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ABSTRACT

In signal processing systems, aliasing is normally treated
as a disturbing signal. That motivates the need for effec-
tive analog, optical and digital anti-aliasing filters. How-
ever, aliasing conveys also valuable information on the sig-
nal above the Nyquist frequency. Hence, an effective pro-
cessing of the samples, based on a model of the input signal,
would allow to virtually increase the sampling frequency
using slower and cheaper converters. In this paper, we pre-
sent such an algorithm for bandlimited signals that are sam-
pled below twice the maximum signal frequency. Using a
subspace method in the frequency domain, we show that
these signals can be reconstructed from multiple sets of sam-
ples. The offset between the sets is unknown and can have
arbitrary values. This approach can be applied to the cre-
ation of super-resolution images from sets of low resolution
images. In this application, registration parameters have to
be computed from aliased images. We show that parameters
and high resolution images can be computed precisely, even
when high levels of aliasing are present on the low resolu-
tion images.

1. INTRODUCTION

In general, we say that a signal can be perfectly reconstructed
from its samples if it is bandlimited and the sampling fre-
quency satisfies the Nyquist criterion, i.e. it is larger than
twice the maximum signal frequency. If the signal is not
bandlimited or the sampling frequency is too low, the sam-
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pled signal is aliased, and perfect reconstruction is not pos-
sible.

Vetterli et al. [1] showed that perfect reconstruction is
also possible for signals with finite rate of innovation. Cer-
tain types of non-bandlimited signals (like streams of Diracs,
piecewise polynomials, etc.) can be reconstructed from a fi-
nite set of samples. Vaidyanathan [2] considers some other
sampling schemes for non-bandlimited signals, like the use
of different sampling kernels. An overview of the current
state in sampling is given by Unser [3].

In this paper, we derive some results for bandlimited sig-
nals that are sampled below twice the maximum frequency
of the signal. We will use multiple sets of regular samples
to reconstruct the original signal exactly. A similar problem
for discrete-time signals is solved by Marziliano et al. [4]
using combinatorial optimization methods.

2. PROBLEM STATEMENT

We define x(t) as a periodic, bandlimited and continuous-
time signal with period 1 and maximum frequency L (since
we consider a Fourier series L is integer). Its continuous
time Fourier series is called X [l] (with −L ≤ l ≤ L).

x(t) is regularly sampled at frequency K, with K integer-
valued. This results in a discrete-time signal y0[n] = x[n/k].
Its discrete-time Fourier transform Y0[k] can be represented
as a function of the continuous-time Fourier coefficients X [k]
as

Y0[k] =
∞
∑

i=−∞

X [k + iK] with −

⌊

K

2

⌋

≤ k ≤

⌊

K − 1

2

⌋

.

(1)
Y0[k] is a periodic signal with period K, so it is sufficient if
we only look at one period of this signal.

If we want to reconstruct x(t) from its samples, we need
to know its Fourier coefficients X [k]. If the sampling fre-
quency satisfies the Nyquist criterion (K > 2L), X [k+ iK]



is only different from zero for i = 0 and

Y0[k] = X [k] with −

⌊

K
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⌋

≤ k ≤

⌊

K − 1

2

⌋

. (2)

However, if the Nyquist criterion is not satisfied (K ≤ 2L),
the copies of the continuous spectrum overlap in the sam-
pled spectrum. In equation (1) X [k + iK] is nonzero for
multiple values of i and therefore the Fourier coefficients
X [k] of the continuous signal cannot be derived immedi-
ately.

Now we take a second (regular) set of samples y1[n] at
the same sampling rate K, with an unknown offset t1 from
the first set y0[n]: y1[n] = x

(

n
K

+ t1
)

with t1 ∈ [0, 1).
Again, we can write its Fourier coefficients Y1[k] as a func-
tion of X [k]:

Y1[k] =

∞
∑

i=−∞

W k+iK
t1

X [k + iK]

= W k
t1

∞
∑

i=−∞

W iK
t1

X [k + iK],

(3)

with Wα = ej2πα and −bK/2c ≤ k ≤ b(K − 1)/2c. This
gives us K new equations in X [k], but it adds also a new
unknown t1.

We can reformulate equation (1) and (3) using vector
notation and using the period from 0 to K − 1 instead of
−K/2 to K/2:
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(4)

with tm the relative offset from the set y0[n] (t0 = 0) and
m the index of the sample set (0 ≤ m < M ). Because the
original signal x(t) is bandlimited, X(i+1)K−1

iK 6= 0 only for
a finite number S of values i:

−

⌊

L + K − 2

K

⌋

≤ i ≤

⌊

L − 1

K

⌋

(5)

with bxc the largest integer value smaller than x. This al-
lows us to compute S as

S =

⌊

L + K − 2

K

⌋

+

⌊

L − 1

K

⌋

+ 1. (6)

We can now make the important observation that the
modified sets of samples D

−1
m Ym are all linear combina-

tions of a set of S vectors X
(i+1)K−1
iK . Intuitively, it can

already be seen that by taking the number of sampling sets
M large enough, we will have enough equations to compute
the Fourier coefficients X [k] as well as the unknown offsets
tm.

3. SOLUTION USING SUBSPACES

3.1. Offset estimation

As mentioned before, the modified sets of Fourier coeffi-
cients of the samples are linear combinations of S vectors
X

(i+1)K−1
iK . Therefore, they belong to an S-dimensional sub-

space of the K-dimensional space and the subspace matrix

Y=
[

Y0 D
−1
1 Y1 · · · D

−1
M−1YM−1

]
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(7)

has rank S (if M ≥ S). We assume here that the rank is not
lower than S, meaning that there are no two sets of samples
with offsets ti, tj for which (ti − tj)K ∈

�
. This would be

a degenerate case, because two such sets contain the same
samples.

If the number of sampling sets M is at least S + 1, it
is possible to find the relative offsets as the set of parameter
values for which the (S + 1)-th singular value of Y equals
zero.

3.2. Computation of the Fourier coefficients

Once the relative offsets tm are known, it is very easy to
compute the Fourier coefficients X [k] of the original sig-
nal. Each of the equations in (3) is an equation in at most S
unknown Fourier coefficients. Because we have M ≥ S+1
sets of samples, there are also S + 1 such equations in the
same unknowns. Therefore, the unknown Fourier coeffi-
cients are the solution of a linear set of equations.

4. INTERPRETATION

The unknown matrices D
−1
m by which the vectors Ym are

multiplied, are rotation matrices. They do not modify the



energy in the different vectors (or equivalently, the Frobe-
nius norm of the matrix Y), but they rather align the diffe-
rent vectors such that they are contained in the S-dimensio-
nal subspace.

As described in Section 3, we are looking for the t1,
t2,..., tM−1 for which the (S + 1)-th singular value is 0.
Next to the global minimum, this function has also many
local minima. It is not possible to apply a standard mini-
mization algorithm (like gradient descent) to the problem,
because it will get stuck in one of the local minima. A pos-
sibility would be to compute the (S+1)-th singular value on
a regular grid of KS values and apply a nonlinear minimiza-
tion algorithm to the minimum of those values. Obviously,
for large values of S, this is unfeasible.

(a) Variation over two offsets.
0 20 40 60 80 100 120

200

400

600

800

1000

1200

1400

1600

1800

2000

(b) Variation over one offset.

Fig. 1. Third singular value for different offset values, with
S = 2 (different values for the two offsets (a), and different
values for the second offset if the first is known(b)). This
function has many local minima, which makes it difficult to
find the global minimum. The gray level indicates the value
(white stands for high values, black for zero). The values
have been scaled down for display purposes.

It is therefore very important to understand the struc-
ture that is present in this multivariate function. As we look
at the (S + 1)-th singular value as a function of the diffe-
rent tm (see Figure 1 for an example with S = 2), we can
also see distinct horizontal, vertical and diagonal lines that
go through the global minimum at the intersection of the
horizontal, vertical and diagonal lines. These lines corre-
spond to an alignment of Y0 and Y1, Y0 and Y2, and Y1

and Y2, respectively. As these lines can be observed in the
plots, they indicate that it is often possible to find most of
the pairwise registrations independently, using arbitrary va-
lues for the other tm’s.

5. COMPUTATIONAL ISSUES

5.1. Offset estimation

The minimization of the (S + 1)-th singular value of Y

can also be seen as a search for the values of tm (m =

1, 2, ..., S) for which
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is rank deficient. Instead of computing singular values, we
can then also simply compute the determinant of A. This
will require much less computations, but it will also be nu-
merically less stable, as we do not use all of the available
information.

A more stable solution is to compute the smallest eigen-
value of A, and thus its smallest singular value using the in-
verse power method as described by Strang [5]. Due to the
fact that the (S + 1)-th singular value is much smaller than
the S-th singular value, this method converges very fast. It
requires only a few iterations in which a linear system with
matrix A has to be solved.

5.2. Computation of the Fourier coefficients

The set of equations from which the Fourier coefficients are
computed, is generally overdetermined. Therefore, it is bet-
ter to use the least squares solution of the equations. This is
the optimal solution when the measurements are perturbed
by additive Gaussian noise.

We assume that the offset-related values (tm mod 1/K)
are uniformly spread over the interval [0, 1/K). This means
that not all sample sets Ym are at almost the same posi-
tion, because this will make the reconstruction problem very
badly conditioned. The samples would be periodically very
close to each other, leaving large gaps with no information
in between.

6. APPLICATION: SUPER-RESOLUTION

Super-resolution imaging is one of the typical applications
we think of. The goal of super-resolution is to reconstruct a
high resolution image from a set of low resolution images of
the same scene [6]. If the low resolution images are aliased
(which would typically be the case if no special processing
is performed), we can apply our algorithm to it.

The idea described for one-dimensional signals in the
previous sections can be easily extended to two (or more)
dimensions. The offset is now a combination of a horizon-
tal and a vertical shift between the images. Of course, the
computational issues mentioned in Section 5 become even
more important here, as the minimum number of images for
a (minimally) aliased image is five, instead of three for one-
dimensional signals. A result with this algorithm is shown
in Figure 2.



Fig. 2. Results of the super-resolution algorithm. The
(255x255) original image is perfectly reconstructed (right)
from a set of five low resolution (128x128) images (left).

7. DISCUSSION AND FUTURE WORK

The algorithm described above can be applied to any type of
aliased bandlimited signals, for which different sets of sam-
ples are taken. The undersampling factor can be estimated
from the evolution of the different singular values of the
modified measurement matrix. We can build a matrix from
all the sampled sets, compute the singular value decomposi-
tion for different offsets and check for which S σS � σS+1.
This determines the minimum number of sampling sets re-
quired for offset estimation and signal reconstruction.

As previously stated, this idea relies totally on the pre-
sence of the signal energy beyond the Nyquist frequency
in the measured signal. If this signal energy (aliasing) has
been removed from the signal prior to the measurement, the
information is irremediably lost and the algorithm will not
bring any improvements.

Most real signals are not periodic, but have finite extent
(or they are sampled over a finite range). Our method can
still be applied to such signals, by using the periodic exten-
sion of the signals. In that case, there are non-overlapping
parts at the borders. It would be very interesting to study the
performance of our method for different amounts of overlap
between the different signals.

Our method performs well under noisy conditions. This
could be expected, as the singular value decomposition is an
algorithm that is not very sensitive to noise. Using a least
squares method, the same is true for the reconstruction. This
noise insensitivity is important in practice, as (almost) all
signal measurements will be corrupted by noise.

Throughout this paper, we assumed sampling using a
Dirac sampling kernel. No impulse response or point spread
function was taken into account. This is a good approxi-
mation for real systems, as long as the signals are sampled
at (relatively) precise locations. As soon as the impulse
response becomes important (e.g. averaging over a certain
time/area) we also need to take it into account. This can be
done by multiplying X [k] by H [k] in all the equations. The

effect of the sampling kernel can then be cancelled at the
end by dividing the result by H [k]. Of course, if the sam-
pling kernel is too smooth, the signal is low-pass filtered,
and all aliasing is removed from the measured signal.

More work needs to be done also on the computational
efficiency of the algorithm. On the one hand, the algorithm
will rarely find the global minimum if it is immediately
started from an arbitrary position, without prior evaluation
at a certain number of values. On the other hand, using an
exhaustive search, the algorithm would be too computatio-
nally intensive (with the complexity even going to infinity
if we want to search the continuous shifts exhaustively).

8. CONCLUSIONS

We presented a new frequency domain approach to recon-
struct signals from multiple sets of aliased samples. The sets
of samples are regular, but the offset between the different
sets is unknown. This offset is first computed using a sub-
space approach. Afterwards, the Fourier coefficients of the
original signal can be solved from a set of linear equations.
Some computational issues were handled to avoid solutions
to be trapped in local minima and to improve computational
efficiency. The ideas are then applied to super-resolution
imaging. The results show the validity of the method.
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