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Abstract

The purpose of this paper is to provide the convergence theory for the iterative approach given by M.T. Chu [Numerical methods
for inverse singular value problems, SIAM J. Numer. Anal. 29 (1992), pp. 885–903] in the context of solving inverse singular value
problems. We provide a detailed convergence analysis and show that the ultimate rate of convergence is quadratic in the root sense.
Numerical results which confirm our theory are presented. It is still an open issue to prove that the method is Q-quadratic convergent
as claimed by M.T. Chu.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Inverse problems arise in many practical situations such as medical imaging, exploration geophysics, and nonde-
structive evaluation where some general properties, for instance matrices, are to be determined from known data, e.g.
eigenvalues, singular values, some prescribed entries. We refer to Chu and Golub [2] and Xu [6] for a comprehensive
survey on structured and unstructured inverse eigenvalue and inverse singular value problems.

In this paper we consider the inverse singular value problem which is formally defined as follows.
Problem ISVP: Given n real m×n matrices {Ai}ni=1, m�n and n nonnegative real numbers �∗

1 ��∗
2 � · · · ��∗

n, find
c ∈ Rn such that the singular values of the matrix

A(c) ≡ c1A1 + c2A2 + · · · + cnAn, (1)

are precisely �∗
1, . . . , �

∗
n.
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This problem was first proposed by Chu and in [1] two numerical methods for solving Problem ISVP are presented.
We restrict our attention to the second method of [1] which generalizes an effective iterative process proposed originally
by Friedland et al. [3] for solving inverse eigenvalue problems. In [1] it is shown that the iterative approach is a variation
of the Newton method and some convergence theory is provided. However, several theoretical issues raised in [1] deserve
further attention. Here we show that the proof of local quadratic convergence in the quotient sense given in [1, Theorem
4.2] missed a block of free parameters which might not be in the second order of accuracy and we demonstrate the
criticality of this block by providing some numerical examples. In addition, it seems to us that it is not clear how to
derive local quadratic convergence of the iterative method proceeding as in [1]. Our purpose is to fill this gap by laying
down a detailed convergence analysis of the iterative approach. Our analysis reveals that the iterative method converges
at least quadratically in the root sense. We recall that the definitions of root-convergence and quotient-convergence are
as follows

Definition 1 (Ortega and Rheinboldt [5, Chapter 9]). Let {xk} be any convergent sequence with limit x∗. Then, the
quantities

Qp{xk} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if xk = x∗ for all but finitely many k,

lim sup
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖p

if xk �= x∗ for all but finitely many k,

∞ otherwise,

(2)

defined for all p ∈ [1, ∞), are the quotient-convergence factors of {xk} with respect to the norm ‖ · ‖ on Rn and

OQ(x∗) =
{∞ if Qp{xk} = 0, ∀p ∈ [1, ∞),

inf{p ∈ [1, ∞)|Qp{xk} = +∞} otherwise,
(3)

is the Q-order of {xk} at x∗.

Definition 2 (Ortega and Rheinboldt [5, Chapter 9]). Let {xk} be any convergent sequence with limit x∗. Then the
numbers

Rp{xk} =

⎧⎪⎨
⎪⎩

lim sup
k→∞

‖xk − x∗‖1/k if p = 1,

lim sup
k→∞

‖xk − x∗‖1/pk
if p > 1,

(4)

are the root-convergence factors of {xk}. The quantity

OR(x∗) =
{∞ if Rp{xk} = 0, ∀p ∈ [1, ∞),

inf{p ∈ [1, ∞)|Rp{xk} = 1} otherwise,
(5)

is called the R-order of {xk} at x∗.

As the root-convergence is a weaker notion of convergence than the quotient-convergence, our result does not
contradict the claim of [1]. In fact, proving the stronger result as stated in [1] remains an open issue.

In Section 2 we review the formulation and theory of the iterative method given in [1]. In Section 3 we present our
convergence analysis and in Section 4 we show that our results are confirmed by numerical experiments.

In what follows, ‖ · ‖ denotes the Euclidean vector norm or its corresponding induced matrix norm. For any
vector c = (c1, c2, . . . , cn)

T ∈ Rn we use {�i (c)}ni=1 to denote the singular values of A(c) defined by (1), where
�1(c)��2(c)� · · · ��n(c)�0. Assume that all the given singular values {�∗

i }ni=1 are positive and distinct, and let
�∗ = diag(�∗

1, . . . , �
∗
n) ∈ Rm×n, and O(n) denote the set of all orthogonal matrices in Rn×n. Finally, let ‖ · ‖F denote

the Frobenius norm or the induced Frobenius norm in Rm×m × Rn×n, see [1].
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2. The iterative approach

In this section, we briefly recall the second method given in [1]. Define the affine subspace A ≡ {A(c)|c ∈ Rn}
and the surface Ms(�∗) ≡ {U�∗V T|U ∈ O(m), V ∈ O(n)}, i.e. the set of all matrices in Rm×n with singular values
�∗

1 > �∗
2 · · · > �∗

n > 0. Thus, solving Problem ISVP is equivalent to finding an intersection of Ms(�∗) and A. The
second method of [1] can be viewed as a variation of the Newton method where each iteration is composed of two
major steps.

Let ck be the current iterate and Xk a “lift” of A(ck) from the affine subspace A to the surface Ms(�∗). In the first
step, the new iterate ck+1 is computed so that A(ck+1) is an A-intercept of a line that is tangent to the manifold Ms(�∗)
at Xk . This amounts to finding two skew-symmetric matrices Fk+1 ∈ Rm×m, Tk+1 ∈ Rn×n and a vector ck+1 ∈ Rn

such that

Xk + Fk+1Xk − XkTk+1 = A(ck+1). (6)

Notice that Xk ∈ Ms(�∗) implies that there exist Uk ∈ O(m) and Vk ∈ O(n) such that UT
k XkVk = �∗. It follows from

(6) that

�∗ + Hk+1�∗ − �∗Kk+1 = UT
k A(ck+1)Vk , (7)

where Hk+1 = UT
k Fk+1Uk ∈ Rm×m and Kk+1 = V T

k Tk+1Vk ∈ Rn×n are skew-symmetric matrices.
In the second step, the matrix A(ck+1) ∈ A is lifted up to a new point Xk+1 ∈ Ms(�∗) which is defined as

Xk+1 ≡ Uk+1�∗V T
k+1,

where Uk+1 and Vk+1 are two orthogonal matrices defined by

Uk+1 = UkRk+1 and Vk+1 = VkSk+1. (8)

Here, Rk+1 and Sk+1 are the Cayley transforms

Rk+1 ≡ (I + 1
2Hk+1)(I − 1

2Hk+1)
−1 and Sk+1 ≡ (I + 1

2Kk+1)(I − 1
2Kk+1)

−1. (9)

Overall we have
Iterative Algorithm:

(1) Given c0, compute the singular value {�i (c0)}ni=1, the normalized left singular vectors {ui (c0)}mi=1 and the nor-
malized right singular vectors {vi (c0)}ni=1 of A(c0), respectively. Let U0 = [u0

1, . . . , u0
m] = [u1(c0), . . . , um(c0)],

V0 = [v0
1, . . . , v0

n] = [v1(c0), . . . , vn(c0)], and

�0 = (�1(c0), . . . , �n(c0))T.

(2) For k = 0, 1, 2, . . . , until convergence, do
(a) Form the approximate Jacobian matrix Jk by

[Jk]ij ≡ (uk
i )

TAj vk
i , 1� i, j �n. (10)

(b) Solve ck+1 from the approximate Jacobian equation

Jkck+1 = �∗, �∗ = (�∗
1, . . . , �

∗
n)

T. (11)

(c) Form the matrix A(ck+1) by (1).
(d) Form the matrix Wk ≡ UT

k A(ck+1)Vk .
(e) Compute the skew-symmetric matrices Hk+1 and Kk+1 by

[Hk+1]ij = 0 for n + 1� i �= j �m, (12)
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[Hk+1]ij = −[Hk+1]ji = [Wk]ij
�∗

j

for n + 1� i�m, 1�j �n,

[Hk+1]ij = −[Hk+1]ji = �∗
i [Wk]ji + �∗

j [Wk]ij
(�∗

j )
2 − (�∗

i )
2

for 1� i < j �n,

[Kk+1]ij = −[Kk+1]ji = �∗
i [Wk]ij + �∗

j [Wk]ji

(�∗
j )

2 − (�∗
i )

2
for 1� i < j �n.

(f) Compute Uk+1 = [uk+1
1 , . . . , uk+1

m ] and Vk+1 = [vk+1
1 , . . . , vk+1

n ] by solving

(I + 1
2Hk+1)U

T
k+1 = (I − 1

2Hk+1)U
T
k ,

(I + 1
2Kk+1)V

T
k+1 = (I − 1

2Kk+1)V
T
k .

Clearly, equating the “diagonal” equations of (7) gives rise to (11). The skew-symmetric matrices Hk+1 and Kk+1
are obtained by the “off-diagonal” equations in (7). In such equations, the entries [Hk+1]ij for n + 1� i �= j �m

are not bound to any equations at all. In principle, we can set these free parameters to be any values. In [1], the
((m − n)(m − n − 1))/2 unknowns located at the lower-right corner of Hk+1 are set identically zeros. In fact, different
allocations of the free parameters have an impact on the rate of convergence of the iterative algorithm and we will
observe this fact in Section 4.

The convergence behavior of this iterative method was studied in [1]. Suppose that the ISVP has a solution c∗ and that
A(c∗)=U∗�∗V T∗ with U∗ ∈ O(m) and V∗ ∈ O(n). Let Ek ≡ (Ek

1 , Ek
2)= (Uk −U∗, Vk −V∗) denote the error matrix at

kth iteration. Then the following result states that the method is locally quadratically convergent in the quotient sense.

Theorem 1 (Chu [1, Theorem 4.2]). Suppose that all singular values �∗
1, . . . , �

∗
n are positive and distinct. Suppose

also that the matrix J (k) defined in (10) is nonsingular. Then we have

‖Ek+1‖F = O(‖Ek‖2
F ) and ‖ck+1 − c∗‖ = O(‖Ek‖2

F ).

In [1], this theorem was proved as follows. Let

UT
k A(c∗)Vk ≡ eM̂k�∗e−N̂k , (13)

where eM̂k = UT
k U∗ and eN̂k = V T

k V∗. By [1, Lemma 4.1]

‖(M̂k, N̂k)‖F = O(‖Ek‖F ). (14)

Together with (13), it follows that

UT
k A(c∗)Vk = �∗ + M̂k�∗ − �∗N̂k + O(‖Ek‖2

F ). (15)

By taking the difference between (15) and (7), we get

UT
k (A(c∗) − A(ck+1))Vk = (M̂k − Hk+1)�∗ − (N̂k − Kk+1)�∗ + O(‖Ek‖2

F ). (16)

The diagonal equations of (16) yields

J (k)(c∗ − ck+1) = O(‖Ek‖2
F ),

and from the nonsingularity of J (k), we have

‖c∗ − ck+1‖ = O(‖Ek‖2
F ).

Similarly, from the off-diagonal equations of (16) the following estimates are derived

‖M̂k − Hk+1‖F = O(‖Ek‖2
F ),

‖N̂k − Kk+1‖F = O(‖Ek‖2
F ). (17)
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Because of (14), it must be that

‖(Hk+1, Kk+1)‖F = O(‖Ek‖F ). (18)

We observe that

Ek+1
1 ≡ Uk+1 − U∗ = UkRk+1 − UkeM̂k

= Uk[(I + 1
2Hk+1) − (I + M̂k + O(‖M̂k‖2))(I − 1

2Hk+1)](I − 1
2Hk+1)

−1

= Uk[Hk+1 − M̂k + O(‖M̂kHk+1‖) + O(‖M̂k‖2)](I − 1
2Hk+1)

−1.

Thus, it is clear now that

‖Ek+1
1 ‖ = O(‖Ek‖2

F ).

A similar argument works for Ek+1
2 . Therefore, the proof is completed.

We note that the estimate of ‖M̂k − Hk+1‖F in (17) is incorrect. The reason is as follows. Since the system (16)
shows that the ((m − n)(m − n − 1))/2 unknowns located at the lower-right corner of the matrix M̂k − Hk+1 are not
bound to any equations at all, we cannot ensure that the first estimate in (17) holds. In fact, by (14) and (12), we have
only

|[M̂k − Hk+1]ij | = |[M̂k]ij | = O(‖Ek‖F ), n + 1� i �= j �m.

Thus as a whole, ‖M̂k − Hk+1‖F = O(‖Ek‖F ). Therefore, the quadratic convergence of the second method is not
guaranteed when m > n + 1.

In the next section, we develop the convergence analysis for the vector iterates {ck} and the approximate singular
vectors {U(k)}, {V (k)} focusing on the convergence of the iterates {ck}.

3. Convergence analysis

In what follows, we assume that c∗ is a solution of the ISVP and let ck be the kth iterate produced by the iterative
algorithm.

3.1. Preliminary lemmas

In this subsection, we give some preliminary lemmas, which are necessary for the convergence analysis. We first
give the perturbation bound for singular values.

Lemma 1 (Golub and Van Loan [4, Corollary 8.6.2]). If B and B +E are in Rm×n with m�n, then, for any 1�k�n,

|�k(B + E) − �k(B)|�‖E‖,

where �k(B) denotes the kth largest singular value of B.

In the following lemma, we give a perturbation bound for A(c) defined in (1).

Lemma 2. For any c, c̄ ∈ Rn, we have

‖A(c) − A(c̄)‖�
(

n∑
i=1

‖Ai‖2

)1/2

‖c − c̄‖, (19)

where A(c) is defined in (1).
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Proof. The thesis follows from (1) noting that

‖A(c) − A(c̄)‖�
n∑

i=1

|ci − c̄i |‖Ai‖�
(

n∑
i=1

‖Ai‖2

)1/2( n∑
i=1

|ci − c̄i |2
)1/2

. �

Now, let the singular value decomposition of A(c∗) be

A(c∗) = U∗�∗V T∗ , (20)

and define

J∗ = [(J∗)ij ] with (J∗)ij = (u∗
i )

TAj v∗
i , 1� i, j �n,

where u∗
i and v∗

i are the ith column of U∗ and V∗, respectively. In what follows we always assume that J∗ is nonsingular.
Thus, letting U∗ = [U∗1, U∗2] with U∗1 ∈ Rm×n, by the continuity of the matrix inverse there exist positive numbers �
and C such that if ui ∈ Rm, vi ∈ Rn satisfy

max{‖[u1, . . . , un] − U∗1‖, ‖[v1, . . . , vn] − V∗‖}��, (21)

then the matrix J = [uT
i Aj vi] is nonsingular and

‖J−1‖�C. (22)

We then define

�1 = 23
2 �∗

1, �2 = √
n �1C, �3 = √

2�(��2 + �1), �4 = √
2n�C�2, � = 2n�∗

1

d∗
+ 1

�∗
n

, (23)

where

� =
(

n∑
i=1

‖Ai‖2

)1/2

and d∗ = min
i �=j

|�∗
i

2 − �∗
j

2|. (24)

Also, partition �∗ as

�∗ =
[
�∗1
0

]

with �∗1 ∈ Rn×n and Uk as Uk = [Uk1, Uk2] with Uk1 ∈ Rm×n for k = 0, 1, . . . . Then, we have the following lemma.

Lemma 3. If

max{‖U01 − U∗1‖, ‖V0 − V∗‖}� �

4
, (25)

�1 ≡
√

‖H1‖2 + ‖K1‖2 < min

{
1,

1

2�3
,

3�

8(�3 + 3)

}
≡ �0, (26)

then for any k�1 the iterates {ck}, {Hk}, {Kk} and {UT
k A(ck)Vk} generated by the iterative algorithm satisfy

‖UT
k A(ck)Vk − �∗‖��1(‖Hk‖2 + ‖Kk‖2), (27)

‖ck+1 − ck‖��2(‖Hk‖2 + ‖Kk‖2), (28)√
‖Hk+1‖2 + ‖Kk+1‖2 ��3(‖Hk‖2 + ‖Kk‖2), (29)

‖Uk+1 − Uk‖�2�3(‖Hk‖2 + ‖Kk‖2), (30)

‖Vk+1 − Vk‖�2�3(‖Hk‖2 + ‖Kk‖2). (31)

Proof. See Appendix A. �
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Finally, we estimate the errors in {ui (ck)}ni=1 and {vi (ck)}ni=1 in terms of ‖ck − c∗‖.

Lemma 4. Let the given singular values {�∗
i }ni=1 be positive and distinct, and U∗ and V∗ denote associated matrices

of the normalized left and normalized right singular vectors of A(c∗), respectively. Let the vectors ui (ck) and vi (ck)

stand for the unit left and unit right singular vectors of A(ck), respectively. Then there exist positive numbers �1 and 	
such that, if ‖ck − c∗‖��1, we have

‖[u1(ck), . . . , un(ck)] − U∗1‖�	‖ck − c∗‖, (32)

‖[v1(ck), . . . , vn(ck)] − V∗‖�	‖ck − c∗‖. (33)

Proof. It follows from the analyticity of a simple singular value and its corresponding left and right singular vectors.
The proof of this lemma is similar to [6, p. 249]. Therefore, we omit the proof here. �

3.2. R-Convergence rate

In this subsection, we will show that the three sequences of the iterates {ck}, {Uk} and {Vk} generated by the iterative
method are all at least quadratically convergent in the root sense. Next, we prove the main result of this paper.

Theorem 2. Let the given singular values {�∗
i }ni=1 be positive and distinct. Then there exist � > 0, c̃ ∈ Rn, Ũ ∈ O(m)

and Ṽ ∈ O(m) such that if ‖c0 − c∗‖��, the iterates {ck}, {Uk}, {Vk}, and {UT
k A(ck)Vk} generated by the iterative

algorithm converge to c̃, Ũ , Ṽ , and ŨTA(c̃)Ṽ = �∗, respectively.

Proof. By Lemmas 1 and 2, we have

max
i

|�i (c0) − �∗
i |�‖A(c0) − A(c∗)‖��‖c0 − c∗‖. (34)

By Lemma 4, if ‖c0 − c∗‖� min{�1, �/(4	)}, then

max{‖U01 − U∗1‖, ‖V0 − V∗‖}�	‖c0 − c∗‖��/4, (35)

where � is given in (21). Thus by (21) and (22), we know that J0 is nonsingular and ‖J−1
0 ‖�C. Note that

UT
0 A(c0)V0 = �0 = diag(�1(c0), . . . , �n(c0)), (36)

UT
0 A(c1)V0 = �∗ + H1�∗ − �∗K1. (37)

Taking the difference between (36) and (37) yields

UT
0 (A(c1) − A(c0))V0 = �∗ − �0 + H1�∗ − �∗K1. (38)

The diagonal equations of (38) give rise to

J0(c1 − c0) = �∗ − �0,

and so, by (34), we have

‖c1 − c0‖�C
√

n max
i

|�i (c0) − �∗
i |�

√
nC�‖c0 − c∗‖. (39)

Similarly to the proofs of (63) and (64), from (38), we can derive that

max{‖H1‖, ‖K1‖}��‖A(c1) − A(c0)‖, (40)

where � is defined in (23). By Lemma 2, it follows from (39) that

‖A(c1) − A(c0)‖��‖c1 − c0‖�
√

nC�2‖c0 − c∗‖. (41)
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Then, from (40) and (41), we get

max{‖H1‖, ‖K1‖}��
√

nC�2‖c0 − c∗‖,

and so we have√
‖H1‖2 + ‖K1‖2 ��

√
2nC�2‖c0 − c∗‖ = �4‖c0 − c∗‖, (42)

where �4 is defined in (23).
Now we let � = max{�1, �2, �3}. If ‖c0 − c∗‖��, where

� < min

{
1, �1,

�

4	
,
�0

�4
,

1

�4�

}
, (43)

then, from (35) and (42), we obtain

max{‖U01 − U∗1‖, ‖V0 − V∗‖}� �

4
and �1 ≡

√
‖H1‖2 + ‖K1‖2 < �0.

Thus by Lemma 3, we have, for any k�1,

‖ck+1 − ck‖���2
k, �k+1 ���2

k, ‖UT
k A(ck)Vk − �∗‖���2

k ,

‖Uk+1 − Uk‖�2��2
k, ‖Vk+1 − Vk‖�2��2

k . (44)

where �k ≡ √‖Hk‖2 + ‖Kk‖2.
Let � = ��1, by (43) and (42), we know that � < 1. From (44) we have for each k�2,

‖ck − ck−1‖���2
k−1 ��(��2

k−2)
2 = �1+2�22

k−2

� · · · ��1+2+22+···+2k−2
�2k−1

1

�(�(1+2+22+···+2k−2)/2k−1
�1)

2k−1

�(��1)
2k−1 ��2k−1

.

Thus for any integer m�1,

‖ck+m − ck‖�
m∑

l=1

‖ck+l − ck+l−1‖�
m∑

l=1

�2k+l−1 =
m∑

l=1

(�2k−1
)2l

�
m∑

l=1

(�2k−1
)l = �2k−1 − (�2k−1

)m+1

1 − �2k−1 . (45)

This shows that {ck} is a Cauchy sequence since � < 1. Therefore, there exists a c̃ ∈ Rn such that {ck} converge to c̃.
Similarly, from (44) we have, for any integer m > 1,

max{‖Uk+m − Uk‖, ‖Vk+m − Vk‖}�2
�2k−1 − (�2k−1

)m+1

1 − �2k−1 . (46)

It shows that {Uk} and {Vk} are both Cauchy sequences. Thus, there exist two matrices Ũ ∈ O(m) and Ṽ ∈ O(n)

such that {Uk} and {Vk} converge to Ũ and Ṽ , respectively. Finally, from (44), we have that {UT
k A(ck)Vk} converge to

ŨTA(c̃)Ṽ = �∗. �

Remark. It is straightforward to note from (44) that the sequence {�k} converges to zero Q-quadratically. Finally, it is
worthwhile to point out that c̃ may not be equal to the solution c∗.

We end this section by establishing quadratic convergence of our method in the root sense.
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Theorem 3. Under the same conditions as in Theorem 2, the three sequences of iterates {ck}, {Uk} and {Vk} generated
by the iterative algorithm are all locally convergent with root-convergence rate at least equal to 2.

Proof. By Theorem 2, we know that {ck} is locally convergent with

lim
k→∞ ck = c̃.

Since � < 1, letting m → ∞ in (45), we have, for each k�1,

‖c̃ − ck‖� �2k−1

1 − �2k−1 �
�2k−1
,

where 
 = 1
1−� > 1. Moreover,

(1) If p = 1, then

R1{ck} = lim sup
k→∞

‖ck − c̃‖1/k � lim sup
k→∞


1/k(�1/2)2k/k = 0.

(2) If 1 < p < 2, then

Rp{ck} = lim sup
k→∞

‖ck − c̃‖1/pk � lim sup
k→∞


1/pk

(�1/2)(2/p)k = 0.

(3) If p = 2, then

Rp{ck} = lim sup
k→∞

‖ck − c̃‖1/2k � lim sup
k→∞


1/pk

�1/2 = �1/2 < 1.

(4) If p > 2, then

Rp{ck} = lim sup
k→∞

‖ck − c̃‖1/pk � lim sup
k→∞


1/pk

(�1/2)(2/p)k = 1.

Therefore, the root-convergence factors Rp{ck} of {ck} defined in (4) is such that Rp{ck} = 0 for any p ∈ [1, 2) and
Rp{ck}�1 for any p ∈ [2, ∞). According to (5), OR(c∗)�2.

By similar arguments, we can prove that {Uk} and {Vk} converge to their limits Ũ and Ṽ quadratically in the root
sense. �

4. Numerical experiments

In this section, we report some numerical experiments to show the performance of the iterative algorithm. For
demonstration purpose, we consider the case when m = 7 and n = 4. The tests were performed using Matlab 6.1
with machine precision 2.2 × 10−16. All the basis matrices were generated randomly from a normal distribution with
mean 0.0 and variance 1.0. To make sure that the ISVP under testing does have a solution, we first randomly generate
a vector c∗ ∈ R4. Then, singular values of the corresponding matrix A(c∗) are used as the prescribed singular values.
We perturb each entry of the vector c∗ by a uniform distribution between −1 and 1 and use the perturbed vector as the
initial guess c0 for the iterations. In our experiments, the iterations are stopped when

‖UT
k A(ck)Vk − �∗‖F �10−13.

Table 1 includes c∗, the initial guess c0 and the corresponding limit point c̃ for three cases. Table 2 lists the errors
between c0, c∗ and c̃. The number It. of performed iterations is 9, 5, 10, respectively. We can see from Table 2
that for Case (a) and Case (c), the limit point c̃ of the iteration is not equal to the original vector c∗ to which c0 is
reasonably close. In particular, in Case (c), c0 is nearer to c̃ than to c∗ while Case (a) is the opposite. We point out that
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Table 1
Initial and final values of ck

Case (a) Case (b) Case (c)

c∗
1 2.4467e + 00 1.0987e + 00 2.1995e + 00

c∗
2 9.9836e − 01 4.5028e − 01 7.2577e − 01

c∗
3 1.4491e + 00 1.0739e + 00 −7.0029e − 01

c∗
4 −1.0565e + 00 −7.5681e − 01 2.0901e + 00

c0
1 2.6943e + 00 1.6498e + 00 2.4376e + 00

c0
2 1.4342e + 00 7.6865e − 01 7.6459e − 01

c0
3 2.4266e + 00 1.6628e + 00 2.3170e − 01

c0
4 −1.9655e − 01 −5.1570e − 01 2.5964e + 00

c̃1 3.1675e + 00 1.0987e + 00 1.9495e + 00

c̃2 1.5874e + 00 4.5028e − 01 1.0043e + 00

c̃3 2.8446e − 01 1.0739e + 00 −2.7139e − 01

c̃4 −3.5270e − 01 −7.5681e − 01 2.2095e + 00

Table 2
Errors between c0, c∗ and c̃

‖c0 − c∗‖ ‖c0 − c̃‖ ‖c∗ − c̃‖
Case (a) 1.3951e + 00 2.2047e + 00 1.6487e + 00
Case (b) 8.9994e − 01 8.9994e − 01 6.1294e − 15
Case (c) 1.0877e + 00 8.3577e − 01 5.8163e − 01

Table 3
Singular values of A(ck)

�k Case (a) Case (b) Case (c)

�0
1 2.0092e + 01 1.2835e + 01 1.0998e + 01

�0
2 1.1860e + 01 8.0329e + 00 1.0673e + 01

�0
3 7.5045e + 00 4.8781e + 00 7.3750e + 00

�0
4 3.3831e + 00 2.7887e + 00 3.9632e + 00

�∗
1 1.5364e + 01 8.6619e + 00 9.8737e + 00

�∗
2 1.0882e + 01 6.0069e + 00 7.8588e + 00

�∗
3 5.8869e + 00 3.5380e + 00 6.7673e + 00

�∗
4 2.6861e + 00 2.1041e + 00 3.3554e + 00

this occurrence is in accordance with our convergence results and with the convergence features of iterative processes
based on Newton method.

Clearly, the singular values of A(c̃) agree with those of A(c∗). Table 3 displays the singular values of A(c0) and
those of A(c̃). Furthermore, Table 4 displays the distance between �(ck) = (�1(ck), . . . , �n(ck)) and �∗ measured in
the 2-norm. Note that {�(ck)} converges fast.

In order to further illustrate our theoretical results, in Table 5, we give the convergence history of the sequences
{�k} ≡ {√‖Hk‖2 + ‖Kk‖2}, {ck}, {Uk} and {Vk} for Case (a). Here, the limits c̃, Ũ and Ṽ are computed up to full
precision. From Table 5, we can observe that the four sequences converge fast.
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Table 4
Convergence history of {�(ck)}
It. Case (a) Case (b) Case (c)

0 5.1399e + 00 4.8769e + 00 3.1501e + 00
1 1.8645e + 00 2.2626e − 01 3.0338e − 01
2 5.5573e + 00 3.2821e − 02 5.3643e − 01
3 2.1745e + 00 4.2234e − 04 1.4622e − 01
4 4.9857e − 01 1.8717e − 07 7.6712e − 01
5 2.7352e − 02 1.5397e − 14 4.4488e − 01
6 2.2679e − 03 3.3527e − 02
7 6.6781e − 06 3.0239e − 03
8 1.2317e − 10 9.3265e − 06
9 4.7830e − 15 2.7301e − 10

10 6.2804e − 15

Table 5
Convergence history of {�k}, {ck}, {Uk} and {Vk} for Case (a)

It. �k ‖ck − c̃‖ ‖Uk − Ũ‖ ‖Vk − Ṽ ‖
0 1.7029e + 00 2.2047e + 00 2.5985e + 00 9.5168e − 01
1 4.4140e + 00 2.3630e + 00 2.1818e + 00 1.3436e + 00
2 1.5427e + 00 1.7445e + 00 1.2882e + 00 6.8597e − 01
3 9.8196e − 01 6.9574e − 01 8.9750e − 01 2.8418e − 01
4 1.9614e − 01 1.5478e − 01 1.9838e − 01 1.4848e − 01
5 7.7722e − 02 6.0905e − 02 7.2257e − 02 3.7492e − 02
6 3.8347e − 03 2.7500e − 03 3.2571e − 03 2.0557e − 03
7 1.7031e − 05 1.3086e − 05 1.4488e − 05 8.9536e − 06
8 2.9797e − 10 2.2557e − 10 2.5370e − 10 1.5630e − 10
9 1.0989e − 15 5.3705e − 15 5.1940e − 15 3.7348e − 15

In order to demonstrate the criticality of the block of free parameters in Eq. (7), we consider the vector c∗ as in
Case (a). The initial guess c0 is obtained via perturbing c∗ by a random vector with entries in [−1, 1]. In Tables 6 and
7 we list the numerical results for varying values of the block of free parameters by setting

[Hk+1]ij = −[Hk+1]ji = � for n + 1� i < j �m

where � = 0.01, 0.1, 0.5, 1.0. We can observe from Tables 6 and 7 that the rate of convergence of the sequences {ck}
and {�(ck)} slows for increasing values of �.
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Appendix A

Before we show Lemma 3, we give some preliminary lemmas.

Lemma 5. If E ∈ Rn×n and ‖E‖ < 1, then I − 1
2E is nonsingular and

‖(I + 1
2E)(I − 1

2E)−1 − (I + E)‖�‖E‖2. (47)
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Table 6
Convergence history of {ck} for varying �

� = 0.01 � = 0.1 � = 0.5 � = 1.0

It. ‖ck − c̃‖ ‖ck − c̃‖ ‖ck − c̃‖ ‖ck − c̃‖
0 1.3598e + 00 1.2979e + 00 1.3681e + 00 1.3951e + 00
1 1.0661e − 01 3.7436e − 01 2.7539e − 01 1.1115e + 00
2 4.9443e − 03 1.3517e − 01 1.3577e − 01 1.1678e + 00
3 3.5940e − 06 4.5366e − 03 2.1800e − 02 1.2473e − 01
4 1.7510e − 10 5.6647e − 05 1.1962e − 03 1.1583e − 01
5 1.3568e − 14 3.2971e − 07 1.9027e − 04 4.9893e − 02
6 2.4337e − 09 3.0123e − 05 2.0168e − 02
7 1.8128e − 11 4.7492e − 06 8.2382e − 03
8 1.3549e − 13 7.4910e − 07 3.4887e − 03
9 2.5704e − 15 1.1827e − 07 1.5060e − 03

10 1.8676e − 08 6.5070e − 04
.
.
.

.

.

.
.
.
.

15 1.8320e − 12 9.3786e − 06
16 2.8592e − 13 4.0210e − 06
17 4.1981e − 14 1.7241e − 06
.
.
.

.

.

.

23 1.0683e − 08
24 4.5787e − 09
25 1.9623e − 09
26 8.4100e − 10
.
.
.

.

.

.

37 6.9713e − 14
38 2.6121e − 14
39 8.0367e − 15

Proof. Clearly I − 1
2E is nonsingular. It is easy to verify that

(I − 1
2E)−1 = I + 1

2E + 1
4E2(I − 1

2E)−1,

and

(I + 1
2E)(I − 1

2E)−1 = I + E + 1
4E2(I + (I + 1

2E)(I − 1
2E)−1). (48)

Since ‖E‖ < 1 we have

‖(I − 1
2E)−1‖� 1

1 − 1/2‖E‖ < 2,

and by (48) the inequality (47) follows. �

Lemma 6. Let B ∈ Rn×n and � = diag(�1, . . . , �n) ∈ Rn×n with �1 > �2 > · · · > �n > 0. If the skew-symmetric
matrices H and K satisfy that

H� − �K = B, (49)

then we have

H = Q ◦ (B� + �BT), ‖H‖� 2n�1

d
‖B‖, (50)

K = Q ◦ (�B + BT�), ‖K‖� 2n�1

d
‖B‖, (51)
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Table 7
Convergence history of {�(ck)} for varying �

� = 0.01 � = 0.1 � = 0.5 � = 1.0

It. ‖�(ck) − �∗‖ ‖�(ck) − �∗‖ ‖�(ck) − �∗‖ ‖�(ck) − �∗‖
0 7.8233e + 00 7.5642e + 00 1.3268e + 00 5.1399e + 00
1 1.6885e − 01 5.5406e − 01 1.0690e + 00 1.8645e + 00
2 7.6371e − 03 2.1887e − 01 2.2937e − 01 1.8921e + 00
3 1.7274e − 05 1.2194e − 02 3.0287e − 02 4.2543e − 01
4 7.0969e − 10 9.8245e − 05 1.6264e − 03 1.2323e − 01
5 4.8558e − 14 5.9383e − 07 2.2896e − 04 5.4324e − 02
6 4.3857e − 09 3.6042e − 05 2.1842e − 02
7 3.2666e − 11 5.7003e − 06 8.6885e − 03
8 2.4408e − 13 9.0077e − 07 3.5924e − 03
9 7.9565e − 15 1.4222e − 07 1.5327e − 03

10 2.2452e − 08 6.6149e − 04
.
.
.

.

.

.
.
.
.

15 2.2063e − 12 9.6128e − 06
16 3.5445e − 13 4.1185e − 06
17 6.2187e − 14 1.7656e − 06
.
.
.

.

.

.

23 1.0945e − 08
24 4.6907e − 09
25 2.0103e − 09
26 8.6158e − 10
.
.
.

.

.

.

37 7.1675e − 14
38 2.3335e − 14
39 1.3448e − 14

where ◦ denotes the Hadamard product, d = mini �=j |�2
i − �2

j |, and Q = [qij ] with

qij =
⎧⎨
⎩

0 if i = j,
1

�2
j − �2

i

otherwise.

Proof. Since HT = −H and KT = −K , from (49) we have

−�H + K� = BT. (52)

Eliminating the matrix H in (49) and (52) gives rise to

K�2 − �2K = �B + BT�.

Equating the off-diagonal elements yields (51). Further, by (51) we have

‖K‖∞ � 1

d
‖�B + BT�‖∞ � 1

d
(‖�‖∞‖B‖∞ + ‖BT‖∞‖�‖∞)� �1

d
(‖B‖∞ + ‖BT‖∞), (53)

where ‖ · ‖∞ denotes the row sum norm. Recalling that ‖K‖�√
n‖K‖∞, ‖B‖∞ �√

n‖B‖ and ‖BT‖∞ �√
n‖BT‖ =√

n‖B‖, (51) follows. Similarly, we can prove (50). �

Now, we can establish Lemma 3.

Proof of Lemma 3. By (21) and (22), (25) implies that J0 is nonsingular and ‖J−1
0 ‖�C. Thus, c1, U1 and V1 are

well defined.
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First we show that (27)–(31) hold for k = 1. By (9) and Lemma 5, we have

‖U1 − U0‖ = ‖U0(R1 − I )‖ = ‖R1 − I‖�2‖H1‖�2�1,

‖V1 − V0‖ = ‖V0(S1 − I )‖ = ‖S1 − I‖�2‖K1‖�2�1,

Therefore, by the upper bound (26) on �1 it follows that

‖U11 − U∗1‖�‖U11 − U01‖ + ‖U01 − U∗1‖�‖U1 − U0‖ + ‖U01 − U∗1‖�2�1 + �

4
<

3

4
� + 1

4
� = �.

Similarly, we have

‖V1 − V∗‖��.

Thus by (21) and (22), we know that J1 is nonsingular and ‖J−1
1 ‖�C.

In order to prove (27), let

R1 = I + H1 + E1 and S1 = I + K1 + F1. (54)

By (9) and Lemma 5 we have

‖E1‖�‖H1‖2 and ‖F1‖�‖K1‖2. (55)

Notice that from (7) and (8)

UT
0 A(c1)V0 = �∗ + H1�∗ − �∗K1, U1 = U0R1 and V1 = V0S1.

Then, by (54), a short calculation gives rise to

UT
1 A(c1)V1 = �∗ + G1, (56)

where

G1 = H1(�∗ − H1�∗ + �∗K1)K1 − H 2
1 �∗ − �∗K2

1 + ET
1 (�∗ + H1�∗ − �∗K1)(I + K1)

+ (I − H1 + ET
1 )(�∗ + H1�∗ − �∗K1)F1.

Using (55) and the assumption max{‖H1‖, ‖K1‖} < 1 we have

‖G1‖�3�∗
1‖H1‖‖K1‖ + �∗

1‖H1‖2 + �∗
1‖K1‖2 + 6�∗

1‖H1‖2 + 9�∗
1‖K1‖2

� 3
2�∗

1(‖H1‖2 + ‖K1‖2) + 10�∗
1(‖H1‖2 + ‖K1‖2)

= �1(‖H1‖2 + ‖K1‖2), (57)

where �1 is defined in (23). This shows that (27) is true for k = 1.
Combining (56) with

UT
1 A(c2)V1 = �∗ + H2�∗ − �∗K2

yields

UT
1 (A(c2) − A(c1))V1 = H2�∗ − �∗K2 − G1. (58)

The diagonal equations of (58) give rise to

J1(c2 − c1) = g1,

where g1 is the diagonal vector of the matrix −G1, and so we have

‖c2 − c1‖�C‖g1‖�C
√

n‖G1‖��2(‖H1‖2 + ‖K1‖2), (59)
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where �2 is defined in (23). This shows that (28) holds for k = 1. Let

Z ≡ UT
1 (A(c2) − A(c1))V1 + G1 =

[
Z11
Z21

]n

m−n

with Z11 ∈ Rn×n and Z21 ∈ R(m−n)×n. Noting that H2 has the form

H2 =
[

H
(2)
11 −H

(2)
21

T

H
(2)
21 0

]

with H
(2)
11 ∈ Rn×n, from (58) we obtain

H
(2)
11 �∗1 − �∗1K2 = Z11, (60)

and

H
(2)
21 �∗1 = Z21. (61)

By Lemma 6 and (60) it follows that

‖H(2)
11 ‖�

2n�∗
1

d∗
‖Z11‖, (62)

‖K2‖�
2n�∗

1

d∗
‖Z11‖. (63)

On the other hand, by (61) we have

‖H(2)
21 ‖� 1

�∗
n

‖Z21‖.

This, together with (62), yields

‖H2‖�
∥∥∥∥
[
H

(2)
11 0
0 0

]∥∥∥∥+
∥∥∥∥
[

0 −H
(2)
21

T

H
(2)
21 0

]∥∥∥∥
= ‖H(2)

11 ‖ + ‖H(2)
21 ‖�

2n�∗
1

d∗
‖Z11‖ + 1

�∗
n

‖Z21‖��‖Z‖, (64)

where � is defined in (23).
By Lemma 2, (57) and (59) we get

‖Z‖��‖c2 − c1‖ + ‖G1‖�(��2 + �1)(‖H1‖2 + ‖K1‖2), (65)

where � is defined in (24). Combining (63) and (64) with (65) yields√
‖H2‖2 + ‖K2‖2 ��3(‖H1‖2 + ‖K1‖2), (66)

where �3 is defined in (23). This shows that (29) is true for k = 1. Moreover, (66) implies that√
‖H2‖2 + ‖K2‖2 �

√
‖H1‖2 + ‖K1‖2, (67)

since we have assumed that
√‖H1‖2 + ‖K1‖2 < 1/�3.

Thus, by Lemma 5, it follows from (67), (66) and (26) that

‖U2 − U1‖ = ‖U1(R2 − I )‖�2‖H2‖�2�3�
2
1,

‖V2 − V1‖ = ‖V1(S2 − I )‖�2‖K2‖�2�3�
2
1,

which shows that (30) and (31) are true for k = 1.
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Now we show that the inequalities (27)–(31) hold for the integer k, assuming that they are true for all positive integer
less than or equal to k − 1. From (66) and the induction assumption, we can easily derive that√

‖Hk‖2 + ‖Kk‖2 �
√

‖H1‖2 + ‖K1‖2. (68)

Similarly to the proof of (56), we can show that

UT
k A(ck)Vk = �∗ + Gk , (69)

where

‖Gk‖��1(‖Hk‖2 + ‖Kk‖2). (70)

By the induction assumptions we know that, for j = 2, 3 . . . , k,

‖Uj1 − Uj−1,1‖�‖Uj − Uj−1‖�2�3�
2
j−1, ‖Vj − Vj−1‖�2�3�

2
j−1, �j ��3�

2
j−1,

where �j =
√

‖Hj‖2 + ‖Kj‖2. By (26), we get �3�1 < 1/2 and also �3�1 < 3/8�. Thus, we have

‖Vk − V∗‖�
k∑

j=1

‖Vj − Vj−1‖ + ‖V0 − V∗‖�
k∑

j=2

2�3�
2
j−1 + 2�1 + �

4

�
k∑

j=2

2(�3�1)
2j−1 + 2�1 + �

4
�2 · (�3�1)

2

1 − (�3�1)
2

+ 2�1 + �

4

�2 · 2

3
�3�1 + 2�1 + �

4
� �

2
+ �

4
+ �

4
= �.

Similarly, we can prove that ‖Uk1 −U∗1‖��. Thus, it follows from (21) and (22) that Jk is nonsingular and ‖J−1
k ‖�C.

Combining (69) with

UT
k A(ck+1)Vk = �∗ + Hk+1�∗ − �∗Kk+1,

we have

UT
k (A(ck+1) − A(ck))Vk = Hk+1�∗ − �∗Kk+1 + Gk . (71)

From (71), proceeding as in the proof of (59) and (66), we have

‖ck+1 − ck‖��2(‖Hk‖2 + ‖Kk‖2), (72)

and √
‖Hk+1‖2 + ‖Kk+1‖2 ��3(‖Hk‖2 + ‖Kk‖2).

This, together with (68), gives rise to√
‖Hk+1‖2 + ‖Kk+1‖2 �

√
‖Hk‖2 + ‖Kk‖2 �

√
‖H1‖2 + ‖K1‖2,

which implies ‖Hk+1‖�
√‖Hk+1‖2 + ‖Kk+1‖2 < 1. Thus, by Lemma 5 and (72), we get

‖Uk+1 − Uk‖ = ‖Uk(Rk+1 − I )‖ = ‖Rk+1 − I‖�2‖Hk+1‖�2�3(‖Hk‖2 + ‖Kk‖2).

Similarly, we can prove that (31) holds.
Therefore, by mathematical induction principle, we have showed that the inequalities (27)–(31) hold for all positive

integers.
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