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Abstract: Among all image representation and classification methods, sparse representation has proven to be an extremely
powerful tool. However, a limited number of training samples are an unavoidable problem for sparse representation methods.
Many efforts have been devoted to improve the performance of sparse representation methods. In this study, the authors
proposed a novel framework to improve the classification accuracy of sparse representation methods. They first introduced the
concept of the approximations of all training samples (i.e., virtual training samples). The advantage of this is that the application
of virtual training samples can allow noise in original training samples to be partially reduced. Then they proposed an efficient
and competent objective function to disclose more discriminant information between different classes, which is very significant
for obtaining a better classification result. The devised sparse representation method employs both the original and virtual
training samples to improve the classification accuracy since the two kinds of training samples makes sample information to be
fully exploited in a good way, also satisfactory robustness to be obtained. The experimental results on the JAFFE, ORL,
Columbia Object Image Library (COIL-100) AR and CMU PIE databases show that the proposed method outperforms the state-

of-art image classification methods.

1 Introduction

Image classification [1, 2], as a computer vision technology [3-7],
has been developing rapidly. Meanwhile, it has also attracted
considerable attention in recent years [8]. Achieving good image
classification result is the basis for many socioeconomic and
environmental applications. Therefore, researchers and scientists
have made great efforts in devising advanced -classification
methods and technologies to improve classification accuracy [9—
12].

Among all methods of image representation and classification,
sparse representation has proven to be an extremely powerful tool
[13—15]. The basic model of sparse representation indicates that the
test sample can be represented approximately by using a weighted
sum of the training samples. It's pointed out that the weight
coefficients are sparse. In other words, the most coefficients are
zero or close to zero in the weight coefficients vector. In general,
sparse representation relates to an underdetermined system of
linear equation y = Da, where y denotes the test sample, D is a
dictionary (or training samples matrix) and « is a coefficient vector.
Moreover, many variations and extensions of sparse representation
have been proposed in the past few years [16-20]. Wright et al.
[21] presented a sparse representation-based classification (SRC)
method, which exploits the discriminative nature of sparse
representation to perform classification. Zhang et al. [22] proposed
an efficient image classification scheme, namely collaborative
representation (CR)-based classification with regularised least
square (CRC_RLS). Naseem et al. [23] gave a robust linear
regression classification algorithm. He et al. [24] proposed a new
multiple linear regression model which can regularise correntropy
to enhance the robustness of pattern recognition. Xu et al. [25]
proposed a novel transfer subspace learning method which
integrates the methods of changing data's representation and
classifier design. Deng et al. [26] extended SRC into commercial
applications, these applications are designed primarily for the case
of a single training sample of each class. Moreover, considering the
non-linear relationship of samples and usage of different features
with non-linear metrics, Wang et al. [27] proposed a kernel CR
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scheme for linear and non-linear representation-based approaches.
Motivated by the fact the different features of a sample contribute
to the object representation and classification differently, Wang et
al. [28] proposed a novel relaxed CR (RCR) frame to exploit the
similarity and distinctiveness of features effectively. A low-rank
sparse coding method is proposed by Zhang et al. [29], which
exploits local structure information among features of an image to
achieve image classification. Yang et al. [30] proposed an
extension of the spatial pyramid matching method. This method
calculates a spatial-pyramid image representation based on Scale-
invariant feature transform sparse codes. It can reduce the
complexity of SVMs.

Intuitively, the sparsity of coefficient vector e can be measured
by the [-norm [31], which counts the number of non-zeros in
vector . However, the /;-norm minimisation is a NP-hard problem
[32-34]. To solve this problem, the /-norm minimisation, as a
good convex approximation of /-norm minimisation, is widely
employed in sparse coding [35, 36]. Even so, as reviewed in [22],
the /,-norm minimisation is still time consuming, hence many
researchers strive to seek fast algorithms to solve the problem of
time consumption. Yang et al. [37] summarised five representative
fast [-norm minimisation methods, i.e. homotopy, proximal
gradient, gradient projection, iterative shrinkage-thresholding and
augmented Lagrange multiplier [38]. The researchers found that /.-
norm based representation method [39] can avoid over-fitting and
improve the generalisation ability of the classification model. The
closed-form solution can be derived by /,-norm regularisation. In
addition, /,-norm tends to produce a small number of non-zero
weight coefficients, while /,-norm usually can obtain more non-
zero weight coefficients. Therefore the /,-norm minimisation can
get a ‘limitedly-sparse’ representation solution. The solution has a
property which is discriminative and distinguishable but not really
sparse enough [40]. Nevertheless, we cannot deny the fact that the
discriminative capability of the solution is helpful for image
classification. Moreover, the authors of [41, 42] demonstrated that
the influence of the sparsity on image classification is not strong by
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conducting lots of experiments. Zhang et al. [22] confirmed that
the sparsity based on /,-norm minimisation could not really make
critical differences in classification, and so proposed a new method
based on [/,-norm minimisation, namely collaborative
representation classification method. It's classification accuracy is
higher than SRC. Similarly, Shi et al. [42] proposed to use the
simple [-norm minimisation to achieve more effective

classification, and pointed out that the sparse approximation could
not satisfy the needs of robustness and required performance.
Accordingly, more methods based on /,-norm minimisation have

been proposed. Xu et al. [43] proposed a two-phase test sample
representation method for face recognition. This method is an [,
regularisation-based representation method. Liu et al [44]
proposed a novel representation-based palmprint recognition
method, which also belongs to /,-norm based method and classifies
the test sample according to an approximate representation of the
test sample. Xu et al. [45] proposed to use the classification
procedure of sparse representation to improve the nearest
neighbour classifier.

However, a sufficient number of available training samples are
the basis for all the above mentioned methods [46—48]. Hence,
various methods have been proposed for solving the problem of
non-sufficient training samples in recent years. For example, a
scheme was proposed in [49], which exploits the symmetry of the
face to generate new samples, and devises a representation-based
method to perform face recognition. Ryu et al. [50] proposed a
method that adds virtual training samples into the training sample
set. These virtual training samples are generated adaptively on the
basis of the spatial distribution of each class's training samples. Xu
et al. [51] proposed a novel method to improve the face recognition
accuracy by synthesising virtual training samples. Wang and Yang
[52] used the idea of perturbation to produce virtual training
samples. A novel representation-based classification method,
which integrates conventional and the inverse representation-based
classification into face recognition, was also proposed by Xu et al.
[53].

This paper aims to improve the classification accuracy of the
sparse representation method in image classification. We proposed
a novel method for image classification. Firstly, inspired by the
prior work on virtual training samples, we introduced the concept
of the approximations of all training samples, (i.e., virtual training
samples [54]), which can expand the training sample set and solve
the problem of non-sufficient training samples. Then we proposed
an efficient and competent objective function to disclose more
discriminant information between different classes, which is crucial
and significant for obtaining good classification results. The
devised sparse representation method simultaneously used the
original and virtual training samples to perform classification. The
use of virtual training samples allows noise in original training
samples to be reduced partially and satisfactory robustness to be
obtained. Simultaneously, the use of the original and virtual
training samples makes sample information to be exploited in a
more comprehensive way. In this method, we take advantages of
the score level fusion, which has proven to be very competent and
is usually better than the decision level and feature level fusion.
Superficially, it is hard to set initialisation for the approximation of
all training samples mentioned above. However, we can determine
that the number of virtual training samples and original training
samples are the same. When designing the objective function, we
assumed that the initialisation of approximation of all training
samples is the same as the training sample matrix. Then after the
optimal coefficient vector is solved, this approximation will be
updated. We will show the solution procedure in detail in Section
2. The experimental results show that the proposed method
outperforms the state-of-art image classification methods. The
main contributions of our work are as follows: (i) It proposed a
simple and reasonable way to enhance the distinctiveness of
different classes, besides, this method is compatible with the nature
of sparse representation. (ii) The proposed method can obtain very
accurate classification results by integrating the original and virtual
training samples properly.
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The remaining parts of this paper are organised as follows.
Section 2 presents the description of the proposed method in detail.
Section 3 analyses the advantages and rationale of the proposed
method. Sections 4 and 5 offer the experimental results and
conclusion, respectively.

2 Description of the proposed method

Let ¢ denote the number of classes, each class provides # training
samples. Then N (N = ¢ * n) stands for the total number of training
samples. Furthermore, let matrix X; = [x ,xm-] O0<i<o)
ni-1n+s (0 <s S }’l), a
column vector, stands for the sth training sample in the ith class.

ni-n+1°°°°
denote the samples of the ith class, where x

We define the training sample matrix as
X=[X,...X.]= X1 Xy ysrs oos Xy - Xy]- Let  column
vectory stand for a test sample. In addition, x,, ..., xy and y are all

D-dimensional column vectors. Hence X is a D X N matrix.
We define the objective function as

C C C
min AXNX=ZAL+0 ), D BZZp+ 1l y-2Zp 15 (1)
> i=1

i=1j=1

where Z is the approximation of all the training samples, namely
virtual training samples. 1, and 4,, two small positive constants, are
used to balance the effect of the three terms in the proposed
objective function. S denotes a coefficient vector, i.e.

ﬁi = [bn(i—l)+1’bn(i71)+2’ ""bni]T’
B=1Br- B =1l s1s e bypn byl Tt should be

noted that 2,3 ¥5_, AV A ;B; is a constraint on 5. Meanwhile,
it can be easily verified that the objective function in formula (1) is
convex and differentiable. We will prove that this objective
function is convex in subsequent Section 3.2. Hence the stationary
point of the objective function is the optimal solution of (1). The
derivative of the objective function is computed as follows.

Firstly, we assume that # is known, and derive the partial
derivative of the objective function w.r.t Z, i.e.

WO NX=ZAE+4, 0 Y BZZ B+ | y-2ZB I

i=1 i=1j=1

9
oZ

Let
HB.2) =4 Y I Xi=Z I+ 4 ), 3 AZZp
i=1 i=15=1
+y-Zp II5
then
0 2 T
ﬁ(ll y=ZB5) = -20-2p)p". 2

Next, assuming

W2 =4 YN X2+ 4 Y X BZZp,

i=1 i=1j=1

we take the derivative of function /,(Z) w.r.t Z. However, function
h,(Z) does not explicitly contain Z. Hence we firstly seek partial
derivatives oh,/0Z, (k =1, ..., c¢), then we obtain derivative oh,/0Z
according to 0h,/dZ,. In addition
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ﬂTZTZ =(zp )Tz b=

-1zp ||2).

(|| ZB+ZB -1 ZB 11

Based on the above analyses, /,(Z) is redefined as (see (4) and (5))
Thus, the partial derivative over Z, of h (Z) is (see (5) and (6)) then
(see (6)) Let

AT .0
M =|: 2o,
0 B
then
ahl T
= =20, (X = Z)+ 20, 2P — 20,ZM, . (7)

oz

By combining (2) and (7), the derivative over Z of function H(f, Z)
is

oH _
oZ ~
+2Zp4T.

=24, X +24,Z + 20, ZBp" — 20,ZM | — 2yp"

®)

To obtain the optimal solution of the objective function, we let
OH/0Z)=0, ie. Z(AJ+LA"— LM, + Bp") =1 X +yp".
Hence, under the condition that variation f is known, the optimal
value of variation Z is

Z=(AX + "I+ 2,p6" — .M, + pp") . )

Secondly, we assume that variation Z is known, and derive the
partial derivative of the objective function w.r.t f, i.e.

a/; Zux Z||+AZZﬂTZTZﬂ+||y Zp 1

i=1lj=1

W@ =AY N X240 Y Y 727,

i=1 i=1j=1

=all X IX=ZE|+ 1 X =2 |+ 5| X (1Z6+Zb =1 26 1L~ ZA 1)
1=il:;.].(.,L l=[1#,.].<.,L
+ Y (1ZB+ZB =11 2B 2= Z,8; 1)+ Z Z (|| ZH+ZB -1 Z B 1= 1 Z,5;11) )
i=1,....c =1,.
! J#Fk # Jj# k
= __Z I X, = Z B[+ | X, - Z, | 12 (1 ZB+ZB N2 =1 2B 12— 11 2B, 1)
T l_z;ék
2
7 X 12 (I Zp+2Z, 1= 1 Zp 2= N Z,B; 1)
A=t
/1,2 I X, = Z; |2+ 4 2 Z/}TZTZ
i=1 i=1j=1
0
= 57| Ml X= 2, ||§+A,_IZ (126, + 2= 1 25, 1= 11 245 1)
NEYS
= -UX=Z)+4 Y. (2AZp+ZB)B - 2Z5) -
lfilyéj(.,c
= —%X, = Zp+ 2 Y, (2ZpF)
l:ily’é‘lg,c
= —20,(X,—Z)+24| ) Z,-ﬁ,-ﬂz)—zkﬂkﬂz]
i=1,...,c
= —20,(X, = Z) + 2L,ZBB{ — 20,2, B,
oh, _[oh,  oh,
=[-24,(X, = Z)) + 20,ZBB} = 20,Z BB, ... =24, (X, — Z,) + 20,ZpB} — 20,2 BB}
(6)
BB 0
= —2,(X —-Z)+20,Zpf" - 22,2 : il
0 B.BY
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We can obtain

%(u y=Zp 1) = - 22"y~ 2p). (10)

Let h(f) =AY X5 BiZZp, Similarly, h(f) dose not
explicitly contain f, so we must seek partial derivatives oh,/df,
(k=1,...,c). Then we get derivative 0h,/df according to all
0h,/0p,.

Based on (3), &,(p) is redefined as (see (11) and (12)) Next, the
partial derivative over f, of h,(f) is (see (12)) Then, derivative
oh,/0p is

a_ﬁl 2’12ZTZ/} - ZJ’ZZVIFZ]/}]
oh, .
P

oh, | (2A0,21Zp 22,27 p,

oh
a_ﬁ2 =21,ZTZp - 20,M,p. (14)

According to (10) and (14), we obtain the following derivative over
p of function H(S,Z):

‘;—Z = 20,2 23 - 2,M,p - 2Z"(y - Z). 15)

Let (0H/9p) = 0, i.e. (L,Z"Z — 1,M,+ Z'Z)p = Z"y. Hence, under
the condition that variation Z is known, the optimal value of
variation f is

p=(n2"7 - M, +22) 7"y, (16)
To eventually determine the optimal solutions of Z and f, the

training samples matrix X is considered as the initial value of Z,
then the initial value of f is obtained in terms of (16). Likewise, the

P (13) latest value of Z can be calculated by exploiting the initial value of
¢ p and (9). These processes are implemented iteratively, until the
7'z, .. 0 results meet the final qualification.
207252 : . . g In addition, our method employs the original training samples
e 7 ’ ) ’ to represent the test sample. According to the research of the
0 ZLT,ZC reference literature, the objective function based on the original
training samples can be written as
Let
C C
-~ 0 min 4,y YN X5+ X5 P+ 1 y-XA12. (D)
1444 e Ij i=1 j =1
M,=]| : . o A
A / Hence, we can obtain the optimal solution f,;,, of the original
o training samples
thus N . -
ﬂuriginal = ((l + 2/13)X X+ ZAXCM) X y. (18)
C C
B =k Y HZZp
i=1f=1
A
=5 12 (1 ZB+ZB =11 25 12 = | Z,Be 1)
i=1,...,c
ik
. (1 Zp+ 2, 1L =1 ZB 2= 1 2,8, 1)
ji=1..c
J#k
(1)
+ 2 Y (NZp+Zp -2 - 1128 1)
i=T..cj="1..
l i#k i ./']#k ‘
= Y (1ZB+Zp =126 15~ 1 25 1)
i :il#,.].(qc
A
+5 12 ‘ 12 (I ZB+ZB =1 ZB =11 ZB; 1)
i=1,...,cj=1,...,c
i TR
oh, 9 N\ T T
—2_91, T7T7 3.
o aﬁk( 3 Sz,
0
= m(ﬂz IZ (1 ZB+ZB =1 ZS 12 = 1 Z,B 1)
i=1,...,c
[Py (12)
=k Y ZEZP+Z)-2ZZp) =0 Y, (2ZZP)
i=1,..., i=1,...,
P P
_ uz[( Y zzziﬁi) - zzzkﬁk] = 2A12p - 2050
i=1, c
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Fig. 1 Some original training samples in the JAFFE face database and their corresponding virtual training samples

We summarise the main steps of the proposed method as follows:

Step 1: We set the initial value of Z as training sample matrix X.
Let Z° denote the initial value of Z. According to (16), we get the
initial value of g, and let §° stand for the initial value of .

Step 2: We update Z° by exploiting ° and (9), and let Z' denote the
latest value of Z. Then we update #° by using Z' and (16). #' stands
for the latest value of f.

Step 3: Repeat step 2. The iterative updating is not terminated until
one of the following two conditions is satisfied. (a) The number of
iterations is greater than the predefined maximum value. (b)
| Z"*'=Z' || <eand || B = ' || <e. Z" and B’ denote the value
of Z and f at time ¢, respectively. & stands for a small positive
constant.

Step 4: After obtaining the optimal Z' and f/, we use original
sample matrix X to perform image classification. The distance
between the test sample and the ith class is obtained using the
class-specific residual, ie. u,=| X,8,—y ||§ (i=1,...,c). Let s
denote the score of test sample y with respect to the ith class.

Step 5: We use virtual training samples Z to perform image
classification. The distance between the test sample and the ith
class is obtained by using the class-specific residual, i.e.
v,=1Zp -y ”j (i=1,...,¢). Let 5; denote the score of test

sample y with respect to the ith class.

Step 6: The weighted score level fusion is conducted by combining
the scores obtained in the fourth and fifth steps. For the test sample
¥, We use s;=w,s; +w,s; to calculate the ultimate score with
respect to the ith class. w, and w, are the weights. Let w, +w, =1
and w, be smaller than w,. If j = arg min, s;, then test sample y is
assigned to the jth class.

3 Analysis of the proposed method

This section analyses the advantages and rationalities of the
proposed method and gives meaningful conclusions.

3.1 Advantages of the proposed method

The first advantage is that the proposed method put forward a
novel way to generate virtual samples. That is, the proposed
method of generating the virtual training samples is based neither
upon the symmetrical structure of the face, nor upon the mirror
image, but upon the objective function. Concretely, we first assume
that the approximate values of the original training samples are in
existence. Then we construct an objective function based on the
approximate values of the original training samples. We can obtain
the virtual training samples in the process of solving the optimal
value of the objective function. Moreover, the virtual training
samples obtained by our method reflect possible variation of
illuminations and facial expressions. According to the first term of
the objective function (i.e., 4,25_, Il X; - Z; ||§), virtual training
samples matrix Z is the approximate value of all original training
samples matrix X, by definition, the number of virtual training
samples is equal to that of original training samples. In addition,
we can observe that test sample y is involved in the generation of
virtual training samples from ) (i.e.,
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Z=(AX+yp")Ad+ 186" - 1M, + ﬂ/}T)"), which is helpful for
representation methods to better represent and recognise the test
sample.

The first four face images of each subject in the JAFFE face
database are used as training samples, the remaining images are
considered as test samples. The first column in Fig. 1 shows the
original training samples, the subsequent columns show the
corresponding virtual training samples which are produced by
combining test samples from the same class. Similarly, the first two
face images of each subject in the ORL face database are
considered as training samples, the remaining images are taken as
test samples in the ORL face database. In Fig. 2a, the first column
shows the original training samples, the subsequent columns show
the corresponding virtual training samples which are produced by
combining test samples from the same class. On the contrary, in
Fig. 2b, the first column shows the original training samples, but
the subsequent columns show the corresponding virtual training
samples which are produced by combining test samples from
different classes. It is clear that test samples have an effect on only
the training samples which are from the same class, while test
samples from different classes almost have no influence on training
samples. In other words, the virtual training samples generated by
exploiting the same class of the test sample would be more close to
the test sample. Experimental results presented later also show that
the proposed method could achieve more accurate classification.

The second advantage is that our method proposed an effective
way to enhance the distinctiveness of different classes. This
advantage will be amply explained in the second paragraph of
Section 3.2. We explain some advantages of the /,-norm
minimisation as follows. The proposed /, regularisation-based
method has satisfactory performance. As shown later, the proposed
method obtains more higher classification accuracy than CRC in
some databases, which is a typical example of /, regularisation-
based representation method. Furthermore, the proposed method
also illustrates that collaboration plays important roles in sparsity
representation methods. It is beneficial to decrease correlation of
the approximate representation of the test sample generated from
different classes. Moreover, our method can also enhance the
distinctiveness of different classes, which 1is helpful for
representation methods to obtain discriminative class-special
residuals and to achieve excellent classification accuracy.

As mentioned before, the /,-norm minimisation can obtain a
‘limitedly-sparse’ representation solution, but the solution of the
proposed method is discriminative. Representation coefficients
obtained using the proposed method, CRC and 1/-Regularized
Least Squares [55] methods which are a regularisation-based
representation methods are shown in Fig. 3. It is intuitive that the
representation coefficients of training samples from the same class
as the test sample have distinct differences from other coefficients.
Hence, we can directly determine the labels of the test sample
according to the representation coefficient distribution shown in
Fig. 3. Moreover, we can also see that representation coefficients of
these three methods have somewhat similar distributions.

3.2 Rationalities of the proposed method

In general, the previous representation-based classification
methods can work under the premise that the test sample is
represented by training samples. However, the dimension of the
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Fig. 2 Some original training samples in the ORL face database and their corresponding virtual training samples

(a) the first column shows the original training samples, and the subsequent columns show the corresponding virtual training samples which are produced by combining test samples

from the same class, (b) the first column shows the original training samples, and the subsequent columns show the corresponding virtual training samples which are produced by

combining test samples from different classes

sample vector is always larger than the number of the training
samples in image classification. Meanwhile, affected by the
variation of illumination conditions, facial expressions and poses,
the linear combination of training samples is just an approximation
value of the test sample and it cannot accurately represent the test
sample. These factors are called small size sample (SSS) problem.
Thus it is the key to solve the SSS problem and to improve the
precision of the representation of the test sample by using the
training samples. The proposed method designs an objective
function based on virtual samples, meanwhile virtual samples can
be obtained by solving the optimal value of the objective function.
The test sample is involved in the process of generating virtual
samples. In other words, the generated virtual samples are similar
to the test sample in some extent, which is beneficial to the
improvement of the accuracy of image classification. For example,
we conduct an experiment on the JAFFE face database by taking
the first four images of each subject as training samples and the
rest of images as test images. Fig. 4 shows a case that our method
outperforms both the CRC and L1LS methods. According to the
experimental results, we concluded that the test sample from the
fifth class shown in Fig. 4a is erroneously classified to the first
class in Fig. 46 by CRC and LI1LS, respectively. However, our
method can correctly classify the test sample to the fifth class in
Fig. 4c.
In Second, we designed a subjective function

C C C
min 4, DX =Z+4 ) Y AZZp+Iy-ZB 1
s i=1

i=1j=1

Next, we will prove that it is a convex function. In [56], a theorem
and an example are given as follows.
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Theorem 1. Assume that f'is twice differentiable, i.e. its Hessian or
second derivative V’f exists at each point in dom f, which is open.
Then f'is convex if and only if domf is convex and its Hessian is
positive semidefinite: for all x € domf, V>f(x) > 0.

Example 1: Consider the quadratic function f:R" — R, with
domf = R", given by

f) = A/I)XPx+ g x+r,

with P is the set of symmetric n X n matrix, ¢ € R", and r € R.
Since V*f(x) = P for all x, f is convex if and only if P > 0 (and
concave if and only if P < 0).

Let

HBZD =02 N X, ~Z I +2 ) Y FIZIZp,

i=1 i=1j=1

+Ily-Zp 13

when  variation f is  known, one derivative is
VH(Z) = =2, X +20,Z + 20,267 = 20,ZM, = 2yp" + 2Z 4"
according to formula (8). Furthermore, second derivative is
V’H(Z) = 22,1 + (24, + 2)p" — 20,M , where I is a unit matrix of
size N X N, and
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BT .. 0

0 - ppr

V’H(Z) is a symmetric matrix of size N x N. All principal minors
of V’H(Z) are greater than or equal to zero, hence V’H(Z) is
positive semidefinite matrix, V’H(Z) >0. We can draw a
conclusion that H(f,Z) is convex if § is known. Similarly, when
variation VA is known, one derivative is
V'H(p) = 20,272 — 22,M,f — 2Z"(y — Z§) according to formula
(15). The second derivative is V’H(f) = (24, + 2)2"Z — 24,M,,
where

M,=| : - i
0o - Z'z

V’H(p) is also a symmetric matrix of size N x N, all the principal
minors of V’H(f) are greater than or equal to zero, so V’H(f) is a
positive semidefinite matrix, V’H(f) >0. We can draw a
conclusion that H(f, Z) is convex when variation Z is known.

Next, we will analyse the effect of each term of the objective
function of the proposed method in detail. The first term of the
objective function is A,)_, Il X;—Z; ”j’ Since Z is the
approximation of training sample matrix X, it can also be
understood that Z ~ X. min {112?21” X, -z, ||z} is designed to
obtain the minimum residual between the original and virtual
training sample. From Fig. 1, we can observe that though the

= Our method based on virtual samples
=—t- Our method based on original samples
% - CRC
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06—
04—
k!
2
=
02+
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*
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/ 0
_’i |
J
]
02/
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/ !
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3
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M A A ﬂ' L + iy A (k] i 1l .t. - o d 3
X g ) i LT g ; i . : 1 FATAE \ T U )
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Fig. 3 (a) Representation coefficients on the first test sample of the JAFFE face database obtained by using the proposed method, CRC and LI1LS methods.
The first four face images of each subject are used as training samples and the remaining images are used for testing, (b)—(d) Representation coefficients on
the first test sample of the ORL face database obtained by using the proposed method, CRC and L1LS, respectively. The first five face images of each subject

are used as training samples and the remaining images are used for testing

Fig. 4 Test sample that is erroneously and correctly classified by different
methods

(a) Test sample from the fifth class, () and (c) Respectively give each one sample
from the first and the fifth classes

virtual training samples seem to be similar to the original training
sample, they indeed reflect possible variation of face in
illuminations and facial expressions. Meanwhile they are similar to
the test sample from the same class to some extent. As far as the
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second term of the function is
2, Z;:l ;rZiTZjﬁj be
Mo 5:1ﬂiTZlTZ_/ﬂj=lzzlf':lz:;:l(liﬂi)TZjﬁj. Therefore, the
minimisation of 4,277, >_, ﬂiTZiTZjﬂj indeed means that the
minimisation of (Z,8)'Z B where Zp, stands for the

representation result of the test sample obtained by the virtual
training samples of the ith class, and it is a column vector of size

D x 1. Hence (Ziﬁi)TZjﬂj equates to an inner product of two
column vectors, ie.
min ((Z,8)"2;8;) = min (|| Z;B, | Z;B; || cos ), where || Z;B, II,
is the length of vector Z,5;, ¢ is an angle between Z,4; and Z ;. So
the minimisation of (Z,8)'Z;; is similar to the minimisation of
cosf. According to the principle of mathematical trigonometric

concerned,
rewritten as

objective
can
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Fig. 5 Some face images from the JAFFE database

Table 1 Rates of the classification accuracies of different methods on the JAFFE face database

Training samples per class 2, % 3, % 4, % 5, % 6, %
proposed method 82.22 83.53 95.00 96.00 98.57
CRC 78.89 77.65 86.88 88 90.71
L1LS 81.67 80.00 85.63 87.33 91.43
Homotopy 81.11 79.41 87.50 88.00 92.14
DALM 81.11 79.41 87.50 88.00 92.14
LRC 77.78 77.65 83.13 82.00 86.43
FISTA 81.11 79.41 87.50 88.00 92.14
MI_SRC 73.89 78.57 80.00 74.00 87.50

Fig. 6 Some face images from the ORL face database

function, a bigger the angle 0 means a smaller value of cos . With
the increase of 6, the distance between Z,8; and Z,f3; becomes

larger, which implies that the correlation between Z,5; and Z,f; is

reduced. So minimisation of the sum of (Z,5,)'Z f3; can achieve the

de-correlation effect for different classes and representation results
of different classes would be very discriminative. Hence, the
proposed method is able to classify the test sample with a higher
accuracy. The third term of the objective function is || y — Zg ||3,
which aims to achieve the minimum residual between the test
sample and representation result of all virtual samples. Since real
data always contains noises, representation noise is unavoidable in
most cases. So this residual can also be regarded as noises. The
alleviation of noises is also helpful to improve the classification
accuracy. It should be noted that the role of f is similar to p in the
CRC RLS method (ie., p=arg min,, {|| y=Xp |2+l p ||§}).
Based on the above analyses, minimising cos § can make sure that
P is conducive to classification. Finally, we obtain the optimal
values of Z and f by exploiting an iterative method.

4 Experimental results

In this section, we use the ORL [57], JAFFE [58], Columbia
Object Image Library (COIL-100) [59], AR [60] and CMU PIE
[61] databases to conduct face recognition and image classification
experiments. In addition, we compare the proposed method with
other methods, including CRC, L1LS, Homotopy, FISTA [62],
mirror image and the representation-based classification method
(MI_SRC) [63], dual augmented Lagrangian method (DALM)
[64], RCR and linear regression classification (LRC) [65].

4.1 Experiments on the JAFFE database

The JAFFE face database contains 213 images of seven facial
expressions (six basic facial expressions and one neutral) posed by
ten Japanese female models. Each image has been rated on six
emotion adjectives by 60 Japanese subjects. The database is
planned and assembled by Michael Lyons, Miyuki Kamachi, and
Jiro Gyoba. The photos are taken at the Psychology Department in
Kyushu University. The size of an image is 256 X 256 pixels. In
our experiments, each face image is resized to 64 X 64 image, we
only use a consisting of 200 images from 10 subjects with each
subject providing 20 images. Fig. 5 shows some face images from
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the IAFFE face database. We, respectively, take the first two, three,
four, five and six face images of each subject as the training
samples and regard the rest face images as the test samples. The
experimental results are shown in Table 1.

We introduce the implementation details of the compared
methods. Firstly, for the proposed method, parameters 4, 4, and 4,,

respectively, are assigned to 0.01, 0.001, and 0.001. The number of
the maximum iterations is assigned to 10, and the parameter of
CRC is 0.1. For LILS method, the optimal value of the
regularisation parameter is assigned to 0.1. The parameters of the
DALM, FISTA and Homotopy are assigned to 0.01.

As shown in Table 1, it is obvious that the proposed method
obtains the best recognition rate of 98.57%. The recognition rate is
greatly improved by using the proposed method. For instance,
when the number of training samples is four, the classification
accuracy rate of our method can greatly outperform the CRC,
L1LS, Homotopy, DALM, LRC, FISTA and MI SRC methods by
a list of 86.88, 85.63, 87.50, 87.50, 83.13, 87.50 and 80.00%,
respectively. Hence, the proposed method can achieve higher
classification accuracy than other methods on the JAFFE face
database.

4.2 Experiments on the ORL database

We perform experiments on the ORL face database which includes
400 face images taken from 40 subjects, and each subject provides
10 images. For some subjects, the images are taken at different
times, varying the illumination conditions, facial expressions (open
or closed eyes, smiling or not smiling) and facial details (glasses or
no glasses). All images are taken against a dark homogeneous
background with the subjects in an upright, frontal position (with
tolerance for some side movement). The original size of an image
is 92 x 112 pixels. Each image is resized and cropped to 46 X 56
pixels. Some face images from the ORL face database are shown in
Fig. 6. In our experiments, we treat the first one, two, three, four,
five and six face images of each subject as original training
samples and take the rest of face images as test samples. The
experimental results have been shown in Table 2.

In our method, parameters 4,, 4, and A, are assigned to 0.0001,
0.00001 and 0.001, respectively. The number of the maximum
iterations is assigned to 10. For CRC, parameter is assigned to 0.1.
In addition, the parameters of the L1LS, DALM and Homotopy are
assigned to 0.01. The parameter of FISTA is assigned to 0.001.
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Table 2 Rates of the classification accuracies of different methods on the ORL face database

Training samples per class 1, % 2, % 3, % 4, % 5, %
proposed method 71.11 87.50 88.93 9417 94.00
CRC 71.67 83.75 86.07 91.25 90.50
L1LS 71.94 86.25 88.57 92.08 92.50
Homotopy 72.78 86.56 89.64 91.43 92.14
DALM 72.78 86.11 88.33 91.11 92.22
LRC 67.50 79.37 81.43 86.25 88.00
FISTA 72.78 86.11 88.33 91.11 92.22
MI-SRC 71.11 82.19 87.86 87.92 88.50

Fig. 7 Some images from the COIL-100 database
(a) Case 1, (b) Case 2

Table 3 Rates of the classification accuracies of different methods on Case 1 of COIL-100 database

Training samples per class 3, % 4, % 5, % 6, % 7, % 8, % 9, %
proposed method 67.33 67.68 66.92 67.29 67.27 68.00 67.50
CRC 61.67 61.25 61.54 63.12 64.09 64.00 65.28
L1LS 63.50 64.46 64.81 65.00 64.55 65.00 65.00
Homotopy 63.33 62.50 61.00 59.83 58.17 57.33 63.83
DALM 63.33 62.50 61.00 59.83 58.17 57.33 63.83
LRC 60.33 61.96 62.50 63.54 64.77 65.00 66.67
FISTA 63.33 62.50 61.00 59.84 58.17 57.33 63.83
MI_SRC 63.17 63.04 64.42 65.00 66.36 67.00 68.00

As can be seen from Table 2 that our method is superior to the
other methods. Our method obtains the best recognition accuracy
of 94.17%, when the number of training samples is four, and has
2.09, 3.06 and 3.06% higher than the L1LS, DALM and FISTA,
respectively. Moreover, when we take the first five face images of
each subject as training samples and the rest face images as test
samples, the classification accuracies of our method, CRC, L1LS,
Homotopy, DALM, LRC, FISTA and MI_CSR methods are 94.00,
90.50, 92.50, 92.14, 92.22, 88.00, 92.22 and 88.50%, respectively.
Thus, experimental results show that our method can outperforms
other methods.

4.3 Experiments on the Columbia Object Image Library
database

Columbia Object Image Library (COIL-100) is a database of
colour images of 100 objects. The objects are placed on a
motorised turntable against a black background. The turntable is
rotated through 360° to vary object pose with respect to a fixed
colour camera. Images of the objects are taken at pose intervals of
5°. This corresponds to 72 poses per object. The images are size-
normalised. The size of an image is 128 x 128 pixels. We construct
two cases to evaluate different methods. In the first case (Case 1),
we use the first 18 images of each subject as samples, and select 40
subjects. In the second case (Case 2), we use the 19-36th images of
each subject as samples, and take 40 subjects. In addition, we take
the first three, four, five, six, seven, eight and nine images of each
subject as training samples and use the remaining images as test
samples. We simply crop all images and resize them to 64 X 64
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pixels. Some face images from the COIL-100 database are shown
in Fig. 7.

For the proposed method, parameters 1,, 4, and 4, are assigned
to 0.001, 0.0000001 and 0.001, respectively. The number of the
maximum iterations is assigned to 10. The parameters of CRC,
L1LS, Homotopy, DALM and FISTA are set assigned to 0.001.

Tables 3 and 4, respectively, show the rates of classification
accuracies of different methods. From the results, it is observed
that the proposed method obtains better classification accuracy
than the other methods. For instance, in Table 3, when the number
of training samples is eight, the classification accuracy of the
proposed method greatly outperforms the CRC, L1LS, Homotopy,
DALM, LRC, FISTA and MI_SRC methods by a series of 64.00,
65.00, 57.33, 57.33, 65.00, 57.33, 67.00%, respectively. In Table 4,
when we consider the first seven face images of each subject as
training samples and the rest of the face images as test samples, the
classification accuracy of the proposed method, CRC, LILS,
Homotopy, DALM, LRC, FISTA and MI_SRC methods are 66.82,
61.36, 64.77, 63.67, 66.14, 62.50, 64.79 and 63.41%, respectively.

4.4 Experiments on AR database

In the experiment, we use 3120 Gray images from 120 subjects,
each providing 26 images. These images are taken at different
times, with varying facial expressions, illuminations and facial
details (glasses/no glasses, scarves/no scarves). Each image is
normalised to 40 X 50 pixels. We take the first two, four, six, eight
and ten face images of each subject as the training samples,
respectively, and treat the remaining face images as the test
samples. The experimental results are shown in Table 5.
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Table 4 Rates of the classification accuracies of different methods on the Case 2 of COIL-100 database

Training samples per class 3, % 4, % 5, % 6, % 7, % 8, % 9, %
proposed method 57.17 61.61 66.15 66.67 66.82 69.50 71.67
CRC 51.83 56.61 57.88 57.71 61.36 63.00 65.28
L1LS 54.67 58.04 62.12 63.33 64.77 66.00 68.89
Homotopy 54.83 57.50 61.83 63.83 63.67 64.83 66.00
DALM 54.83 58.04 62.32 64.29 66.14 66.59 66.59
LRC 53.50 55.18 57.31 60.42 62.50 65.50 71.22
FISTA 54.83 57.50 61.83 65.63 64.79 65.63 65.83
MI_SRC 53.33 55.89 56.92 60.21 63.41 66.75 71.58
Table 5 Rates of the classification accuracies of different methods on the AR database

Training samples per class 2, % 4, % 6, % 8, % 10, %
proposed method 69.90 67.58 68.54 65.79 61.51
CRC 58.61 57.46 58.51 59.17 56.29
L1LS 66.28 64.92 65.88 63.43 59.27
Homotopy 65.63 64.17 65.29 63.01 58.49
DALM 65.63 64.17 65.04 63.01 58.49
LRC 59.62 58.14 62.54 59.54 54.74
FISTA 65.59 64.17 65.04 63.01 58.54
MI_SRC 55.14 53.30 57.92 55.42 50.47
RCR 65.83 67.23 66.13 65.60 58.59
Table 6 Rates of the classification accuracies of different methods on the CMU PIE database

Training samples per class 5, % 10, % 15, % 20, % 25, % 30, %
proposed method 25.00 26.75 28.40 29.12 30.96 31.99
CRC 19.92 22.65 24.05 25.53 27.49 30.39
L1LS 17.67 21.01 22.62 24.13 26.34 27.14
Homotopy 15.75 19.61 20.90 22.04 24.24 25.33
DALM 15.75 19.61 21.39 22.04 24.24 25.33
RCR 22.03 18.96 27.39 28.66 30.52 31.29
FISTA 15.74 19.89 21.55 22.04 24.24 25.33
MI_SRC 18.04 22.13 23.89 25.64 28.53 29.69

For our proposed method, parameters 4,, 4, and 4, are assigned
t010,000, 0.00001 and 0.0001, respectively. The number of the
maximum iterations is assigned to 10. From Table 5, we can see
that the proposed achieves a higher rate of classification accuracies
than all the other methods. For instance, when the first two face
images of each subject are used for the training samples and the
remaining face images are taken as the test samples, the rates of
classification accuracy of our method, CRC, L1LS, Homotopy,
DALM, LRC, FISTA, MI_SRC and RCR are 69.90, 58.61, 66.28,
65.63, 65.63, 59.62, 65.59, 55.14 and 65.83%, respectively.

4.5 Experiments on CMU PIE database

In this experiment, the CMU PIE database has 11,560 face images
of 68 subjects captured in different sessions with different pose,
expression and illumination. Each image is normalised to 32 x 32
pixels. The first 5, 10, 15, 20, 25 and 30 face images of each
subject are treated as the training samples, the remaining face
images are taken as the test samples. Table 6 shows the
experimental results.

For our proposed method, parameters 4,, 4, and 4, are assigned
t010,000, 0.00001 and 0.0001, respectively. The number of the
maximum iterations is assigned to 5. From Table 6, we can see that
the proposed achieves a relatively higher rate of classification
accuracies than all the other methods.

5 Conclusion

In this paper, we proposed a novel framework of sparse
representation method. The proposed method not only exploits
original training samples to perform sparse representation, but also
uses virtual training samples to perform classification. Moreover,
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according to the objective function, we know that the test sample is
involved in the generation of virtual training samples. That is,
virtual samples may be more consistent with the test sample. It is
helpful for the representation method to better represent and
recognise the test sample. In addition, we proposed an efficient and
competent objective function to enhance the distinctiveness
between different classes, that is, the proposed method can reduce
the correlation of the representations of the test sample generated
from different classes. The proposed method can also improve the
robustness of the sparse representation method. Moreover, we take
advantages of the score level fusion, which has proven to be very
competent and is usually better than the decision level and feature
level fusion. The effectiveness of the proposed method has been
demonstrated by extensive image classification experiments
including face recognition experiments.
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