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a b s t r a c t 

Sparse representation based classification (SRC) methods have achieved many successes in pattern recog- 

nition and machine learning. In such methods, the training samples of all categories are mixed and com- 

pose a dictionary to represent the test sample via sparsity constraint. Then, the class with the minimum

representation error wins for labeling the test sample. In general, SRC is more flexible and effective than

many supervised learning methods. However, in some cases it is unlikely to represent the test sample

accurately, which tends to undermine the classification accuracy. To alleviate this issue, we propose a

hierarchical sparse representation based classification method by augmenting the single-layer sparse rep- 

resentation into the hierarchical representation with a deep dictionary. Specifically, the features from all

training samples are first divided into several groups according to their labels. Then we employ hierar- 

chical clustering in each group and combine them to form a deep dictionary such that the root layer

includes only a certain amount of the most representative exemplars while the subsequent layers focus

on characterizing the remaining individual information across different groups. Furthermore, we use the

layer-after-layer residuals to encode the variation patterns across individuals in different scales. Given

the deep dictionary, a hierarchical sparse representation based classification method is presented to de- 

termine the label for each test sample by iteratively representing its primary part with the exemplars

in different groups but the remaining parts by the variation patterns encoded in different layers. To fur- 

ther improve the classification accuracy and robustness, we extend our method by taking advantage of

the complementary information in multi-view features. Experiments on Multiple Features Data Set show

promising results compared with the state-of-the-art classification methods.

© 2017 Elsevier B.V. All rights reserved.
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. Introduction

Advanced statistical machine learning and pattern recognition

echniques have been actively applied to image analysis and

lassification [1–4] . Sparse representation based classification

SRC) has achieved a great of interest in classification and feature

election [5–7] . In SRC, features from all training data are mixed

o form a feature dictionary. Then, the new observation is sparsely

epresented by the dictionary, where the atoms of different classes

n the dictionary contribute differently. And finally the class label

f test sample is determined by the training class which has

he smallest residual in representing the test sample. SRC has

chieved great success, and some of its extensions have also been
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eveloped [8–10] . However, the performance of SRC would dete-

iorate if the feature dimensionality is too high, or the number of

ictionary atoms is too low, or the data is very noisy. Under these

ircumstances, the representation power of the conventionally

imple dictionary will decrease and some test samples cannot be

epresented accurately. 

To address this issue, some methods have been proposed to

ncorporate intra-class variations as the supplement to form an

ugmented dictionary [11,12] , or adopting dictionary learning for a

ore discriminative dictionary [13,14] . The use of intra-class vari-

tions can enrich the details of the dictionary for sample repre-

entation; however, some samples still cannot be well represented

ith this kind of traditionally “flat” dictionary. 

In this respect, we present the hierarchical sparse representa-

ion based classification (HSRC) by using a deep dictionary, where

he information of entire training dataset is hierarchically encoded

ith multiple layers. Rather than letting all features extracted

http://dx.doi.org/10.1016/j.neucom.2016.11.079
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2016.11.079&domain=pdf
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Fig. 1. Flowchart of the hierarchical sparse representation based classification.
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r  
from training data mixed in the single-layer dictionary, we propose

to construct the deep dictionary to make the sparse representa-

tion more efficient. Specifically, we first extract features from each

training sample and then divide all features into several groups

based on their labels. In particular, affinity propagation (AP) clus-

tering [15] is hierarchically performed to treat sample features dif-

ferently in a major to minor manner. Therefore, the root layer only

comprises a small number of most representative exemplars in

each group. The next layer includes the instances with less ma-

jority patterns within the same group and so on. Note that, in-

stead of using the original features in the root layer, for each sub-

sequent non-root layer we compute the element-wise residual for

each training sample with respect to its parent cluster in the previ-

ous layer to encode just the variation patterns. After that, we con-

struct the deep dictionary by merging the clustering results across

categories in each layer. In the testing stage, the test sample is

also hierarchically represented by the deep dictionary, i.e., itera-

tively represented by principal patterns in the first layer of dictio-

nary and then by a set of lay-after-layer variation patterns in the

non-root layers. Finally, we tag the label to the test sample by the

group with the smallest reconstruction error. The flowchart of our

proposed is shown in Fig. 1 . 

2. Method

In the conventional SRC method, usually the training data of all

groups is directly stacked to compose a single-layer dictionary. The

sparse representation for a test sample is conducted estimating

a small number of non-zero coefficients for the selected training

samples in the dictionary. But, due to the high dimensionality and

also the limited number of training samples in the dictionary, the

conventional SRC has limited power in representing the test sam-

ple by using the single-layer dictionary. In this paper, we propose a

hierarchical sparse representation based classification by using the

deep (multi-layer) dictionary, as detailed below. 

Assume that the feature length is L for each training sample,

and we have N = N 1 + , . . . , N i + , . . . , N C training samples belonging

to totally C groups. The features from each group compose the fea-

ture pools, i.e., X 1 , . . . , X i , . . . , X C , where each group of feature vec-

tors, X i = { ⇀ 

x i (s ) | s = 1 , . . . , N i } , consists of N i features vectors from

N i training samples in the group G i . Following the same feature

extraction procedure, we can also obtain the feature vector for the

test sample, denoted by 
⇀

y . 

2.1. Sparse representation based classification (SRC) 

In the conventional SRC methods [8] , the feature vectors of all

training samples are mixed together to form a single-layer dic-

tionary X = [ X i ] i =1 , ... ,C by arranging all feature vectors column by

column. To classify the test sample, we seek for sparse coeffi-

cients 
⇀ 

α = [ 
⇀ 

α1 , . . . , 
⇀ 

αi , . . . , 
⇀ 

αC ] for the feature vector 
⇀ 

y of test sam-

ple, where the length of column coefficient vector α equals to the
otal number of atoms in the dictionary X . The objective function

an be formulated as: 

⇀̂= are mi n 

⇀ 
α

∥∥∥⇀ 

α
∥∥∥

1
s.t. 

∥∥∥⇀ 

y − X 

⇀ 

α
∥∥∥2

2
≤ ε (1)

Using the estimated sparse coefficients, the reconstruction error

f group G i (1 ≤ i ≤ C ) is calculated as 

 i ( 
⇀ 

y ) = 

∥∥∥⇀ 

y − X i 
ˆ ⇀ 

αi 

∥∥∥
2
, = 1 , . . . , C. (2)

In such case, the class with the minimum reconstruction error

ndicates the label of the test sample via 

abel ( 
⇀ 

y ) = arg min 

i
r i ( 

⇀

y ) . (3)

However, the single-layer dictionary X has limited power in

epresenting the test sample 
⇀

y , thus this non-optimal sparse rep-

esentation often yields inaccurate classification result. 

.2. Deep dictionary construction 

The goal here is to turn the single-layer dictionary X to the

eep dictionary D = { D 

(h ) | h = 1 , . . . , H } with H layers. To construct

he first layer of the dictionary, we apply the AP clustering algo-

ithm [15] to find the cluster centers Z 

(1) 
i

in the feature pool X i 

f each group G i . It is worth noting that AP clustering is the non-

arametric clustering method, which is fully driven by the feature

istribution. For each group G i , the centers of clusters are used

o construct the first-layer sub-dictionary D 

(1) 
i

by arranging each

luster center in Z 

(1) 
i

column by column. Then, the first-layer dic-

ionary D 

1 = [ D 

(1) 
1 

, . . . , D 

(1) 
i

, . . . , D 

(1) 
C 

] is constructed from the sub-

ictionaries D 

(1) 
i

of all C groups in the first layer. 

From the second layer, we construct the dictionary D 

( h ) for

ach non-root layer h (2 < h ≤ H ) by repeating the following steps:

1) Since each instance in the remaining samples ( X i −
∑ h −1 

h ′ =1 
Z 

( h ′ ) 
i

)

f group G i belongs to one of the clusters of Z 

( h −1 ) 
i 

in the previ-

us layer, we compute the element-wise residual for each of the

emaining sample with respect to its own parent cluster in the

revious layer. (2) We apply AP to all of the remaining samples

n each group separately to find the new clusters Z 

(h ) 
i

in the cur-

ent layer h . (3) We construct the group-specific dictionary D 

(h ) 
i

in

he current layer by arranging the obtained clusters Z 

(h ) 
i

column

y column. (4) We assemble the dictionary D 

(h ) = [ D 

(h ) 
i

] i =1 , ... ,C in

he current layer by combining the D 

(h ) 
i

across all different groups.

.3. Hierarchical sparse representation based on classification (HSRC) 

Given the deep dictionary D with H layers, the hierarchical rep-

esentation for the test sample 
⇀

y is cooperatively represented by
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Table 1

Multi-view features of handwritten digits.

View The composition of current view

mfeat-fou view Contains 76 Fourier coefficients of the character shapes

mfeat-fac view Contains 216 profile correlations

mfeat-kar view Contains 64 Karhunen-Love coefficients

mfeat-pix view Contains 240 pixel averages in 2 × 3 windows 

mfeat-zer view Contains 47 Zernike moments

mfeat-mor view Contains 6 morphological features
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ll layers as below: 

 

 = D 

( 1 ) 
⇀ 

α
( 1 ) + 

H ∑ 

h =2

D 

( h ) 
⇀ 

α
( h ) + e, (4) 

here 
⇀ 

α
(h )

( h = 1 , 2 , . . . , H) is the sparse coefficient vector in each

ayer and e is the reconstruction error. All coefficient vectors here

an be computed with L 1 minimization: 

̂ 

⇀ 

α
( 1 ) 

, ̂
 

⇀ 

α
( 2 )

, . . . , ̂
 

⇀ 

α
( H )

}
= arg min { ⇀ α

( 1 )
, 
⇀ 
α

( 2 )
, ... , 

⇀ 
α

( H ) }λ1 

∥∥∥⇀ 

α
( 1 ) 

∥∥∥
1

+ 

H ∑ 

h =2

λh 

∥∥∥⇀ 

α
( h ) 

∥∥∥
1

s.t. 

∥∥∥∥∥⇀ 

y −D 

( 1 ) 
⇀ 

α
( 1 ) −

H ∑ 

h =2

D 

( h ) 
⇀ 

α
( h ) 

∥∥∥∥∥
2

2

≤ ε. (5) 

To solve the minimization problem in Eq. (5) , the Augmented

agrange Multiplier (ALM) method [16] is applied with the follow-

ng formula: 

1 

∥∥∥⇀ 

α
( 1 ) 

∥∥∥
1

+ 

H ∑ 

h =2

λh 

∥∥∥⇀ 

α
( h ) 

∥∥∥
1

+ 

ξ

2 

∥∥∥∥∥y − D 

( 1 ) 
⇀ 

α
( 1 ) −

H ∑ 

h =2

D 

( h ) 
⇀ 

α
( h ) 

∥∥∥∥∥
2

2

+ φT 

(
y − D 

( 1 ) 
⇀ 

α
( 1 ) −

H ∑ 

h =2

D 

( h ) 
⇀ 

α
( h )

)
, (6) 

here φ is a vector of Lagrange multipliers and ξ is a penalty pa-

ameter. We iteratively optimize { ̂  

⇀ 

α
(1) 

, ̂
 

⇀ 

α
(2)

, . . . , ̂
 

⇀ 

α
(H)

} by the fol-

owing Algorithm 1 . 

Using these estimated coefficient vectors { ̂  

⇀ 

α
(1) 

, ̂
 

⇀ 

α
(2)

, . . . , ̂
 

⇀ 

α(H) } ,
he reconstruction error of the test data in each group can be com-

uted by 

 i 

(
⇀

y 

)
=

∥∥∥∥∥⇀ 

y − D 

( 1 ) 
i 

̂ 

⇀ 

α
( 1 )

i −
H ∑ 

h =2

D 

( h ) ̂  

⇀ 

α
( h ) 

∥∥∥∥∥
2

, i = 1 , . . . , C. (7)

Note, we only use the sparse coefficients of the underlying

roup to represent the primary part in group G . In the non-root
i 

lgorithm 1

lgorithm to solve problem (6) by ALM.

Input: Deep dictionary D with H layers, test sample � y , parameters λh ( h = 1 , . . . , H ) . 

output: sparse coefficient 
⇀ 

α
(h )

( h = 1 , 2 , . . . , H) 

Initialization : 
⇀ 

α
(h )= 0 (h = 1 , 2 , . . . , H) , φ= 0 , ξ= 1 , ξmax = 10 4 , ρ= 1 . 5 and ε = 10 −4 

While not converge do

1. Fix others and update
⇀ 

α
(1)

, by

⇀ 

α
(1) = arg min 

⇀ 
α

(1)

∥∥∥∥∥⇀

y −
H ∑ 

h =2

D (h ) ⇀ α
(h ) 

∥∥∥∥∥
2

2

+ λ1 

∥∥∥⇀ 

α
(1) 

∥∥∥
1

2. h = 2

3. while h ≤ H do

Fix others and update
⇀ 

α
(h )

by

⇀ 

α
(h ) = arg min 

⇀ 
α

(h)

∥∥∥∥∥(
⇀

y − D (1) ⇀ α
(1) + 

1 

ξ
φ
)

−
H ∑ 

h ′ =2 ,h ′ � = h
D (h ′ ) ⇀ α

(h ′ ) 
∥∥∥∥∥

2

2

+ 

H ∑ 

h =2

λh 

∥∥∥⇀ 

α
(h ) 

∥∥∥
1

h = h + 1; 

end ;

4. Update ξ by ξ = min ( ξmax , ρξ ) . 

5. Update the multipliers φ = φ + ξ

(
y − D (1) 

⇀ 

α
(1) −

H ∑ 

h =2

D (h ) 
⇀ 

α
(h )

)
6. Check the converge condition:

∥∥∥∥⇀

y − D (1) 
⇀ 

α
(1) −

H ∑ 

h =2

D (h ) 
⇀ 

α
(h ) 

∥∥∥∥2

2

≤ ε. 

End
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ayers, we still allow the variation patterns of all groups to collab-

ratively represent the remaining part. Finally, the group with the

inimal reconstruction error will win for tagging the test sample

y . 

.4. HSRC on multiple modalities 

Information about a pattern in classification can be revealed

ia different data capture techniques or through different views

such as profile correlations and Fourier coefficients of the char-

cter shapes of handwritten digits). Any single method almost

annot provide complete understanding of a certain pattern, so,

ulti-modal (multi-view) data is becoming more and more popu-

ar. From this point of view, extending the HSRC method to multi-

odal data will be expected to effectively utilize the complemen-

ary information and further improve the classification accuracy

nd robustness [17] . 

Suppose we have M modalities, an H -layer dictio-

ary is constructed for each one, denoted as D m 

=
 D 

(h ) 
m 

| h = 1 , . . . , H, m = 1 , . . . , M } , respectively. For the m -th

odality, we can iteratively optimize the sparse coefficients

 ̂

 

⇀ 

α
(1) 

m 

, ̂
 

⇀ 

α
(2) 

m 

, . . . , ̂
 

⇀ 

α
(H)

m } for the test sample. Then the reconstruction

rrors corresponding to different groups can be computed with

he formula 

 i ( 
⇀ 

y ) = 

M ∑ 

m =1

ω m 

∥∥∥∥⇀

y m 

− D 

(1) 
im 

ˆ ⇀ 

α
(1)

im −
∑ H 

h =1
D 

(h ) 
m 

ˆ ⇀ 

α
(h ) 

im

∥∥∥∥
2

,

i = 1 , . . . C, m = 1 , . . . , M, (8) 

here ω m 

is the regulating coefficient on the m -th modality and

an be obtained by learning or use empirical value for simplicity. 

. Experiments

In this section, we evaluate our method HSRC on real world

ata and perform comparisons with some related methods. Experi-

ents on data of single modality and multiple modalities are both

onducted. 

.1. Multiple feature description 

The data used in experiments is of multi-view features ex-

racted from Multiple Feature Data Set 1 (MF dataset). This dataset

onsists of 20 0 0 samples of handwritten digits 0 −9. For each digit,

here are 200 samples with six different views, namely Fourier co-

fficients of the character shapes, profile correlations, Karhunen-

ove expansion coefficients, pixel averages, Zernike moments and

orphological characteristics. The descriptions of these features
re shown in Table 1 . 

1 1 http://archive.ics.uci.edu/ml

http://archive.ics.uci.edu/ml
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Table 2

Classification results of the proposed HSRC method and baseline methods.

View Method ACC (%) SEN (%) SPE (%) PPV (%) NPV (%)

mfeat-fac SVM 98.2 98.1 98.4 98.5 98.2

SRC 96.6 96.5 96.5 96.9 96.3

HSRC 98.7 98.5 98.9 98.9 98.5

mfeat-mor SVM 63.8 68.8 58.8 62.4 68.9

SRC 60.3 57.0 63.6 59.5 64.0

HSRC 65.3 69.4 61.3 64.1 70.5

mfeat-fou SVM 66.4 72.5 60.3 64.9 71.7

SRC 66.8 72.6 61.1 65.6 72.1

HSRC 69.3 76.3 62.4 67.8 74.3

mfeat-kar SVM 98.2 98.0 98.2 98.3 98.1

SRC 98.2 97.8 98.6 98.6 97.9

HSRC 98.3 97.8 98.9 98.9 97.9

mfeat-pix SVM 98.5 98.1 98.8 98.8 98.2

SRC 98.2 97.4 99.0 99.1 97.5

HSRC 98.8 97.9 99.7 99.7 98,0

mfeat-zer SVM 64.8 68.3 61.4 63.8 69.7

SRC 64.0 71.6 56.4 62.8 70.6

HSRC 66.8 72.8 60.8 65.5 72.1
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3.2. Experimental setting and evaluation criteria 

To evaluate our proposed HSRC method, we compare it with

several state-of-the-art methods including linear SVM [18] , Multi-

Kernel SVM (MKL-SVM) [19] , SRC [6] , and Canonical Correlation

Analysis [20] based SVM (denoted as CCA-SVM in the following

context). These methods are widely used in classification tasks.

Specifically for multi-modal data, CCA can make use of two views

of the same semantic object to extract the representation of the

semantics by correlating linear relationships between two multi-

dimensional variables [21] ; on the other hand, Multi-Kernel SVM

uses inputs coming from different representations (kernels) from

different views and then combines the multiple kernels through a

weighted sum. 

Given the MF dataset with 10 digits, we distinguish two differ-

ent digits (such as ‘‘6”and ‘‘9”) from the selected samples subset,

where each digit subset include not only the samples of the cur-

rent digit but also other digit samples (we called noisy samples).

For our experiments, totally 420 samples are selected containing

400 handwritten digit samples of ‘‘6” and ‘‘9” and 20 noisy sam-

ples. Classifiers for features of single view and multiple views are

applied separately. 

To quantitatively evaluate the classification performance, some

quantitative measurements including Accuracy (ACC), Sensitivity

(SEN), Specificity (SPE), Positive Predictive Value (PPV), Negative

Predictive Value (NPV) and Mean Predictive Value (MPV) are em-

ployed. Sensitivity measures the proportion of positives that are

correctly identified, and specificity measures the proportion of

negatives that are correctly identified. PPV and NPV are respec-

tively the proportions of positive and negative results in tests that

are true positive and true negative. MPV is the average values of

accuracy. Formulas for these measurements are given below. 

ACC = 

T P + T N 

T P + T N + F P + F N 

, SEN = 

T P 

T P + T N 

, SP E = 

T N 

T N + F P 
,

P P V = 

T P 

T P + F P 
, NP V = 

T N 

T N + F N 

, MP V = 

SEN + SP E

2 

.

Here TP, TN , FP , FN are the number of true positives, true neg-

atives, false positives, and false negatives, respectively. 

Classification performance is evaluated with 10-fold cross-

validation. For each round of training, if not explicitly mentioned,

classifiers are constructed by randomly selecting 90% of the train-

ing samples as training data and using the rest as testing data to

measure the classification performance. We repeat the experiments

10 times for avoiding bias. The best parameters are determined

through an inner 5-fold cross-validation on the training stage. We

obtain the optimal values of λh , h = 1 , . . . , H for our HSRC method

by grid search in the range of { 10 −3 
, 10 −2 

, 10 −1 } . 

3.3. Experimental results on MF handwritten dataset 

In our experiments, we use 420 samples from the multiple fea-

tures handwritten digits dataset, consisting of 200 digit “6”, 200

digit “9” and 20 other digits with six views (mfeat-fou, mfeat-

fac, mfeat-kar, mfeat-pix, mfeat-zer and mfeat-mor). Each sample

has 76, 216, 64, 240, 47 and 6 elements for these six views, re-

spectively. A dictionary with 2 layers ( H = 2) is constructed in this

study. 

3.3.1. Classification results on single modality 

For single modality, we compare our method with two above-

mentioned methods (SVM, SRC) for classification between digit “6”

and “9”. The classification results with quantitative measurements

are listed in Table 2 for six different feature views. 

As can be seen from Table 2 , HSRC exhibits higher performance

for six different views compared with SVM and conventional SRC.
owever, the classification accuracies with all three methods for

eature views of mfeat-fou, mfeat-mor and mfeat-zer are unsatis-

actory. The underlying reason is that these features alone cannot

upply sufficiently discriminatory information for classification. But

s shown in next section, they still can contribute to enhancing the

lassification performance by combining with other features. 

.3.2. Classification results on multiple modalities 

Multiple modalities data can provide complementary informa-

ion to improve classification performance. We compare the perfor-

ance of the competing methods including MKL-SVM, CCA-SVM,

onventional SRC and our proposed HSRC to distinguish the hand-

ritten digits with different combinations of two feature views.

or the sake of fairness, we use the same modal fusion strategy for

he conventional SRC and our proposed HSRC method shows the

lassification results of handwritten digits for 15 different feature

ombinations, where our HSRC method obtains the best classifica-

ion accuracies among the listed competing methods. 

.5. Discussion 

Obviously, the set of selected features under this setting would

e appropriate if we are planning to build a linear classification

odal (e.g. linear SVM). This is because these features are selected

o minimize redundancy and maximize relevance to the class la-

els in the original feature space. 

For mfeat-mor, mfeat-fou and mfeat-zer views, respectively, the

lassification performance of two different digits is not good for

ll the competing methods in Table 2 . We use the complementary

nformation of different views to re-evaluate the classification per-

ormance, from Table 3 we can see, combining different com ple-

entary information from multiple views can definitely improve

he classification performance. 

In this work, we just take a simple feature fusion measure to

ombine the multiple modalities. In the future, we can consider

he more effective fusion method and emerge the multiple modal-

ties into the construction of deep dictionary. As for the layer num-

er H of the deep dictionary, its optimal value should be chosen by

earning instead of taking a fixed number (we simply let H equal 2

n experiments). 

. Conclusion

In this paper, we propose to enhance the conventional sparse

epresentation based classification by augmenting the single-layer

ictionary to the deep dictionary. Thus, our proposed hierarchical
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Table 3

Classification accuracies of the competing methods for handwritten digits.

View1 View2 MKL-SVM (%) CCA-SVM (%) SRC (%) HSRC (%)

mfeat-fac mfeat-mor 98.4 98.0 98.1 98.8

mfeat-fac mfeat-fou 98.3 98.2 98.2 98.7

mfeat-fac mfeat-kar 98.3 98.3 98.0 99.0

mfeat-fac mfeat-pix 98.3 98.2 98.1 99.3

mfeat-fac mfeat-zer 98.5 98.4 98.0 98.8

mfeat-mor mfeat-fou 74.5 73.2 72.7 75.3

mfeat-mor mfeat-kar 98.2 98.0 98.1 98.5

mfeat-mor mfeat-pix 99.0 98.5 98.4 98.9

mfeat-mor mfeat-zer 76.2 75.1 75.5 77.5

mfeat-fou mfeat-kar 98.1 98.1 98.2 98.4

mfeat-fou mfeat-pix 98.6 98.5 98.3 98.9

mfeat-fou mfeat-zer 75.5 75.4 75.4 76.7

mfeat-kar mfeat-pix 98.5 98.4 98.2 98.8

mfeat-kar mfeat-zer 98.3 98.2 98.2 98.4

mfeat-pix mfeat-zer 98.6 98.5 98.3 98.8
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parse representation based classification method can overcome

ome issues through the use of more efficient layer-by-layer repre-

entation. Experiments on the classification of handwritten digits,

specially with multi-view data, show that our method can achieve

ore accurate classification results compared with the state-of-

he-art counterpart classification methods. It may reveals that our

ropose HSRC method can better take advantage of the comple-

entary information from multiple modalities to improve the clas-

ification accuracy and robustness. 
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