the “A1”, “A2”, “B1”, “B2”, “C”, and “D”. Since 
the configuration of the bubble cluster is symmetrical 
about the central bubble, the fluid area is divided and 
only one eighth of it is adopted as the computational 
domain, thus three symmetrical boundaries are emplo- 
yed, as shown in Fig.7. The structure of the meshes 
inside the bubbles is similar to that in the single bu- 
bble situation. The space between the bubbles is filled 
with unstructured meshes with a smooth transition of 
mesh fineness. The pressure on the outside boundary 

is also set as 5= 10 Pap . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.8 Numerically simulated evolution of the planar hexagonal 

bubble cluster 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.9 Experimental photos of the shapes of the planar hexagon 

bubble cluster during its collapse 
 

The evolution of the bubble cluster is success- 
fully simulated, and the shapes of the bubbles at some 
typical moments are shown in Fig.8, in comparison to 
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Fig.10 (Color online) A series of snapshots of the course of pressure focusing induced by the collapse of the bubble cluster 
 
the experimental photos in Fig.9 taken by Bremond et 
al.[22]. The predicted collapsing sequence and the shape 
characteristics of the bubbles are generally in agree- 
ment with the experimental results. The life period of 
the bubble cluster is around = 12 sRT  , much shorter 

than 55 s, the Rayleigh time of a single bubble with a 

size similar with the bubble cluster, viz. 0 0.6 mmR  . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.11 Time-variation of the pressure distribution along the dia- 

gonal line of the haxagon through the bubble centers 
 

A primary tendency during the collapse is as 
follows: the bubbles deforms and breaks from the 
outer layer “A” toward the inner layers “B”, “C” and 
“D”. In each of the layers, the bubble on the corner of 
the hexagon collapses first, as marked by the “A1” 
and “B1” in Fig.6. Then the bubbles at each side of 
the hexagon begin to shrink, indicated by the “A2” 

and “B2”. Each bubble on the outer layer transforms 
into a pea shape before it collapses completely, but the 
inner bubbles do not experience such process. The bu- 
bble on the center of the cluster contracts along with 
the evolution of the outer bubble as well, but the con- 
traction is slower than that in the single bubble case. 
However it collapses more violently after all bubbles 
outside it have disappeared. 

The evolution of the bubble cluster induces the 
variation of the transient pressure distribution, which 
conversely affects the behavior of the bubbles until 
they collapse. The pressure field as well as the bubble 
shapes at some typical instants are presented in Fig.10. 
The filled contours in each picture only represent the 
pressure scope at the corresponding instant, not gene- 
rally. It is clear that the peak pressure first appears next 
to the corner bubble around the instant of = 7.5 st  . 

Then the bubbles collapse layer by layer, and the high 
pressure appears close to the side bubbles and the cor- 
ner bubbles alternately. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.12 Comparison of the time history of bubble radius for the 

cases of central bubble in cluster and isolated single bu- 
bble 

 
In Fig.11, the pressure distribution along one of 

the diagonal lines of the bubble cluster is picked out to 
analyze the time-variation in the course of the collapse. 
A high pressure peak on the curve is induced around 
the collapse moment of any bubble. The pressure in- 
side the cluster, especially at the location between two 
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neighboring bubbles, keep rising as a whole accom- 
panying with the inward moving of the pressure peak. 

The speed-up effect of the central bubble colla- 
psing can be clearly seen in Fig.12, as compared with 
the case of a single bubble. As is verified in Section 4. 

Fig.13 Computational meshes for the cubic bubble cluster 

Fig.14 Numerically simulated evolution of the cubic bubble 
cluster 

6. Bubble cluster in cubic configuration
The numerical study is extended to the condition 

of a cluster of bubbles distributed in a spatial area. We 
consider the case of 27 bubbles arranged in a cubic 
shape. Due to the symmetry of the fluid area, we take 
one eighth of the area as the computational domain, 
whose meshes are shown in Fig.13. 

The simulated evolution of the cubic bubble clu- 
ster is shown in Fig.14, where the interaction between 
the bubbles make each bubble at different positions to 
transform its shape in order. The bubbles on the corner 
of the cube are caved greatly along with its shrinkage. 
Although the bubbles on the side or the face center of 
the cube also suffer a large pressure outside them, they 
are just flattened rather than caved inwards. 

7. Conclusions
This study adopts a multiphase flow simulation 

approach based on the homogeneous cavitation model 
and its corresponding numerical methods to capture 
the time-resolved collapse process of the bubble clu- 
sters in various geometrical configurations. 

The simulation method is firstly verified by com- 
puting the dynamic behavior of an isolated vapor bu- 
bble placed in a stationary uniform pressure field. The 
comparison between the numerical result and the theo- 
retical solution indicates that the method can provide 
an accurate capturing for the collapse process, the cha- 
racteristic time and the extremely high pressure indu- 
ced by the collapse. 

Then the numerical simulation method is applied 
to investigate the behavior of two kinds of bubble clu- 
sters in hexagonal and cubic geometrical configura- 
tions. The predicted collapsing sequence and the shape 
characteristics of the bubbles are generally in agree- 
ment with the experimental results. The bubbles tran- 
sform and break from the outer layer toward the inner 
ones. In each layer, the bubbles on the corner first 
change into a pea shape and cave before collapsing, 
then the bubbles on the sides begin to shrink. It is also 
found that, in comparison with the case of an isolated 
single bubble, the central bubble in the cluster always 
contracts more slowly at the early stage and collapses 
more violently at the final stage. 
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