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Abstract: Location-based Services (LBS) have become a very important area for research with the rapid development of 

Internet of Things (IoT) technology and the ubiquitous use of smartphones and social networks in our daily lives. Although 

users can enjoy a lot of flexibility and conveniences from the LBS with IoT, they may also lose their privacy. Untrusted or 

malicious LBS servers with all users’ information can track users in various ways or release personal data to third parties. In 

this work, we first analyze the current dummy-location selection (DLS) algorithm—an efficient location privacy preservation 

approach and design an attack algorithm for DLS (ADLS) for test emerging IoT security. For efficiently preserving user’s 

location privacy, we propose a novel dummy location privacy-preserving (DLP) algorithm by considering both computational 

costs and various privacy requirements of different users. Extensive simulation experiments have been carried out to evaluate 

the efficiency of the proposed schemes. Evaluation results show that the ADLS algorithm has a high probability of 

identifying the user’s real location out from chosen dummy locations in the DLS algorithm. Our proposed DLP algorithm has 

clear advantages over the DLS algorithm in term of lower probability of revealing the user’s real location and improved 

computational cost and efficiency (i.e., time, speed, accuracy, and complexity) while preserve the same privacy level as DLS 

algorithm. 
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1. INTRODUCTION

In recent years, there has been a rapid development in mobile technology resulting a variety of new mobile devices and social 

networks as well as development of emerging IoT services [1-4]. Many of these developments rely on location-based services 

(LBS) or LBS applications. Today’s IoT devices and smartphones all have built-in Global Positioning System (GPS) modules 

together with powerful computation capability. Users can download many of LBS applications from various sites such as the 

Apple Store or Google Play Store. With the help of these applications, users can send their queries together with their 

identities, locations (e.g., got by the GPS module using localization techniques), interests, and other information (e.g., time, 

query range) to LBS server, to get the required information such as the nearest shopping mall, supermarket, restaurant. 

However, while enjoying the convenience or entertainment from the LBS server, users are susceptible to leakage of sensitive 

information of individual or IoT device leading to the risks of loss of privacy. Based on a user’s LBS queries, an adversary 

not only can link their identity with locations and interests, but also infer more private information about the user. For 

example, if a user often reveals his/her location near a hospital when requesting LBS in IoT device, the location information 

could be used by an adversary to conjecture that the user may have some health problems. Since the untrusted LBS server has 

all the information about users such as where they are at what time, what kind of queries they submit, etc., the LBS server 

may use the information to track users in all kinds of ways or reveal their personal data to third parties. Therefore, it’s 

necessary to pay more attention to users’ location privacy, particularly for a data-driven IoT service that delivers the 

requirements for IoT and big data fusion. 

  As large amount of data from different sources are gathered and processed, the IoT operations may have significant impact 

on users’ privacy. Moreover, considering the increasing trend to collect more individual and personalized data in IoT, there 

are many problems regarding the impact on individuals’ privacy from a legal perspective [5]. The data handling or processing 

of Internet of Things (IoT) is greatly impacted by location information and in turn greatly affect its location privacy. As 

location information is a major component in effective inventory and supply chains, efficient transportation systems, 

context-aware mobile applications, and numerous other IoT systems [6], privacy attacks and harmful consequences can occur 

when sensitive location information is reveled without users’ consent. These pose challenges on IoT security and privacy 

[7-9]. 

A large number of techniques [10-22] have been proposed to address the privacy preservation issue in location-based 

services. Some of them are based on the cloaking technique, which employs the k-anonymity model to protect user’s location 



privacy. The k-anonymity model is an important technique to protect user’s location privacy in LBS, it can ensure that a user 

is identified with a probability of (only) 1/k. To achieve k-anonymity in LBS, a user first submits a query to a centralized 

location anonymizer. Then, the location anonymizer enlarges the queried location into a bigger Cloaking Region (CR) for 

covering many other users (at least k-1) geographically distributed. Finally, the location anonymizer sends the query to the 

LBS server. However, since this technique relies heavily on the location anonymizer, there will be a single point of failure. 

Moreover, since location anonymizer must process all users’ queries, the location anonymizer may become a performance 

bottleneck. 

To address this problem, the “dummy location” has been proposed and used to protect user’s location privacy, which does 

not need any third party service. Dummy location is part of our emerging IoT service. Existing approaches [23-25] try to 

effectively generate dummy locations which cannot be distinguished by the LBS server. However, these approaches do not 

consider the side information [26], i.e., users’ query probability related to location and time, or information related to the 

semantics of the query such as the gender and social status of the user. If the side information is obtained by an adversary, 

incredible chosen dummy locations such as lakes, swamps etc. may be easily filtered out by the adversary. Therefore, these 

algorithms for dummy locations generation cannot effectively achieve k-anonymity. The authors in [27] proposed a dummy 

location selection (DLS) algorithm for location privacy preservation, which considers the side information that may be 

exploited by attackers. However, the computational cost (i.e., time complexity) of the DLS algorithm is very high. As a result, 

how to select dummy locations is still a challenge, particularly for a data-driven IoT service whereby more complexity can be 

involved with volume, velocity, variety, veracity and validity. Locations based service is one of the major application for a 

data-driven IoT service and needs to pretest highly sensitive data. LBS based cloud applications needs to collect, process, and 

analyze geo-position data or send the required geo-locations instantly for millions of users in real-time. LBS is useful in 

many cases to find a convenient local place in an unfamiliar territory for socialization. However, LBS based applications also 

come with risk of revealing personal information and data for tracking. Despite personal identification may be hidden in the 

LBS services, the geo-localized history of user requests can act as a quasi-identifier, which can reveal about individuals’ 

details and their locations. Hence, we need efficient strategies to hide this quasi-identification using dummy LBS data. 

In this paper, we first analyze the well-known DLS algorithm, which provides a location privacy preservation for a 

data-driven IoT service of users’ queries in LBS. Then, we discuss an attack algorithm for DLS (ADLS) with a goal to 

identify the user’s real location out from the data-driven IoT service of chosen dummy locations in LBS. We also design a 

dummy location based privacy (DLP) algorithm for location privacy preservation in LBS. Different from existing algorithms, 

the DLP makes a tradeoff between computational cost (i.e., time complexity) and the privacy requirements of users. The main 

contributions of this research are as follows: 

 We analyze the current DLS algorithm, and attack algorithm for DLS (ADLS), for the data-driven IoT service of chosen 

dummy locations.  

 We propose an entropy-based DLP algorithm, by selecting dummy locations in a greedy manner for a tradeoff between 

computational cost (i.e., time complexity) and the privacy requirements for the data-driven IoT service in LBS. 

 We analyze the performance on privacy preservation of our proposed DLP algorithm against the colluding attack and 

inference attack; and use the attack algorithm to test robustness of our data-driven IoT service. 

 We demonstrate that the ADLS algorithm has a high probability of query recognition for the DLS algorithm through 

simulations. When compared with the DLS algorithm, the results show that the DLP algorithm can efficiently reduce the 

computational cost (i.e., time complexity) while providing the same privacy level as the DLS algorithm. Moreover, the 

DLP algorithm has a lower probability of query recognition (i.e., lower probability of losing users’ privacy) compared to 

the DLS algorithm. 

The remainder of this paper is organized as follows. Section 2 reviews the related work. Section 3 introduces the 

preliminaries and the system model. Section 4 gives the detailed analysis on the DLS algorithm. Section 5 presents the ADLS 

algorithm for identifying the user real location and evaluate its performance. Section 6 presents the detailed descriptions on 

our DLP algorithm and simulation results. Section 7 gives the discussions and explains how our contributions are relevant to 

the data-driven IoT service. Section 8 concludes this paper. 

2. RELATED WORK 

In this section, we describe recent researches related to privacy protection methods in location based services of IoT. 

2.1 Privacy-preserving for IoT 

Several recent researches have been conducted for the privacy-preserving for the IoT based services [28-36]. In order to 

handle the massive amount of data, the most convincing solution is the federation of the IoT and cloud computing. Henze, et 

al. presented an user-driven privacy enforcement appraoch for cloud-based services in the IoT, which focuses on privacy 

preserving for individual end-users [28]. The authors in [29] proposed PAgIoT, a Privacy preserving Aggregation protocol 



suitable for IoT settings and enables multi-attribute aggregation for groups of entities while allowing for privacy-preserving 

value correlation. A lightweight privacy-preserving trust model had been designed for minimizing privacy loss in the 

presence of untrusted service providers, so that providers can be prevented from disclosing information to third parties for 

secondary uses [30]. A conditional privacy-preserving authentication with access linkability (CPAL) for roaming service, to 

provide universal secure roaming service and multilevel privacy preservation [31]. The authors in [32] estimated the cost of 

breaking public key crypto systems when the adversary is limited by the available resources and time and presentd the 

trade-off between the processing load for an IoT node versus the desired time span of privacy protection. Jin, et al., presented 

a framework for the realization of smart cities through the Internet of Things (IoT), which encompasses the complete urban 

information system and forms a transformational part of the existing cyber-physical system [33]. The authors in [34] 

proposed a privacy-by-design (PbD) framework that can guide software engineers to systematically assess the privacy 

capabilities of IoT applications and middleware platforms, thus the proposed PbD framework can also be used to design new 

IoT platforms. 

2.2 Location Anonymization Approach for LBS 

  Location anonymization approach is one of most important techniques to protect location privacy, which attempts to make 

user’s location indistinguishable from a certain number of other users. Commonly used techniques include spatial-temporal 

cloaking and location obfuscation. k-anonymity is an important technique for location anonymization, which relies on a 

centralized location anonymizer to enlarge a user’s queried location into a bigger Cloaking Region (CR) for covering many 

other users. A personalized k-anonymity model is proposed in [37]. The model enables a user to have different privacy 

requirements in different contexts, and different users can require different levels of privacy in the same context. In the 

proposed model in [37], the trusted anonymization server runs an efficient message perturbation engine, which performs 

location anonymization considering the trade-off between location privacy and quality of service (QoS). A cloaking 

algorithm based on k-anonymity and l-diversity has been proposed in [38]. When constructing a cloaking region, it ensures 

that a cloaking region has at least k vehicles (k-anonymity) and l road segments (l-diversity), which can effectively protect 

user’s location privacy. The authors in [39] studied the problem that how to protect the location privacy under various privacy 

threats, and proposed a location privacy framework uses k-anonymization and pseudo-anonymization methods to provide 

efficient location privacy preservation. A weighted adjacency graph based k-anonymous cloaking technique is proposed in 

[40], which can support k-nearest neighbor queries without revealing private information of the query initiator. The algorithm 

in [40] not only can ensure user privacy protection, but also reduce bandwidth usages. The concept of mix zones is first 

proposed in [41]. A mix zone is referred to a spatial region in which none of users has registered any application callback. 

The authors in [42] allowed users to exchange their pseudonyms when they meet in a mix zone, which ensures a user avoid 

using a long-term pseudonym. Thus, the relationship between user pseudonyms and locations can be broken though 

exchanging pseudonyms. 

2.3 Policy or Cryptography Primitive based Approach 

Policy and cryptography primitive based approaches [43-45] protect user privacy by using encryption techniques. The 

authors in [46] propose a privacy preserving framework (PLAM) for local-area mobile social networks. The PLAM 

framework not only employs a privacy-preserving request aggregation protocol with k-anonymity and l-diversity properties 

to keep user’s preference privacy without adopting a trusted anonymizer server when querying location-based service, but 

also integrates unlinkable pseudo-ID technique to achieve users’ identity privacy and location privacy. The PLAM 

framework can not only satisfy the desirable privacy requirements but also resist outside attacks on source authentication, 

data integrity and availability. For preserving user’s privacy, the authors in [47] proposed a dynamic pseudo-ID scheme, 

where different pseudo-IDs are adopted in different queries in order to unlink the correlation between user’s real identity and 

trajectory. In [48], the authors propose a fine-grained privacy preserving LBS framework (FINE) for mobile devices. The 

FINE framework not only employs a ciphertext-policy anonymous attribute based encryption technique to achieve 

fine-grained access control, location privacy, confidentiality of the LBS data and its access rule, and accurate LBS query 

result without involving any trusted third party, but also integrates the transformation key and proxy re-encryption to migrate 

most of computation intensive tasks from LBS provider and users to cloud server. In [49], the authors study the k nearest 

neighbor (kNN) queries where mobile users query the LBS provider about k nearest points of interests (POIs) on the basis of 

their current location, and then propose a solution built on the Paillier public-key cryptosystem for preserving the location 

privacy and data privacy in kNN queries of mobile users. The authors in [50] design a private block retrieval protocol, and 

propose a secure and efficient location based service system.  In the proposed system, users can retrieve information of 

interest associated with the current location without leaking their location information to the service provider. 

2.4 Dummy Location Selection for IoT 

Dummy location approach focuses on selecting dummy locations for users in order to protect users’ location privacy. In 

[25], the authors first study the behaviors of self-interested users in the LBS system from a game-theoretic perspective. The 



work then formulates two Bayesian game models in both static and timing-aware contexts, and analyzes the existence and 

properties of the Bayesian Nash Equilibrium for the two models. A Dummy-Location Selection (DLS) algorithm is proposed 

in [27] to achieve k-anonymity for users using LBS. The DLS algorithm selects dummy locations considering that the side 

information may be exploited by adversaries, which is based on the entropy metric [51]. To make sure that the selected 

dummy locations are spreaded as far as possible, the authors in [27] also propose an enhanced-DLS algorithm, which can 

enlarge the cloaking region while keeping similar privacy level as the DLS algorithm. The authors in [52] propose two 

dummy generation methods: circle-based and grid-based, which take into account privacy area requirements. In [53], the 

authors proposed two dummy based solutions to achieve k-anonymity for privacy-area aware users in LBS with considering 

that side information may be exploited by adversaries. 

However, most of these existing approaches have not considered the side information that may be exploited by attackers 

when selecting dummy locations in IoT. Even if some approaches have taken into acount the side information, but the 

computational costs (i.e., time complexities) of them are very high. Therefore, how to efficiently select dummy locations in 

IoT still remains a challenge, and our proposal will be presented between Section 3 and 6. 

3. PRELIMINARIES 

In this section, we describe the main basic concepts and the system model. 

3.1 Side Information   

As mentioned in previous section, the side information [26] may be query probability of users related to location and time, 

or information related to the semantics of the query such as the gender and social status of the user. In this paper, the side 

information is considered to be the query probability of users related to location, called query probability. A particular user’s 

query probability at a certain location can be denoted by the ratio of the number of current location queries to the number of 

total queries of all locations, as shown in Equation (1).  

 

  
i

number of  queries in location i
q

number of  queries in all locations
       (1) 

Generally, users can get two kinds of side information from a system: partial information and global information. Partial 

information denotes the information collected by other users, for example, a particular user may know the query probabilities 

related to some locations. Since the LBS server can receive the LBS queries of all users, the LBS server can obtain the global 

information (i.e., the query probabilities related to all locations). For a particular user, it’s necessary to design an optimal 

strategy to select dummy locations for protecting his/her location privacy under the condition of knowing the global 

information. In this paper, the LBS server is responsible for disseminating and updating the global side information so that 

users can get this information from a well-known place (e.g., local database of LBS application).  

3.2 Entropy-based Privacy Metric 

In this work, the degree of privacy is measured by the entropy. It can be seen as the uncertainty in identifying a user’s real 

location out from the chosen dummy locations [51]. When calculating the entropy, each dummy location should have a 

probability, which can be the history query probability of users related to location. We use pi to denote the historic query 

probability of users related to location i. According to the set of dummy locations and the historic query probabilities, we can 

define the entropy H of a user as in Equation (2). 
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where 

1

k

i i i
i
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

  , is the normalized query probability of location i; and the sum of all pi is equal to 1. 

Since the greater the entropy the higher the uncertainty in identifying the user’s real location from the dummy locations set, 

our goal is to obtain enough entropy. In particular, when all of the k dummy locations have the same historical query 

probability, we can achieve the maximum entropy Hmax = log2 k. 

3.3 Service based System Model for IoT 

  More and more mobile technologies support smart location based services including smart phones, manufacturing 

industries, smart home technologies, and smart cities. LBS is the key for achieving our future aim of smart living. The system 

architecture model shown in Figure 1 illustrates our approach towards service-oriented design and implementation for the 

proposed algorithm. 



 

Fig.1: Service based System Model for IoT 

We design our model for LBS based on the system architecture in [24]. The system mainly consists of two parties: the LBS 

server and LBS users with mobile devices. 

1) LBS server: The LBS server can be a service provider, which not only stores all kinds of service databases, but also can 

update the service data and provide users with various services. In our system, the LBS server is responsible to receive 

service queries from users, search for requested service data in the database, and reply with the search results back to the 

users. In addition, the LBS server is able to obtain the global information based on queries of all users at all locations, which 

can be the historical query probabilities of users related to all locations. Moreover, the LBS server is responsible for 

disseminating and updating the global side information so that users can get this information from a well-known place (e.g., 

local database of LBS application).  

2) LBS users: The system typically consists of users who are equipped with mobile devices (e.g., smart phones or tablets), 

with built-in GPS modules that can be used to obtain user’s location data. Due to the rapid development of mobile devices 

and social networks, a variety of LBS applications can be accessible for users. If users want to get services from LBS servers, 

they need to send queries to LBS server, which include their identity, location information, interests, and the query range (e.g., 

1000m). In order to protect user’s location privacy, user’s location information not only includes user’s real location, but also 

includes many other dummy locations. 

4. ANALYSIS OF THE DLS ALGORITHM 
4.1 Review the DLS Algorithm 

The main purpose of Dummy-Location Selection (DLS) algorithm [27] is to generate a set of realistic dummy locations to 

protect user’s location privacy. Given the degree of anonymity k, the DLS algorithm needs to select other k-1 dummy 

locations based on the side information. The following shows the 5 steps how the DLS algorithm addresses this problem: 

(i) In the first step, a particular user needs to determine the degree of anonymity k.  

(ii)Then, the algorithm reads all of the obtained query probabilities and then sorts the query probabilities of all locations in 

ascending order.  

(iii) In the sorted list, the algorithm needs to choose 2k candidate locations, whose history query probabilities are similar to 

the user’s real location. In the 2k candidate locations, it randomly selects k –1 locations. Then, it derives m sets, each set 

contains k locations. For each set, one location is user’s real location and the other k−1 locations are randomly chosen from 

the 2k candidates. The entropy for the j
th

(j∈[1,m]) set can be calculated according to Equation (2) as shown in Section 3.  

  (iv) Finally, the algorithm has to determine an optimal location set with the biggest entropy to effectively achieve 

k-anonymity for the user. 

4.2 Preparations for Performance Analysis 

 

 

 

 

 

 

 



 

Table 1: Summary of key notations 

Notation Meaning 

N Number of all locations. 

k The privacy level requirement of user. 

P[N]  The historical query probabilities in all locations. 

m 
Number of randomly selecting k–1 locations from 

2k locations, i.e., m = C
k-1 

2k . 

Pi The historical query probability at location i. 

Lreal The real location of user. 

Pi[2k] 

The chosen 2k candidates at location i, where k 

candidates are left before Lreal and the other k 

candidates are right after Lreal in the sorted list. 

Ci[k]  The chosen optimal location set at location i. 

k’ 
The number of locations which have the same 

historical query probability as Lreal 
in Pi . 

Let the historical query probabilities of all locations P = [p1, p2,…,pN], the chosen 2k candidate locations at location i as Pi 

={pi,1, pi,2,…, pi,2k}and the chosen 2k candidate locations at location j as Pj ={pj,1, pj,2,…, pj,2k}. Then, let Pii =Pi  pi}, and Pij 

=Pii Pjj. Let M denote the size of set Pij. We define Pij as follows. 

(1) (2) ( ){ , ,..., }, 0

 , =0

M
ij

p p p M
P

M


 



       (3) 

Theorem 1: Under the condition of m = C
k-1 

2k , for i, j   [1, N], Ci  Cj (i j), set P must satisfy the following conditions:  

(i)  i ≠ j, pi ≠ pj, i.e., each location has a unique historical query probability. 

(ii) 0 ≤ M ≤ 2k, i, j (i ≠ j), Pij   Ci   Ci or Pij   Cj ≠ Cj; that is to say when 0 ≤ M ≤ 2k, i, j (i ≠ j), the chosen optimal 

location set at location i or location j is not included in the intersection of the chosen 2k candidate locations at location i and 

the chosen 2k candidate locations at location j. 

Proof:  

Adequacy:  

(1) We first prove that set P must satisfy condition (i). 

We assume that set P does not satisfy condition (i), and then  i, j   [1, N], pi = pj (i   j). Thus, Pi and Pj will be the same 

according to the step (ii) in DLS algorithm. 

When k' ≥ k + 1, although Ci may not be the same as Cj according to the step (iii) and (iv) in DLS algorithm, it is possible 

that Ci = Cj. However, according to our assumption that Ci cannot be the same as Cj. Thus, set P must satisfy condition (i). 

When k' ≤ k, Ci must be the same as Cj according to steps (iii) and (iv) in DLS algorithm. However, according to our 

assumption, Ci cannot be the same as Cj. Thus, set P must satisfy condition (i). 

(2) We then prove that set P must satisfy condition (ii) after satisfying the condition (i). 

We assume that set P satisfies condition (i), but does not satisfy condition (ii). Thus,  i, j   [1, N], Pij   Ci = Ci and Pij  
 Cj = Cj. Since Ci and Cj both are the optimal location set in set Pij, i.e., Ci = Cj. However, according to our assumption, set Ci 

cannot be the same as set Cj. Thus, set P must satisfy condition (i) and condition (ii). 

Necessity: 

According to condition (i), we can get that for i ≠ j, Pi ≠ Pj. Then, we discuss the condition (ii) as follows. 
(1) 0 ≤ M ≤ 2k,  i   j, Pij   Ci   Ci and Pij   Cj   Cj. For this situation, set Ci must include the location from set Pi-Pij, 

which does not belong to set Cj. Moreover, set Cj must also include the location from Pj-Pij, which does not belong to set Ci. 

Thus, for i   j, Ci   Cj. 

(2) 0 ≤ M ≤ 2k,  i   j, Pij   Ci ≠ Ci and Pij   Cj = Cj. For this situation, set Ci must include the location from set Pi-Pij, which 

does not belong to set Cj. Therefore, for i ≠ j , Ci ≠ Cj.  



(3) 0 ≤ M ≤ 2k,  i   j, Pij   Ci = Ci and Pij   Cj ≠ Cj. For this situation, set Cj must include the location from set Pj-Pij, 

which does not belong to set Ci. Thus, for i ≠ j, Ci ≠ Cj. 

Therefore, we can conclude that for i   j, Ci   Cj
 
when set P satisfies conditions (i) and (ii). 

4.3 Performance Analysis for DLS Algorithm 

Based on step (iii) in the DLS algorithm, we can see that the greater of value of m the higher the computational cost of the 

DLS algorithm is. We also can see that different values of m may result in different optimal location sets in DLS algorithm, 

and the DLS algorithm can obtain the optimal location set when m = C
k-1 

2k . We analyze the performance of the DLS algorithm 

when m = C
k-1 

2k as follows. 

(1)  i, j   [1, N], pi = pj (i   j) in set P. We assume that a particular user is at location i, and the number of locations whose 

query probabilities are the same as that of the user’s real location in the chosen candidate locations is denoted by k'. Since pi = 

pj, set Pi the user selects at location i is the same as set Pj the user selects at location j in DLS algorithm. We then discuss the 

performance of the DLS algorithm in the following situations. When 1 ≤ k' ≤ k-1, set Ci is the same as set Cj in DLS 

algorithm under the condition m = C
k-1 

2k . In this situation, although the LBS server can infer the probability for a user to submit 

a LBS query, the server cannot know the user’s real location. This is because there are other locations whose query 

probabilities are the same as that of the user’s real location. Moreover, the larger k' is, the better the performance of the DLS 

algorithm is. When k' ≥ k, Ci may be different from Cj. The reason is that randomly selecting k-1 locations from the k' 

locations whose query probabilities are the same as pi may be the optimal location set. In this situation, since each location 

has the same query probability, the DLS algorithm achieves the best performance. 

(2) i, j   [1, N], pi   pj (i   j) in set P. We assume that a particular user is at location i. Since pi  pj, set Pi the user 

selects at location i must be different from the set Pj user selects at location j. However, when M ≥ k-1, Ci may be the same as 

Cj, that is to say the chosen optimal location set at location i is likely to be the same as the chosen optimal location set at 

location j. In this situation, although the LBS server may try to infer which location is most likely to select this location set, 

the server may make a incorrect decision. The reason is that the optimal location sets chosen by the user in other locations are 

the same as that of the user’s real location. Moreover, the larger the number of locations whose chosen optimal location sets 

are the same as the that of user’s real location is, the better the performance of the DLS algorithm is. However, once there is 

no location whose chosen optimal location set is the same as other locations in set P, the DLS algorithm would have bad 

performance. 

5. ADLS ALGORITHM  
In this section, we first introduce an attack model and related theories, then give detailed descriptions of ADLS algorithm and 

the performance evaluations. 

5.1 Attack Model 

In order to protect location privacy, the dummy location generation algorithm is used for generating some dummy 

locations. Thus, the users’ location information not only includes users’ real location, but also includes other chosen dummy 

locations [52]. The goal of the adversary is to obtain the user’s real location from the user’s location information. Since 

adversaries can compromise the LBS server and obtain all the information that the LBS server knows and holds. Thus, in this 

work, we assume that the LBS server is the adversary. Note that, LBS server is able to obtain global side information and 

monitor the current queries being sent from users. Furthermore, the LBS server can obtain the historic data of a particular 

user as well as the current situation and information. Additionally, the mechanisms used for location privacy protection in the 

system are also known by the LBS server. 

5.2 Related Theories 

Let set P = [p1, p2,…, pn], where 0 < pi < 1(1 ≤ i ≤ n). We define function H(P, pn+1 ) in Equation (4). 
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In Equation (4), function H(P, pn+1) varies with pn+1, where 0< pn+1 <1. In order to get the maximum value of H(P, pn+1), we 

first calculate the derivative of function H(P, pn+1), denoted by function D(P, pn+1) as shown in Equation (5). Then, let 

function D(P, pn+1) be zero to get the value of pn+1 as shown in Equation (6). Finally, we can get the extreme points of 

function H(P, pn+1). From Equation (6), we can know that function H(P, pn+1) has a unique extreme point.  
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When pn +1 <  ̅n+1, the value of function D(P, pn+1) is greater than zero, and the value of function H(P, pn+1) increases with the 

growth of pn+1. When pn+1 >  ̅n+1 the value of function D(P, pn+1)is less than zero, the value of function H(P, pn+1) decreases 

with the growth of pn+1. Thus, we have that the maximum point of function H(P, pn+1) is pn+1 =  ̅n+1. We can obtain the range 

of  ̅n+1 by Equation (7). From Equation (7), we can see that the value of pn+1 is not greater than the maximum of set P, and 

also not less than the minimum of set P. In our ADLS algorithm, we can use this property to select dummy locations. 
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5.3 The ADLS Algorithm  

The main goal of the ADLS algorithm is to identify the user’s real location out from the dummy locations obtained by the 

DLS algorithm. When obtaining a user’s LBS query, an adversary can adopt two methods to infer the user’s real location 

based on user’s location information. One method is to randomly choose one location from user’s location information as the 

user’s real location. By this method, the probability of successfully identifying the user’s real location is 1/k, and the 

probability remains stable. The other method is to analyze the dummy location generation algorithm, and then design an 

attack algorithm. By this method, the adversary can enhance the probability of successfully identifying the user’s real 

location by designing a good attack algorithm. In this paper, we adopt the latter method to infer user’s real location. Based on 

the analysis of the DLS algorithm in section 4, we know that once the history query probabilities of two locations are 

different in DLS algorithm, their chosen optimal dummy location sets must be different. In this paper, we use this property to 

infer the user’s real location out from the user’s location information. 

The ADLS algorithm first gets the anonymity degree k according to the user’s location information. Then, for the i
th

(1≤i≤k) 

location in user’s location information, the ADLS algorithm selects other k-1 dummy locations based on entropy in a greedy 

manner, and then obtains the dummy location set Ci. After obtaining the k dummy location sets, the ADLS algorithm sorts the 

probabilities of set Ci (1 ≤ i ≤ k) and the user’s dummy location set in ascending order. Then, for each dummy locations set Ci 



(1 ≤ i ≤ k), the ADLS algorithm calculates the variance between the set Ci and the user’s dummy location set, and determines 

the user’s real location based on the variance. For example, if the variance between the set Ci and the user’s dummy location 

is the smallest, the ADLS algorithm infers that the user’s real location is location i. The following shows how the ADLS 

algorithm works. 

  (i) In the first step, the LBS server needs to get the anonymity degree of a user based on the user’s location information. 

Let k denotes a user’s anonymity degree, set R denotes a user’s location information. 

(ii) LBS server reads all the query probabilities and then sorts query probabilities of all locations in ascending order. 

(iii) For each location in set R, the LBS server needs to selects 2k-2 candidate locations (denoted as set Dj), in which k-1 

locations are left before the user’s real location and the other k-1 locations are right after the user’s real location in the sorted 

list. Then, the LBS server puts the user’s real location in Cj (j   [1, k]). 

  (iv) Find the maximum and minimum from set Cj. Let pmax denote the maximum and pmin denote the minimum. Then, it 

finds two locations in set Dj, which is the maximum of the probability set being less than pmin, denoted by pmin-max, and the 

other is the minimum of the probability set being greater than pmax, denoted by pmax-min. Finally, it compares the entropy H(Cj, 

pmax-min) and H(Cj, pmin-max), and puts the location in set Cj, which achieves a larger entropy. 

(v) Repeat step (iv) until the size of set Cj is k. 

(vi) Finally, LBS server needs to determine which one is the user’s real location. Specifically, for a particular chosen set Cj 

, it computes the variance according to Formula (8). 
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where ri R, ci Cj. The ADLS algorithm then uses the locations with the least variance as the user’s real location:  

S = arg minSj            (9) 

 

Algorithm 1: Attack algorithm for DLS (ADLS) 

Input: Historical query probabilities of all locations denoted as P; a user’s location information R. 

Output: The optimal location. 

1: Sort the elements in P and R in ascending order;  

2: k  user’s anonymity degree 

3: for (i=1; i k; i++) do  

4:   Set Ci ←read one location L from set R which isn’t read before; 

5:   Choose k-1 locations left before and k-1 locations right after location L in the sorted list as candidate location set iD ; 

6:   for (j=1; j k; j++) do 

7:       pmax←max(Ci); 

8:       pmin ←min(Ci); 

9:     Find one location from set Di, which is the maximum of the probability set being less than pmin in set Di, denoted as 

pmin-max ; 

10:     Find one location from set Di, which is the minimum of the probability set being greater than pmax in set Di, denoted 

as pmax-min; 

11:     if H(Ci , pmax-min) > H(Ci , pmin-max ) then 

12:        Ci←Ci {pmax-min}, Di←Di\{pmax-min}; 

13:     else 

14:        Ci←Ci {pmin-max}, Di←Di \{pmin-max}; 

15:     end 

16:  end for 

17:  Sort the elements in Ci in ascending order; 
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19: end for 

20: return arg min Si 

5.4 Performance Evaluation 

  In this subsection, we evaluate the effectiveness of our proposed ADLS algorithm through simulation experiments. 



5.4.1 Simulation Environment 

In this set of simulations, the service area of LBS provider is divided into n n  cells with equal size. We assume that 

each cell has already had a historical query probability based on the users’ previous queries. For measuring the probability of 

query recognition, which denotes the probability for the proposed ADLS algorithm to successfully identify a user’s real 

location from the chosen dummy locations, we use the DLS algorithm to generate dummy locations and submit 1000 queries 

in the simulations. 

  In our simulations, k is related to k-anonymity and denotes the anonymity degree. Given the value of k, m denotes the 

number of cases that randomly choose k-1 cells from 2k cells, whose maximum value is    
   . For evaluating the ADLS 

algorithm, the following four scenarios are considered in our simulations: 

 Scenario-1: The value of m varies from 100 to 1000. 

 Scenario-1.1: The value of k varies from 5 to 7. 

 Scenario-1.2: The value of k varies from 10 to 14. 

 Scenario-2: The value of k varies from 5 to 15, and the values of m are set to be 1 10
4
, 5 10

4 
and1 10

5
, respectively. 

5.4.2 Simulation Results 

For evaluating the effectiveness of the proposed ADLS algorithm, we have conducted extensive simulations. We have 

evaluated the performance of the ADLS algorithm in terms of probability of query recognition under different scenarios with 

different values of k and m. Based on the analysis of the DLS Algorithm in Section 4, we can see that if a user’s chosen 

optimal location set at location i is different from that of location j (i and j denote two different locations), the ADLS 

Algorithm with high probability to infer the user’s real location from the dummy locations generated by DLS Algorithm. 

Simulation Results Under Scenario-1.1: We explore the relationship between m and the probability of query recognition. 

From Figure 2, we can see that the probability of query recognition generally increase with the growth of m. The reason is 

that larger m leads to the chosen dummy location in DLS algorithm to be closer to the optimal dummy location set, which 

enables the ADLS algorithm to identify the user’s real location with high probability. Figure 2 also shows that greater k leads 

to lower probability of query recognition while lower k results in higher probability of query recognition and this can be 

explained as follows. First, the maximum of m is    
   , and     

    exponentially increases with the growth of k. Second, for a 

given value of m, smaller anonymity degree k results in that the value of m is more close to the maximum one. Therefore, the 

user’s chosen dummy locations are more likely to be close to the optimal dummy locations. 

 
Fig.2: The probability of query recognition achieved with different anonymity degrees k under Scenario-1.1. 

Simulation Results Under Scenario-1.2: In this set of simulations, we explore the relationship between m and the 

probability of query recognition when m and k become greater. Comparing with the results of Scenario-1.1, we observe that 

although the value of m and the value of k become greater, the probability of query recognition does not be improved. The 

reason is that when the value of k becomes greater, the higher probability of query recognition can be obtained only with 

greater value of m. Moreover, a small difference in the anonymity degree k will lead to a great difference in the value of m 

when achieving the same probability of query recognition in the ADLS algorithm. 

Simulation Results Under Scenario-2: Figure 4 shows the relationship between k and the probability of query 

recognition. Generally, for a given value of m, the probability of query recognition will be influenced by the value of k. The 

results show that the greater the value of k is, the lower the probability of query recognition is. Furthermore, greater m leads 

to higher probability of query recognition while lower k results in lower probability of query recognition when k≥8. Moreover, 

different values of m have almost the same probability of query recognition when k≤7. The reason is that the smaller k makes 

the value of m to be close to the maximum value. Therefore, the user can select the optimal location set with higher 

probability. 



 
Fig.3: The probability of query recognition achieved in different anonymity degree k under Scenario-1.2. 

 

Fig.4: The probabilities of query recognition under Scenario-2. 

6. DLP ALGORITHM DESIGN AND ANALYSIS 
In this section, we give the detailed descriptions for the DLP algorithm, and present the performance evaluations. 

6.1 DLP Algorithm Description 

The basic idea of Dummy Location Privacy-preserving (DLP) algorithm is to select the optimal dummy locations 

considering that the adversary may exploit some side information, and make different choice for different privacy 

requirements of different users. We adopt a greedy approach to search a large database to find an optimal set of dummy 

locations. For achieving k-anonymity, we successively select k-1 other locations from all locations in the location map, which 

must make sure that the current entropy is the biggest. For example, if the DLP algorithm has already chosen i locations 

(where i < k), when choosing the (i+1)
th

 location, it must ensure that Hi+1 is the largest for all residual locations. Hi+1 is 

defined in Equation (10). 
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where pj denotes the users’ historical query probability at location j. The following shows how the proposed DLP algorithm 

works. 

(i) First, a user needs to set a proper anonymity degree k, which is closely related to the user’s requirement on location 

privacy. Although a bigger k leads to higher anonymity degree, it also causes a higher overhead due to the cost for selecting 

dummy locations. 

(ii) At the beginning, the DLP algorithm needs to read all the obtained query probabilities from the LBS server and then 

sort the query probabilities in ascending order. Let p denote the query probability of the user’s real location. For the sorted 



list, the DLP algorithm calculates the number of locations which have the same query probability as p, which is denoted by 

 ̅. If  ̅ is large enough, it puts half of them before and the other half of them after the real location. 

(iii) If  ̅ ≥ k, DLP algorithm selects k-1 locations which have the same query probability as p from the sorted list. Then, it 

outputs the chosen k-1 dummy location and the user’s real location. 

(iv) If k/4 ≤  ̅ ≤ k, the algorithm selects  ̅-1 locations which have the same query probability as p from the sorted list. We 

use set C to denote the  ̅-1 dummy locations and the user real location. In the sorted list, the algorithm selects k- ̅ locations 

left before and other k- ̅ locations right after the real location as 2(k- ̅ ) candidate locations, whose query probabilities are 

different from p. Let set S denotes the 2(k- ̅) candidates. The reason for choosing 2(k- ̅) candidates for dummy locations is to 

make sure to get large enough entropy. Otherwise, it goes to Step (vii). 

(v) To achieve k-anonymity, it needs to successively select residual k- ̅ locations from set S. For the
 
i
th 

( ̅< i ≤ k) dummy 

location, it must ensure that the Hi is maximum for all residual locations in set S. 

(vi) When the size of C is k, DLP outputs the set C. 

(vii) If  ̅< k/4, the DLP chooses 2k-ε locations left before and other 2k-ω locations right after the real location as 4k-ω-ε 

candidates from the sorted list. We use set  ̅ to denote the 4k-ω-ε candidates. Both ω and ε are set by users based on their 

privacy requirements. Generally, ω is smaller than ε. Let set  ̅ denote a user’s real location. It randomly selects one location 

as a dummy location from set S, and put this location into set  ̅. 

(viii) For achieving k-anonymity, the successively selects residual k-2 locations from set  ̅. For the i
th 

(2 < i ≤ k) dummy 

location, it must ensure that Hi is the largest for all residual locations in set  ̅. 

  (ix)When the size of  ̅ is k, DLP outputs the set  ̅. 
 

Algorithm 2: Dummy Location Privacy-preserving (DLP) 

Input: The set of historical query probabilities P; users’ real location. 

Output: The optimal set of dummy locations, C. 

1: Sort P in ascending order; 

2: H ← select the locations which have the same query probability as users’ real location from sorted P; 

3: if (size (H)  k) then 

4:    C ← randomly select k locations including the user real location from H; 

5: else if (k/4 < size(H) < k ) then 

6:    k
__

← size(H), C←H;  

7:    S← choose 2(k-k
__

) candidate locations whose query probabilities are similar to the user’s real location; 

8:    for (j = 1; j k-k
__

; j ++) do 

9:        Choose one location l from set S, such that H(C, q) is the maximum in set S; 

10:       C← C   l}, S ← S \{l}; 

11:   end for 

12: else  

13:    S ← choose 4k-ω-ε candidate locations whose query probabilities are similar to the user’s real location; 

14:    Randomly choose location i from S; 

15:    C← H   i}; 

16:    for ( j = 1; j k-2; j + +) do 

17:        Choose one location h from S, which makes sure that H(C, q) is the maximum in set S; 

18:        C ← C   {h}, S ← S \{h}; 

19:    end for 

20: end if 

21: return the optimal set of dummy locations, C . 

6.2 Security Analysis 

This subsection shows that how to resist the colluding attacks and inference attacks to protect user’s location privacy 

through the proposed DLP algorithm. 

1) Resistance to the Colluding Attack: To obtain user’s location privacy, passive attackers may collude with other users or 

with the LBS provider for various purposes. 

Definition 1: A scheme can resist the colluding attack if the probability of successfully identifying a user’s real location 

from the user’s location information does not increase with the growth of the size of the colluding group. 

Theorem 1: The DLP algorithm can resist the colluding attack. 



Proof: A colluding attack happens among a set of users who want to identify a user’s real location out from the submitted k 

locations. In our scheme, each user protects her/his location privacy by selecting other dummy locations. When an attacker 

first compromises a user UA, he/she will obtain the user’s location information including k locations. Since the k locations 

have similar historical query probabilities, the attacker has no clue about the user’s real location and only randomly guesses 

the user’s real location out from the intercepted k locations. Thus, the probability of successfully identifying the user’s real 

location is 1/k. Then, the attacker intercepts the LBS query of user UB, and obtains the user’s location information. However, 

the probability of successfully identifying a user’s real location remains stable in our scheme. The reason is that there are no 

correlations between the selected dummy locations of users UA and UB. Therefore, the attacker can only identify each user’s 

real location randomly from the intercepted k dummy locations. Similarly, when a colluding group has more members 

involve, the attacker can only randomly guess each user’s real location from the intercepted k dummy locations. This implies 

that the probability of successfully identifying the user’s real location out from the chosen dummy locations remains stable 

(i.e., 1/k) in our scheme. 

In an extreme case that the passive adversary compromise the LBS server and get all information the LBS server has, 

he/she can turn to be an active adversary. For an active adversary, he/she can perform the inference attack. 

2)Resistance to the Inference Attack: In this part of analysis, we assume that the LBS provider is an active attacker. The 

LBS provider knows a user’s historical query probabilities of all locations, the historical queries and the current queries of 

users. 

Definition 2: A scheme can resist the inference attack if attackers cannot successfully identify the user’s real location from 

user’s location information. 

Theorem 2: DLP scheme can resist the inference attack.  

Proof: In the DLP scheme, since the chosen k locations have similar historical query probabilities, although the LBS 

provider knows the historical query probabilities of all locations, he/she cannot determine which one is the user’s real 

location in the k locations. Even then he/she tries to reverse the algorithm, but he/she will also be failed. The reasons are 

explained in the follows. Let us recall the step (3) to step (11) of the DLP scheme mentioned in Section 6.1. In these steps, 

since the DLP scheme can guarantee that there are enough locations whose historical query probabilities are as same as that 

of the user’s real location in the chosen dummy locations, thus the LBS server still cannot obtain the user’s real location by 

reversing the algorithm. Furthermore, let us recall the step (13) to step (18) of the DLP scheme. In these steps, since step (13) 

and step (14) of DLP can ensure the uncertainty of the selection, the LBS server also cannot obtain the real location by 

running our algorithm several times. 

6.3 Performance Evaluation 

For evaluating the performance of DLP algorithm, we have conducted extensive simulations in this subsection. 

6.3.1 Simulation Environment 

Similar to Section 5.4, we divide the location map into n n  cells with equal size. Each cell has a query probability 

based on the query history. We conduct simulations on the following three scenarios to evaluate the performance of the DLP 

algorithm. 

 Scenario A: Let user be located in a cell such that there are many (more than k) cells that have the same historical query 

probability as the user’s current location. In this scenario, the chosen dummy locations have the same query probability as 

that of the user’s real location. 

 Scenario B: Let user be located in a cell such that the number of cells that have the same historical query probability as 

that of the user’s current location is slightly less than k but greater than one quarter of k. In this scenario, it can guarantee 

that there are enough locations have the same query probability as that of the user’s real location in the chosen dummy 

locations. 

 Scenario C: Let user be located in a cell such that there are a few (i.e., less than one quarter of k) cells have same historical 

query probability as that of the user’s current location. In this scenario, there are few locations that have the same query 

probability as that of the user’s real location in the chosen dummy locations. 

6.3.2 Simulation Results 

For evaluating the effectiveness of our proposed DLP algorithm, we have conducted extensive simulations.We have 

compared the performance of two algorithms in terms of the running time and the privacy level under various anonymity 

degree requirements of users. We also compare the probability of query recognition under Scenario C. 

Figure 5, Figure 6 and Figure 7 illustrate the results for DLS algorithm and DLP algorithm, respectively. The results show 

the running time and the privacy level in terms of entropy under different scenarios. In Figure 5, the DLP algorithm and the 

DLS algorithm have the same entropy, but there are large differences in the running times. Moreover, the running time of 

DLS algorithm rapidly increases with the growth of the value of k (i.e., anonymity degree), but the running time of DLP 

algorithm varies little. The reason is that the DLS algorithm adopts enumeration method to select k dummy locations which 



make the entropy is largest while the DLP algorithm adopts greedy method to successively select k dummy locations. The 

computational complexity of the DLS algorithm increases with the growth of the value of k, but the computational 

complexity of the DLP algorithm almost remains stable. From Figure 6 and Figure 7, we can see that Scenario B and 

Scenario C have the similar trend on results as Scenario A. We also note that the largest entropy appears in Scenario A, 

whereas the smallest entropy appears in Scenario C for both the DLS and DLP algorithms. This is because that there are more 

than k locations whose historical query probabilities are the same as that of the user’s real location in Scenario A, but there 

are only enough or few locations whose historical query probabilities are the same as that of the user’s real location in 

Scenario B or C. Moreover, we can obtain the maximum entropy Hmax = log2 k under Scenario A. Thus, the DLS and DLP 

algorithms can achieve larger entropy in Scenario A than that in Scenario B or C. 

 
Fig.5: Entropy and running times under Scenario A 

 
Fig.6: Entropy and running times under Scenario B 



Fig.7: Entropy and running times under Scenario C 

Figure 8 illustrates the probability of query recognition in the different schemes. The simulation results show that the DLP 

algorithm has lower probability of query recognition than the DLS algorithm under the same attack. Moreover, the 

probability of query recognition does not vary much with the anonymity degree k in the DLP algorithm compared with the 

DLS algorithm. Furthermore, although the probability of query recognition of the DLS algorithm decreased with the growth 

of the value of k, the probability of query recognition is still higher than that of the DLP algorithm. In particular, when the 

number of cases for randomly selecting k-1 cells from 2k cells achieves the maximum C
k-1 

2k , the probability of query 

recognition can be near 100% for the DLS algorithm. Therefore, the DLP algorithm has a better performance on probability 

of query recognition than DLS algorithm. 

Fig.8: The probability of query recognition for Scenario C 

7. DISCUSSIONS

Two topics, our contributions in the data-driven IoT service and the extension of this work, are presented for discussion. 

7.1 Our contributions in data-driven IoT services 

  The data-driven IoT services take consideration for big data and IoT fusion which have become increasing important for 

security. Our contributions are summed up as follows. The DLP algorithm can satisfy velocity since the rate of data 

processing is fast and efficient, with a better performance than the competing DLS algorithm as demonstrated in Section 6.3. 

The DLP algorithm has been tested with three different user scenarios and results are consistent and accurate. Experiments 

with ADLS also support the consistency and accuracy of probability of query recognition. Thus, our work also satisfies 

veracity for data-driven IoT services. Finally, the cases presented in our paper illustrate that the DLP can be useful to protect 

the users’ privacy and validate results with the users’ real locations. Hence, validity for data-driven IoT services has been 

demonstrated in our theoretical development supported by simulation results. 

7.2 Extension of Our Work 

Multi-layered security proposed by Chang et al. [54] has demonstrated that penetration testing and ethical hacking of 



injecting 10,000 known viruses and Trojans in 2013 can be blocked and isolated, with 99.9% success rate. Multi-layered 

security can be blended with ADLS as an emerging IoT service to ensure that hacking by malicious files injections can be 

minimized. Experiments demonstrated by Chang and Ramachandran [55] have demonstrated that when 10 petabytes of data 

has been undergone for penetration ethical tests, multi-layered security can block and kill 99.9% of known 2013 vulnerability. 

In addition, locations can be pointed back to the Data Center hosting secure mobile services, so that anyone who plan to track 

users, the only locations shown are the central server for mobile services without revealing the exact users’ locations. 

8. CONCLUSION

In this paper, we first theoretically analyze the Dummy-Location selection (DLS) algorithm, which is the current approach to 

protect users’ location privacy in LBS for IoT. Then, we discussed the current attack algorithm for DLS algorithm (ADLS) to 

identify the user’s real location from chosen dummy locations generated by DLS algorithm. To efficiently preserve users’ 

location privacy, we also propose a new Dummy Location Privacy (DLP) algorithm, by taking into account the equilibrium 

between the computational cost (i.e., time complexity) and the privacy requirements of users. Based on the obtained side 

information and the entropy metric, DLP algorithm greedily selects dummy locations to achieve the optimal privacy level of 

k-anonymity. We also analyze the security performance of the proposed DLP algorithm against potential attacks in the 

data-driven IoT service. Finally, we evaluate our DLP algorithm and ADLS algorithm by conducting extensive simulation 

experiments under various scenarios. The simulation results show that our ADLS algorithm has high probability of 

identifying the user real location from the dummy locations generated by DLS algorithm. Moreover, comparing with the DLS 

algorithm, our DLP algorithm has lower probability of revealing the user real location under the same attack, and can reduce 

the computational cost (i.e., time complexity) when providing same privacy level as the DLS algorithm. It will generate great 

impact for the data-driven IoT service to prevent attacks and preserve location privacy. 
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