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In this paper we present the extraproximal method for computing the Stackelberg/Nash equilibria in a class of ergodic
controlled finite Markov chains games. We exemplify the original game formulation in terms of coupled nonlinear pro-
gramming problems implementing the Lagrange principle. In addition, Tikhonov’s regularization method is employed to
ensure the convergence of the cost-functions to a Stackelberg/Nash equilibrium point. Then, we transform the problem
into a system of equations in the proximal format. We present a two-step iterated procedure for solving the extraproximal
method: (a) the first step (the extra-proximal step) consists of a “prediction” which calculates the preliminary position
approximation to the equilibrium point, and (b) the second step is designed to find a “basic adjustment” of the previous
prediction. The procedure is called the “extraproximal method” because of the use of an extrapolation. Each equation in
this system is an optimization problem for which the necessary and efficient condition for a minimum is solved using a
quadratic programming method. This solution approach provides a drastically quicker rate of convergence to the equilib-
rium point. We present the analysis of the convergence as well the rate of convergence of the method, which is one of the
main results of this paper. Additionally, the extraproximal method is developed in terms of Markov chains for Stackelberg
games. Our goal is to analyze completely a three-player Stackelberg game consisting of a leader and two followers. We
provide all the details needed to implement the extraproximal method in an efficient and numerically stable way. For in-
stance, a numerical technique is presented for computing the first step parameter (λ) of the extraproximal method. The
usefulness of the approach is successfully demonstrated by a numerical example related to a pricing oligopoly model for
airlines companies.
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1. Introduction

The extraproximal approach (Antipin, 2005) can be
considered a natural extension of the proximal and
gradient optimization methods used for solving the more
difficult problems of finding an equilibrium point in
game theory. The simplest and most natural approach
to implement the proximal method is to use a simple
iteration by omitting the prediction step. However,
as shown by Antipin (2005), this approach fails. A
more versatile procedure would be to perform an “ex-

∗Corresponding author

traproximal step” i.e., gathering certain information on
the future development of the process. Using this
information, it is possible to execute the “principle
step” based on the preliminary position. It seems
natural to call this procedure an “extraproximal method”
(because of the use of extrapolation (Antipin, 2005)).
Along with the extra-gradient technique (Poznyak, 2009),
the extraproximal method can be considered a natural
extension of the proximal and gradient optimization
approaches to resolve more complicated game problems,
such as the Stackelberg–Nash game.

Our goal is to analyze a three-player Stackelberg
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game (von Stackelberg, 1934), a leader and two followers,
for a class of ergodic controllable finite Markov chains
(Poznyak et al., 2000) using the extraproximal method
(Antipin, 2005). The leader commits first to a strategy x
in the Markov chains game. Then, the followers realize a
Nash solution (Clempner and Poznyak, 2011) obtaining
ϕl(·, ·|x) (l = 1, 2) as the cost functions. The optimal
actions x of the leader are then chosen to minimize its
payoff ϕ0(·, ·|x). The main concern about Stackelberg
games is as follows: the highest leader payoff is obtained
when the followers always reply in the best possible way
for the leader (this payoff is at least as high as any Nash
payoff). For ground-breaking works in the Stackelberg
game, see those by Bos (1986; 1991), Harris and Wiens
(1980), Merril and Schneider (1966) or von Stackelberg
(1934). Surveys can be found in the works of Breitmoser
(2012), De Fraja and Delbono (1990), Nett (1993) or
Vickers and Yarrow. (1998).

In this paper we present the extraproximal method
for computing the Stackelberg/Nash equilibria in a class
of ergodic controlled finite Markov chains games. We
exemplify the original game formulation in terms of
coupled nonlinear programming problems implementing
the Lagrange principle. In addition, Tikhonov’s
regularization method is employed to ensure the
convergence of the cost-functions to a Stackelberg/Nash
equilibrium point. The Tikhonov regularization is one of
the most popular approaches to solve discrete ill-posed
problems represented in the form of a non-obligatory strict
convex function. Then, we transform the problem to a
system of equations in the proximal format.

We present a two-step iterated procedure for solving
the extraproximal method: (a) the first step (the
extra-proximal step) consists of a “prediction” which
calculates the preliminary position approximation to the
equilibrium point, and (b) the second step is designed to
find a “basic adjustment” of the previous prediction. Each
equation in this system is an optimization problem for
which the necessary condition for a minimum is solved
using a quadratic programming method, instead of the
iterating projectional gradient method given by Moya and
Poznyak (2009). Iterating these steps, we obtain a new
quick procedure which leads to a simple and logically
justified computational realization: at each iteration of
both sub-steps of the procedure, the functional of the game
decreases and finally converges to a Stackelberg/Nash
equilibrium point (Trejo et al., 2015).

We present the analysis of the convergence as well
the rate of convergence of the method. Additionally, the
extraproximal method is developed in terms of Markov
chains for Stackelberg games consisting of a leader and
two followers. We provide all the details needed to
implement the extraproximal method in an efficient and
numerically stable way. For instance, a numerical method
is presented for computing the first step parameter (λ) of

the extraproximal method. The usefulness of the method
is successfully demonstrated by a numerical example
related to a pricing oligopoly model for airlines companies
that choose to offer limited airline seats for specific routes.

The paper is organized as follows. The next section
presents the preliminaries needed to understand the rest
of the paper. The formulation of the problem for the
N -player game and the general format iterative version
of the extraproximal method is presented in Section 2.
A three-player Stackelberg game for a class of ergodic
controllable finite Markov chains using the extraproximal
method is given in Section 4. Section 5 includes the
analysis of the converge of the extraproximal method and
proves the convergence rates, which is one of the main
results of this paper. A numerical example related to a
pricing oligopoly model for airline companies validates
the proposed extraproximal method in Section 6. Final
comments are outlined in Section 7.

2. Controllable Markov chains

A controllable Markov chain (Clempner and Poznyak,
2014; Poznyak et al., 2000) is a quadruple MC =
{S,A,Υ,Π}, where S is a finite set of states, S ⊂ N,
endowed with discrete topology; A is the set of actions,
which is a metric space. For each s ∈ S, A(s) ⊂ A is
the non-empty set of admissible actions at state s ∈ S.
Without loss of generality we may take A= ∪s∈SA(s);
Υ = {(s, a)|s ∈ S, a ∈ A(s)} is the set of admissible
state-action pairs, which is a measurable subset of S ×A;
Π(k) =

[
π(i,j|k)

]
is a stationary transition controlled

matrix, where

π(i,j|k)
≡ P

(
s(n+ 1) = s(j)|s(n) = s(i), a(n) = a(k)

)
,

representing the probability associated with the transition
from state s(i) to state s(j) under an action a(k) ∈ A

(
s(i)
)

(k = 1, . . . ,M) at time n = 0, 1, . . . .

The dynamics of the game for Markov chains are
described as follows. The game consists of (N+1)
players (denoted by l = 0,N ) and begins at the initial
state sl(0) which (as well as the states further realized
by the process) is assumed to be completely measurable.
Each player l is allowed to randomize, with distribution
dl(k|i)(n), over the pure action choices al(k) ∈ Al(sl(i)),

i = 1, Nl and k = 1,Ml. The leader corresponds to
l = 0 and followers to l = 1,N . At each fixed strategy
of the leader d0(k|i)(n), the followers make the strategy
selection trying to realize a Nash equilibrium. Below we
will consider only stationary strategies dl(k|i)(n) = dl(k|i).
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These choices induce the state distribution dynamics

P l
(
sl(n+ 1)=s(jl)

)

=

Nl∑

il=1

(
Ml∑

kl=1

πl
(il,jl|kl)

dl(kl|il)

)

P l
(
sl(n)=s(il)

)
.

In the ergodic case (when all Markov chains are
ergodic for any stationary strategy dl(k|i)) the distributions

P l
(
sl(n+ 1)=s(jl)

)
exponentially quickly converge to

their limits P l
(
s = s(i)

)
satisfying

P l
(
sl = s(jl)

)

=

Nl∑

il=1

(
Ml∑

kl=1

πl
(il,jl|kl)

dl(kl|il)

)

P l
(
sl=s(il)

)
.

(1)

For any player l, his/her individual rationality is the
player’s cost function J l of any fixed policy dl, defined
over all possible combinations of states and actions, and
indicates the expected value when taking action al in state
sl and following policy dl thereafter. The J-values can be
expressed by

Jl(cl) :=
∑

il,kl

W l
(il,kl)

dl(kl|il)P
l
(
sl=s(il)

)
, (2)

where
W l

(il,kl)
=
∑

jl

J l
(il,jl,kl)

πl
(il,jl|kl)

,

the function J l
(il,jl,kl)

being a constant at state s(il) when

the action al(kl)
is applied. Then, the cost function of

each player, depending on the states and actions of all
participants, is given by the values W l

(i1,k1;...;iN ,kN ), so

that the “average cost function” Jl for each player l in the
stationary regime can be expressed as

Jl
(
c0, . . . , cN

)

:=
∑

i0,k0

· · ·
∑

iN ,kN

W l
(i1,k1,...,iN ,kN )

N∏

l=0

cl(il,kl)
, (3)

where
cl := ‖cl(il,kl)

‖il=1,Nl;kl=1,Ml

is a matrix with elements

cl(il,kl)
= dl(kl|il)P

l
(
sl=s(il)

)
(4)

satisfying

cl ∈ Cl
adm=

⎧
⎪⎪⎨

⎪⎪⎩

cl :
∑

il,kl

cl(il,kl)
=1, cl(il,kl)

≥0,

∑

kl

cl(jl,kl)
=
∑

il,kl

πl
(il,jl|kl)

cl(il,kl)
.

(5)

Notice that by (4) it follows that

P l
(
sl=s(il)

)
=
∑

kl

cl(il,kl)
,

dl(kl|il)=
cl(il,kl)∑

kl

cl(il,kl)

.

(6)

In the ergodic case,
∑

kl

cl(il,kl)
> 0

for all l = 0,N . The individual aim of each participant is

Jl(cl) → min
cl∈Cl

adm

.

Obviously, here we have a conflict situation which can
be resolved by the Stackelberg–Nash equilibrium concept
discussed in detail below.

3. Formulation of the problem

3.1. Stackelberg–Nash equilibrium concept. To
simplify the descriptions, below let us introduce the new
variables:

x := col c(0), X := C
(0)
adm,

vl := col c(l), V l := C
(l)
adm

(
l = 1,N ) .

(7)

Consider a non-zero sum game with a leader whose
strategies are denoted by x ∈ X and N followers with
strategies vl ∈ V l

(
l = 1,N ) . Denote by

v = (v1, . . . , vN ) ∈ V :=

N⊗

l=1

V l

the joint strategy of the followers. The leader is assumed
to anticipate the reactions of the followers. They are
trying to reach one of the Nash equilibria for any fixed
strategy x of the leader, that is, to find a joint strategy
w∗ =

(
w1∗, . . . , wN∗) ∈W satisfying for any admissible

x ∈ X, wl ∈ W l and any l = 1,N the system of
inequalities (the Nash condition)

gl(v
l, wl̂∗|x) ≤ 0 for any vl ∈ V l and all l = 1,N ,

gl(v
l, wl̂|x) := ϕl(w

l, wl̂|x) − ϕl(v
l, wl̂|x),

(8)
where wl̂ is a strategy of the rest of the followers adjoint
to vl, namely,

wl̂ :=
(
v1, . . . , vl−1, vl+1, . . . , vN

)

∈ W l̂ :=
N⊗

m=1, m �=l

V m
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and

wl := arg min
vl∈V l

ϕl

(
vl, wl̂|x

)
.

Here ϕl(v
l, wl̂|x) is the cost-function of the player

l, which plays the strategy vl ∈ V l, and the rest of the
players—the strategy wl̂ ∈ W l̂.

Lemma 1. The Nash equilibrium w̄ ∈ W for the fol-
lowers given a fixed strategy of the leader x ∈ X (8) can
be equivalently expressed in the joint format (Tanaka and
Yokoyama, 1991),

max
v∈W

g (v, w̄|x) ≤ 0,

g(v, w|x) :=
N∑

l=1

[
ϕl(w

l, wl̂|x)− ϕl(v
l, wl̂|x)

]
,

ϕl(w
l, wl̂|x) := min

zl∈W l
ϕl(z

l, wl̂|x),

vl ∈ W l, w ∈ W :=
N⊗

l=1

W l.

(9)

Proof. Summing (8) implies (9). Conversely, taking
vm = wm for all m 
= l in (9), which is valid for any
admissible vl, we obtain (8). �

Notice that the condition g(v, w̄|x) ≤ 0 (9) is
equivalent to

max
v∈V

{g(v, w̄|x)} ≤ 0

for any fixed v ∈ V and any x ∈ X .
Let f (x,w) (x ∈ X, w ∈ W ) be the cost function

of the leader. The functions of the followers ϕl(v
l, wl̂|x)(

l = 1,N ) and the function of the leader f (x,w) are
assumed to be convex in all their arguments.

Definition 1. A strategy x∗ ∈ X of the leader together
with the collection w∗ ∈ W of the followers is said to be
a Stackelberg–Nash equilibrium if

(x∗, w∗)∈Argmin
x∈X

max
v∈V,w∈W

{f(x,w)|g(v, w|x)≤0} .
(10)

3.2. Regularized Lagrange principle application.
Applying the Lagrange principle (see, for example,
Poznyak et al., 2000) for Definition 1, we may conclude
that (10) can be rewritten as

(x∗, w∗)∈Argmin
x∈X

max
v∈V, w∈W, λ≥0

L(x, v, w, λ),

L(x, v, w, λ) := f(x,w) + λg(v, w|x).
(11)

The approximative solution obtained by the Tikhonov
regularization (see Poznyak et al., 2000) is given by

(x∗
δ , w

∗
δ)= argmin

x∈X
max

v∈V, w∈W, λ≥0
Lδ(x, v, w, λ),

Lδ(x, v, w, λ) := fδ(x,w) + λgδ(v, w|x) − δ

2
λ2,

(12)
where δ > 0 and

fδ(x,w) := f(x,w) +
δ

2
‖x‖2,

gδ(v, w|x) = g(v, w|x)− δ

2
(‖v‖2+‖w‖2)

(13)

Notice that with δ > 0 the functions considered
become strictly convex providing the uniqueness of the
discussed conditional optimization problem (12). For δ =
0 we have (11). Notice also that the Lagrange function in
(12) satisfies the saddle-point condition (Poznyak, 2009),
namely, for all x ∈ X and λ ≥ 0 we have

Lδ(x
∗
δ , vδ, wδ, λδ) ≤ Lδ(x

∗
δ , v

∗
δ , w

∗
δ , λ

∗
δ)

≤ Lδ(xδ, v
∗
δ , w

∗
δ , λ

∗
δ).

(14)

3.3. Proximal format. In the proximal format (see
Antipin, 2005) the relation (12) can be expressed as

λ∗
δ = argmax

λ≥0

{
−1

2
‖λ− λ∗

δ‖2 + γLδ(x
∗
δ , v

∗
δ , w

∗
δ , λ)

}
,

x∗
δ = argmin

x∈X

{
1

2
‖x− x∗

δ‖2 + γLδ(x, v
∗
δ , w

∗
δ , λ

∗
δ)

}
,

v∗δ = argmax
v∈V

{
−1

2
‖v − v∗δ‖2 + γLδ(x

∗
δ , v, w

∗
δ , λ

∗
δ)

}
,

w∗
δ = arg max

w∈W

{
−1

2
‖w − w∗

δ‖2 + γLδ(x
∗
δ , v

∗
δ , w, λ

∗
δ )

}
,

(15)

where the solutions x∗
δ , v

∗
δ , w

∗
δ and λ∗

δ depend on the small
parameters δ, γ > 0.

Define the extended variables

x̃:=
(
x
) ∈ X̃:=X,

ỹ:=

⎛

⎝
v
w
λ

⎞

⎠ ∈ Ỹ :=V ×W × R
+,

w̃ =

(
w̃1

w̃2

)
∈ X̃ × Ỹ ,

ṽ =

(
ṽ1
ṽ2

)
∈ X̃ × Ỹ ,
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and the functions

L̃δ(x̃, ỹ) := Lδ(x, v, w, λ),

Ψδ(w̃, ṽ) := L̃δ(w̃1, ṽ2)− L̃δ(ṽ1, w̃2).

For w̃1 = x̃, w̃2 = ỹ, ṽ1 = ṽ∗1 = x̃∗
δ and ṽ2 = ṽ∗2 = ỹ∗δ , we

have
Ψδ(w̃, ṽ) := L̃δ(x̃, ỹ

∗
δ )− L̃δ(x̃

∗
δ , ỹ).

In these variables the relation (15) can be represented in a
“short format” as

ṽ∗=arg min
w̃∈ ˜X×˜Y

{
1

2
‖w̃ − ṽ

∗‖2+γΨδ(w̃, ṽ
∗
)

}
. (16)

3.4. Extraproximal method. The extraproximal
method for the conditional optimization problems (12)
was suggested by Antipin (2005). We design the method
for the static Stackelberg–Nash game in a general format.

The general format iterative version (n = 0, 1, . . . )
of the extraproximal method with some fixed admissible
initial values (x0 ∈ X , v0 ∈ V , w0 ∈ W , and λ0 ≥ 0) is
as follows:

1. The first half-step (prediction):

λn = argmin
λ≥0

{
1

2
‖λ− λn‖2−γLδ(xn, vn, wn, λ)

}
,

xn = argmin
x∈X

{
1

2
‖x− xn‖2+γLδ(x, vn, wn, λ̄n)

}
,

vn = argmin
v∈V

{
1

2
‖v − vn‖2−γLδ(xn, v, wn, λ̄n)

}
,

w̄n = arg min
w∈W

{
1

2
‖w − wn‖2−γLδ(xn, vn, w, λ̄n)

}
,

(17)

or, in the extended variables,

v̂n = arg min
w̃∈ ˜X×˜Y

{
1
2‖w̃ − ṽn‖2+γΨδ(w̃, ṽn)

}
. (18)

2. The second (basic) half-step,

λn+1 = argmin
λ≥0

{
1

2
‖λ− λn‖2−γLδ(x̄n, v̄n, w̄n, λ)

}
,

xn+1 = argmin
x∈X

{
1

2
‖x− xn‖2+γLδ(x, v̄n, w̄n, λ̄n)

}
,

vn+1 = argmin
v∈V

{
1

2
‖v − vn‖2−γLδ(x̄n, v, w̄n, λ̄n)

}
,

wn+1 = arg min
w∈W

{
1

2
‖w − wn‖2−γLδ(x̄n, v̄n, w, λ̄n)

}

(19)

or, in the “short format”,

ṽn+1 = arg min
w̃∈ ˜X×˜Y

{
1

2
‖w̃ − ṽn‖2 + γΨδ(w̃, v̂n)

}
.

(20)

Remark 1. The direct one-step procedure, when λn+1 =
λn, does not work (see the counter-example of Antipin
(2005)).

4. Markov format for the extraproximal
method

We consider a three-player Stackelberg game
(
l = 1,N ).

Player l should be understood to refer to players in a
general expression of the game. In the remainder of
this paper, the leader is designated as player (0) and
the followers as players (1) and (2). Numbers are used
to refer to players in a specific expression. We also
assume that the number of strategies and actions that this
description can take is finite and fixed. Here we will apply
the iterative quadratic method providing a significantly
quicker rate of convergence.

4.1. Cost functions and notation. The individual
cost-functions of the followers and the leader are defined
as follows.

Cost-function for the leader:

J(0)(c(1), c(2), c(0))

=
∑

i1,k1

∑

i2,k2

∑

i0,k0

W
(0)
(i1,k1;i2,k2;i0,k0)

c
(1)
(i1,k1)

c
(2)
(i2,k2)

c
(0)
(i0,k0)

.

(21)

Cost-functions for the followers:

Follower 1:

J(1)(c(1), c(2), c(0))

=
∑

i1,k1

∑

i2,k2

∑

i0,k0

W
(1)
(i1,k1;i2,k2;i0,k0)

c
(1)
(i1,k1)

c
(2)
(i2,k2)

c
(0)
(i0,k0)

.

(22)

Follower 2:

J(2)(c(1), c(2), c(0))

=
∑

i1,k1

∑

i2,k2

∑

i0,k0

W
(2)
(i1,k1;i2,k2;i0,k0)

c
(1)
(i1,k1)

c
(2)
(i2,k2)

c
(0)
(i0,k0)

.

(23)

For n = 0, 1, . . . , let us define the vectors

xn = col c(0)(n),

vn =

(
col c(1) (n)

col c(2) (n)

)
,
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wn = w
̂l =

(
col c(1̂) (n)

col c(2̂) (n)

)

,

wl =

(
col c̊(1) (n)

col c̊(2) (n)

)

=

⎛

⎜
⎜
⎝

col arg min
z∈C

(1)
adm

J(1)
(
z, c(2̂) (n) , xn

)

col arg min
z∈C

(2)
adm

J(2)
(
c(1̂) (n) , z, xn

)

⎞

⎟
⎟
⎠ .

Let us introduce for simplicity the following
notation:

W
(l)
(i1,k1;i2,k2;i0,k0)

= W (l)

c
(l)
(il,kl)

= c(l)

c(l̂)(il, kl) = c(l̂)

c̊
(l)
(il,kl)

= c̊(l)

c
(l)
(il,kl)

= c(l)

For the leader we have

f(x,w) =
∑

i1,k1

∑

i2,k2

∑

i0,k0

W (0)c̊(1)c̊(2)c(0). (24)

From

J(1)
(
c̊(1), c(2̂)|c(0)

)
≤ J(1)

(
c(1), c(2̂)|c(0)

)
,

J(2)
(
c̊(2), c(1̂)|c(0)

)
≤ J(2)

(
c(2), c(1̂)|c(0)

)
,

we have

ϕl

(
wl, wl̂|x

)

= J(1)
(
c̊(1), c(2̂)|c(0)

)
+ J(2)

(
c̊(2), c(1̂)|c(0)

)

=
∑

i1,k1

∑

i2,k2

∑

i0,k0

[
W (1)c̊(1)c(2̂)c(0) +W (2)c(1̂)c̊(2)c(0)

]
,

(25)

as well as

ϕl

(
vl, wl̂|x

)

= J(1)
(
c(1), c(2̂)|c(0)

)
+ J(2)

(
c(2), c(1̂)|c(0)

)

=
∑

i1,k1

∑

i2,k2

∑

i0,k0

[
W (1)c(1)c(2̂)c(0) +W (2)c(1̂)c(2)c(0)

]
.

(26)

For computing the Nash equilibrium point, we define
the function g(v, w, x) as follows:

g(v, w|x)
=
∑

i1,k1

∑

i2,k2

∑

i0,k0

[
W (1)c̊(1)c(2̂)c(0) +W (2)c(1̂)c̊(2)c(0)

− W (1)c(1)c(2̂)c(0) −W (2)c(1̂)c(2)c(0)
]
.

(27)

4.2. Tikhonov’s regularization method. The regula-
rized problem for (24) is defined as follows:

fδ(x,w) =
∑

i1,k1

∑

i2,k2

∑

i0,k0

W (0)c̊(1)c̊(2)c(0) +
δ

2
‖c(0)‖2,

and for (27) we have

gδ(v, w|x)
=
∑

i1,k1

∑

i2,k2

∑

i0,k0

[
W (1)c̊(1)c(2̂)c(0) +W (2)c(1̂)c̊(2)c(0)

− W (1)c(1)c(2̂)c(0) −W (2)c(1̂)c(2)c(0)
]

− δ

2

⎛

⎝
∥
∥
∥
∥

c(1)

c(2)

∥
∥
∥
∥

2

+

∥
∥
∥
∥
∥

c(1̂)

c(2̂)

∥
∥
∥
∥
∥

2
⎞

⎠ .

(28)

4.3. Lagrange principle. Let us apply the Lagrange
principle (Poznyak, 2009) with the Lagrange function

Lδ(x, v, w, λ)

= fδ(x,w) + λgδ(v, w, x) − δ

2
λ2

=
∑

i1,k1

∑

i2,k2

∑

i0,k0

[
W (0)c̊(1)c̊(2)c(0)

+ λ
(
W (1)c̊(1)c(2̂)c(0) +W (2)c(1̂)c̊(2)c(0)

− W (1)c(1)c(2̂)c(0) −W (2)c(1̂)c(2)c(0)
)]

− λ
δ

2

⎛

⎝
∥
∥∥
∥

c(1)

c(2)

∥
∥∥
∥

2

+

∥
∥
∥∥
∥

c(1̂)

c(2̂)

∥
∥
∥∥
∥

2
⎞

⎠+
δ

2
‖c(0)‖2 − δ

2
λ2.

4.4. Extrapoximal method for Markov chains. The
procedure for solving the Stackelberg/Nash equilibrium
point for the extraproximal method consists of the
following “iterative rules” implementation.

1. First half-step:
1.a. For

λn = argmin
λ≥0

{
1

2
(λ− λn)

2 − γLδ(xn, vn, wn, λ)

}
,
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we have

λn =

⎡

⎣λn + γ
∑

i1,k1

∑

i2,k2

∑

i0,k0

(
W (1)c̊(1)c(2̂)(n)c(0)(n)

+W (2)c(1̂)(n)̊c(2)c(0)(n)

−W (1)c(1)(n)c(2̂)(n)c(0)(n)

− W (2)c(1̂)(n)c(2)(n)c(0)(n)
)

− γ
δ

2

⎛

⎝
∥
∥
∥
∥

c(1)(n)
c(2)(n)

∥
∥
∥
∥

2

+

∥
∥
∥
∥∥

c(1̂)(n)

c(2̂)(n)

∥
∥
∥
∥∥

2
⎞

⎠

⎤

⎦

+

× 1

1 + γδ
.

1.b. For

xn = argmin
x∈X

{
1

2
‖x− xn‖2 + γLδ(x, vn, wn, λn)

}
,

we have

xn = argmin
x∈X

{(
1

2
+ γ

δ

2

)
‖c(0)‖2

+ γ
∑

i1,k1

∑

i2,k2

∑

i0,k0

[
W (0)c̊(1)c̊(2)c(0)

+ λn

(
W (1)c̊(1)c(2̂)(n)c(0)

+W (2)c(1̂)(n)̊c(2)c(0) −W (1)c(1)(n)c(2̂)(n)c(0)

− W (2)c(1̂)(n)c(2)(n)c(0)
)]

− c(0)T (n)c(0) +
1

2
‖c(0)(n)‖2

− γλn
δ

2

⎛

⎝
∥∥
∥
∥

c(1)(n)

c(2)(n)

∥∥
∥
∥

2

+

∥
∥∥
∥
∥

c(1̂)(n)

c(2̂)(n)

∥
∥∥
∥
∥

2
⎞

⎠

− γ
δ

2
λ
2

n } .

1.c. For

vn = argmin
v∈V

{
1

2
‖v − vn‖2 − γLδ(xn, v, wn, λn)

}
,

we have

vn = argmin
v∈V

{(
1

2
+ γλn

δ

2

)∥∥
∥
∥

c(1)

c(2)

∥∥
∥
∥

2

−
(

c(1)

c(2)

)T (
c(1)(n)
c(2)(n)

)

+ γλn

∑

i1,k1

∑

i2,k2

∑

i0,k0

[
W (1)c(1)c(2̂)(n)c(0)(n)

+W (2)c(1̂)(n)c(2)c(0)(n)−W (1)c̊(1)c(2̂)(n)c(0)(n)

− W (2)c(1̂)(n)̊c(2)c(0)(n)
]

− γ
∑

i1,k1

∑

i2,k2

∑

i0,k0

W (0)c̊(1)c̊(2)c(0)(n)

− γ
δ

2
‖c(0)(n)‖2 + 1

2

∥∥
∥
∥

c(1)(n)

c(2)(n)

∥∥
∥
∥

2

+γλn
δ

2

∥
∥
∥∥
∥

c(1̂)(n)

c(2̂)(n)

∥
∥
∥∥
∥

2

+ γ
δ

2
λ
2

n

⎫
⎬

⎭
.

1.d. For

wn = arg min
w∈W

{
1

2
‖w − wn‖2 − γLδ(xn, vn, w, λn)

}
,

we have

wn = arg min
w∈W

⎧
⎨

⎩

(
1

2
+ γλn

δ

2

)∥∥
∥
∥∥

c(1̂)

c(2̂)

∥
∥
∥
∥∥

2

−
(

c(1̂)

c(2̂)

)T (
c(1̂)(n)

c(2̂)(n)

)

− γλn

∑

i1,k1

∑

i2,k2

∑

i0,k0

[
W (1)c̊(1)c(2̂)c(0)(n)

+W (2)c(1̂)c̊(2)c(0)(n)−W (1)c(1)(n)c(2̂)c(0)(n)

− W (2)c(1̂)c(2)(n)c(0)(n)
]

− γ
∑

i1,k1

∑

i2,k2

∑

i0,k0

W (0)c̊(1)c̊(2)c(0)(n)

− γ
δ

2
‖c(0)(n)‖2 + 1

2

∥
∥
∥
∥
∥

c(1̂)(n)

c(2̂)(n)

∥
∥
∥
∥
∥

2

+ γλn
δ

2

∥∥
∥
∥

c(1)(n)

c(2)(n)

∥∥
∥
∥

2

+ γ
δ

2
λ
2

n

}

.

2. Second half-step:
2.a. For

λn+1 = argmin
λ≥0

{
1

2
(λ− λn)

2 − γLδ(xn, vn, wn, λ)

}
,
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we have

λn+1 =

⎡

⎣λn + γ
∑

i1,k1

∑

i2,k2

∑

i0,k0

(
W (1)c̊(1)c(2̂)(n)c(0)(n)

+W (2)c(1̂)(n)̊c(2)c(0)(n)

−W (1)c(1)(n)c(2̂)(n)c(0)(n)

− W (2)c(1̂)(n)c(2)(n)c(0)(n)
)

− γ
δ

2

⎛

⎝
∥
∥
∥
∥

c(1)(n)

c(2)(n)

∥
∥
∥
∥

2

+

∥
∥
∥
∥∥

c(1̂)(n)

c(2̂)(n)

∥
∥
∥
∥∥

2
⎞

⎠

⎤

⎦

+

× 1

1 + γδ
.

2.b. For

xn+1 = argmin
x∈X

{
1

2
‖x− xn‖2 + γLδ(x, vn, wn, λn)

}
,

we obtain

xn+1

= argmin
x∈X

{(
1

2
+ γ

δ

2

)
‖c(0)‖2

+ γ
∑

i1,k1

∑

i2,k2

∑

i0,k0

[
W (0)c̊(1)c̊(2)c(0)

+ λn

(
W (1)c̊(1)c(2̂)(n)c(0)

+W (2)c(1̂)(n)̊c(2)c(0) −W (1)c(1)(n)c(2̂)(n)c(0)

− W (2)c(1̂)(n)c(2)(n)c(0)
)]

− c(0)T (n)c(0) +
1

2
‖c(0)(n)‖2

− γλn
δ

2

⎛

⎝
∥
∥
∥∥

c(1)(n)

c(2)(n)

∥
∥
∥∥

2

+

∥
∥
∥∥
∥

c(1̂)(n)

c(2̂)(n)

∥
∥
∥∥
∥

2
⎞

⎠

−γ
δ

2
λ
2

n

}
.

2.c. For

vn+1 = argmin
v∈V

{
1

2
‖v − vn‖2 − γLδ(xn, v, wn, λn)

}
,

we get

vn+1

= argmin
v∈V

{(
1

2
+ γλn

δ

2

)∥∥
∥
∥

c(1)

c(2)

∥∥
∥
∥

2

−
(

c(1)

c(2)

)T (
c(1)(n)

c(2)(n)

)

+ γλn

∑

i1,k1

∑

i2,k2

∑

i0,k0

[
W (1)c(1)c(2̂)(n)c(0)(n)

+W (2)c(1̂)(n)c(2)c(0)(n)−W (1)c̊(1)c(2̂)(n)c(0)(n)

− W (2)c(1̂)(n)̊c(2)c(0)(n)
]

− γ
∑

i1,k1

∑

i2,k2

∑

i0,k0

W (0)c̊(1)c̊(2)c(0)(n)− γ
δ

2
‖c(0)(n)‖2

+
1

2

∥
∥
∥∥

c(1)(n)
c(2)(n)

∥
∥
∥∥

2

+ γλn
δ

2

∥
∥
∥∥
∥

c(1̂)(n)

c(2̂)(n)

∥
∥
∥∥
∥

2

+ γ
δ

2
λ
2

n

⎫
⎬

⎭
.

2.d. For

wn+1 = arg min
w∈W

{
1

2
‖w − wn‖2 − γLδ(xn, vn, w, λn)

}
,

we have

wn+1 = arg min
w∈W

⎧
⎨

⎩

(
1

2
+ γλn

δ

2

)∥∥
∥
∥∥

c(1̂)

c(2̂)

∥
∥
∥
∥∥

2

−
(

c(1̂)

c(2̂)

)T (
c(1̂)(n)

c(2̂)(n)

)

− γλn

∑

i1,k1

∑

i2,k2

∑

i0,k0

[
W (1)c̊(1)c(2̂)c(0)(n)

+W (2)c
(1̂)
(i1,k1 )̊

c(2)c(0)(n)

−W (1)c(1)(n)c(2̂)c(0)(n)

− W (2)c(1̂)c(2)(n)c(0)(n)
]

− γ
∑

i1,k1

∑

i2,k2

∑

i0,k0

W (0)c̊(1)c̊(2)c(0)(n)

− γ
δ

2
‖c(0)(n)‖2 + 1

2

∥
∥
∥
∥
∥

c(1̂)(n)

c(2̂)(n)

∥
∥
∥
∥
∥

2

+γλn
δ

2

∥∥
∥
∥

c(1)(n)

c(2)(n)

∥∥
∥
∥

2

+ γ
δ

2
λ
2

n

}

.

4.5. Quadratic programming solver. Let us restrict
the expression (3) for the admissible set and the stationary
case with the following constraint.

Each matrix d
(l)
(il|kl)

represents a stationary
mixed-strategy that belongs to the simplex

S(NlMl) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d
(l)
(il|kl)

∈ R
NlMl for d(l)(il|kl)

≥ 0,

where
Ml∑

kl=1

d
(l)
(il|kl)

= 1.
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A necessary and sufficient condition for d(l)(il|kl)
to be

a Stackelberg/Nash equilibrium point is the solution of the
following QPP (quadratic programming problem):

Jl
(
d0(i0,k0)

, d1(i1,k1)
, . . . , dN(iN ,kN )

)
→ min

d
(l)

(il|kl)
(29)

subject to
d
(l)
(il|kl)

∈ S(NlMl).

We consider the problem
1
2X

�HX + C�X → min
X

,

AX ≤ b, AX = b,

(30)

where 0 ≤ X ≤ 1, Al ∈ R
Nl+1×(NlMl) and bl ∈ R

Nl+1.

The vector CT = C(N |M) is defined as

C(1|1) = W l
(1|1),

C(2|1) = W l
(2|1),

...

C(N |1) = W l
(N |1),

...

C(1|Ml) = W l
(1|Ml)

,

...

C(Nl|Ml) = W l
(Nl|Ml)

that is, C(N |M) is equal to W l
(i1,k1,...,iN ,kN ) ordered by

columns.
The vector bl is defined as

bl = (0, . . . , 0
Nl times

, 1)T ∈ R
Nl+1.

We will construct the matrix Al ∈ R
Nl×(NlMl) using

the ergodicity constraints defined in (5),

0 =

Ml∑

kl=1

(
Nl∑

il=1

π(iljl|kl)c
(l)
(il|kl)

− c
(l)
(jl|kl)

)

. (31)

Then, we have

jl = 1

Ml∑

kl=1

(
Nl∑

il=1

π(iljl|kl)c
(l)
(il|kl)

− c
(l)
(1|kl)

)

= 0,

jl = 2

Ml∑

kl=1

(
Nl∑

il=1

π(iljl|kl)c
(l)
(il|kl)

− c
(l)
(2|kl)

)

= 0,

...

jl = Nl

Ml∑

kl=1

(
Nl∑

il=1

π(iljl|kl)c
(l)
(il|kl)

− c
(l)
(Nl|kl)

)

= 0.

Developing the formulas of (31) for N players and
multiplying by c

(l)
(il|kl)

for each component (31), we have

BL(l) =
[
π
(l)
(jl,il|kl)

− δ(jl,il)

]

jl=1,Nl il=1,Nl

=

⎡

⎢
⎣
π
(l)
(1,1|1) − 1 . . . π

(l)
(Nl,1|Ml)

. . . . . . . . .

π
(l)
(Nl,1|1) . . . π

(l)
(Nl,Nl|Ml)

− 1

⎤

⎥
⎦ ,

where δ(jl,il) is Kronecker’s delta. Then Aeq ∈
R
(
∑N

l=1 Nl+(N ))×(∑N
l=1 Nl×Ml) is defined as follows:

Aeq =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

BL(1) 0 . . . 0

0 BL(2) . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . BL(Ml)

[1] 0 . . . 0
0 [1] . . . 0
0 0 . . . 0
0 0 0 [1]

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

,

where
[1] = (1, . . . , 1)ᵀ ∈ R

(Nl)

and
beq ∈ R(

∑N
l=1 Nl+(N ))

is
beq =

(
0 . . . 0 1 . . . 1

)�
.

5. Convergence analysis

5.1. Auxiliary results. Let us prove the following
auxiliary results.

Lemma 2. Let f(z) be a convex function defined on a
convex set Z . If z∗is a minimizer of function

ϕ(z) =
1

2
‖z − x‖2+αf(z) (32)

on Z with fixed x, then f(z) satisfies the inequality

1

2
‖z∗−x‖2+αf(z

∗
)

≤ 1

2
‖z − x‖2+αf(z)−1

2
‖z − z

∗‖2. (33)

Proof. By the necessary condition for a minimum at z∗,

〈z∗−x+ α∇f(z
∗
), z − z

∗〉 ≥ 0,

and the convexity property of f(z), expressed as

f(z) ≥ f(z∗) + 〈∇f(z∗), z − z∗〉,
we derive

0 ≤ 〈z∗−x+ α∇f(z∗), z − z∗〉
= 〈z∗−x, z − z∗〉+ α [f(z)− f(z∗)] .
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Using this inequality in the identity

1

2
‖z − x‖2

=
1

2
‖z − z∗‖2+〈z∗−x, z − z∗〉+1

2
‖z∗−x‖2,

we get (33). The lemma is proven. �

Lemma 3. If all partial derivatives of L̃δ(x̃, ỹ) satisfy
the Lipschitz condition with positive constant C0, then the
following Lipschitz-type condition holds:

‖[Ψδ(w̃ + h, ṽ + g)−Ψδ(w̃, ṽ + g)]

− [Ψδ(w̃ + h, ṽ)−Ψδ(w̃, ṽ)]‖≤ C0‖h‖‖g‖ (34)

valid for any w̃, h, ṽ, g ∈ X̃ × Ỹ .

Proof. By Lagrange’s formula

f(x+ h)− f(x) =

∫ 1

0

〈∇f(x + th), h〉dt,

we have

‖[Ψδ(w̃ + h, ṽ + g)−Ψδ(w̃, ṽ + g)]

− [Ψδ(w̃ + h, ṽ)−Ψδ(w̃, ṽ)]‖

= ‖
∫ 1

0

〈∇Ψδ(w̃ + th, ṽ + g)−∇Ψδ(w̃ + th, ṽ), h〉dt‖

≤
∫ 1

0

|〈∇Ψδ(w̃ + th, ṽ + g)−∇Ψδ(w̃ + th, ṽ), h〉| dt

≤
∫ 1

0

C0‖h‖‖g‖ dt ≤ C0‖h‖‖k‖,

which proves the lemma. �

5.2. Main convergence theorem. The following
theorem presents the convergence conditions of (17)–(19)
and gives an estimate of its rate of convergence.

Theorem 1. Assume that the problem (16) has a solution.
Let L̃δ(x̃, ỹ) be differentiable in x̃ and ỹ, whose partial
derivative with respect to ỹ satisfies the Lipschitz condi-
tion with positive constant C. Then, for any δ ∈ (0, 1),
there exists a small enough

γ0= γ0(δ) < C :=min

{
1√
2C0

,
1 +
√
1 + 2C2

0

2C2
0

}

such that, for any 0 < γ ≤ γ0, the sequence {ṽn}, gener-
ated by the equivalent extraproximal procedure (18)–(20),
monotonically converges in norm with a geometric pro-
gression rate q ∈ (0, 1) to one of the equilibrium points
ṽ∗, i.e.,

‖ṽn−ṽ∗‖2≤ qn‖ṽ0−ṽ∗‖2, (35)

where

q = 1+
4(δγ)2

1 + 2δγ − 2γ2C2
−2δγ. (36)

Proof. Taking in (33) α = γ and

z = w̃, x = ṽn, z∗= v̂n,
f(z) = Ψδ(w̃, ṽn), f(z

∗
) = Ψδ(v̂n, ṽn),

we obtain

1

2
‖v̂n−ṽn‖2+γΨδ(v̂n, ṽn)

≤ 1

2
‖w̃ − ṽn‖2+γΨδ(w̃, ṽn)−

1

2
‖w̃ − v̂n‖2.

(37)

Again setting in (33) α = γ and

z = w̃, x = ṽn, z∗= ṽn+1,
f(z) = Ψδ(w̃, v̂n), f(z∗) = Ψδ(ṽn+1, v̂n),

we get

1

2
‖ṽn+1−ṽn‖2+γΨδ(ṽn+1, v̂n)

≤ 1

2
‖w̃ − ṽn‖2+γΨδ(w̃, v̂n)−

1

2
‖w̃ − ṽn+1‖2.

(38)

Selecting w̃ = ṽn+1 in (37) and w̃ = v̂n in (38), we obtain

1

2
‖v̂n−ṽn‖2+γΨδ(v̂n, ṽn)

≤ 1

2
‖ṽn+1−ṽn‖2+γΨδ(ṽn+1, ṽn)

− 1

2
‖ṽn+1−v̂n‖2,

(39)

1

2
‖ṽn+1−ṽn‖2+γΨδ(ṽn+1, v̂n)

≤ 1

2
‖v̂n−ṽn‖2+γΨδ(v̂n, v̂n)−

1

2
‖v̂n−ṽn+1‖2.

(40)

Adding (39) with (40) and using (34) for

w̃ + h = ṽn+1, w̃ = v̂n, ṽ + g = ṽn, ṽ = v̂n,
h = ṽn+1−v̂n, g = ṽn−v̂n,

we finally conclude that

‖ṽn+1−v̂n‖2 ≤ γ[Ψδ(ṽn+1, ṽn)−Ψδ(v̂n, ṽn)]

− γ[Ψδ(ṽn+1, v̂n)−Ψδ(v̂n, v̂n)]

≤ γC‖ṽn+1−v̂n‖‖ṽn−v̂n‖,
which implies

‖ṽn+1 − v̂n‖ ≤ γC‖ṽn − v̂n‖. (41)

Now, taking w̃ = ṽn+1 in (37) and w̃ = ṽ∗δ in (38),
we get

1

2
‖v̂n−ṽn‖2+γΨδ(v̂n, ṽn)

≤ 1

2
‖ṽn+1−ṽn‖2 + γΨδ(ṽn+1, ṽn)

− 1

2
‖ṽn+1−v̂n‖2,
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1

2
‖ṽn+1−ṽn‖2+γΨδ(ṽn+1, v̂n)

≤ 1

2
‖ṽ∗δ−ṽn‖2+γΨδ(ṽ

∗
δ , v̂n)−

1

2
‖ṽ∗δ−ṽn+1‖2.

Adding these two inequalities and multiplying by two
yields

‖ṽ∗δ−ṽn+1‖2+‖ṽn+1−v̂n‖2+‖v̂n−ṽn‖2
−2γΨδ(ṽ

∗
δ , v̂n)+2γ[Ψδ(ṽn+1, v̂n)

+Ψδ(v̂n, ṽn)−Ψδ(ṽn+1, ṽn)] ≤ ‖ṽ∗δ−ṽn‖2.
Adding and subtracting the term Ψδ(v̂n, v̂n), we have

‖ṽ∗δ−ṽn+1‖2+‖ṽn+1−v̂n‖2+‖v̂n−ṽn‖2
+ 2γ [Ψδ(v̂n, v̂n)−Ψδ(ṽ

∗
δ , v̂n)] +2γ [Ψδ(ṽn+1, v̂n)

− Ψδ(v̂n, v̂n) + Ψδ(v̂n, ṽn)−Ψδ(ṽn+1, ṽn)
]

≤ ‖ṽ∗δ − ṽn‖2.
Using (34) with w̃+ h = ṽn+1, w̃ = v̂n, ṽ+ k = ṽn

and ṽ = v̂n, we have h = ṽn+1 − v̂n and k = ṽn − v̂n,
and the inequality above becomes

‖ṽ∗δ−ṽn+1‖2+‖ṽn+1−v̂n‖2+‖v̂n−ṽn‖2
+2γ [Ψδ(v̂n, v̂n)−Ψδ(ṽ

∗
δ , v̂n)]

− 2γC‖ṽn+1−v̂n‖‖ṽn−v̂n‖ ≤ ‖ṽ∗δ − ṽn‖2

Applying (41) to the last term on the left-hand side and in
view of the strict convexity property of Ψδ given by

Ψδ(v̂n, v̂n)−Ψδ(ṽ
∗
δ , v̂n) ≥ δ‖v̂n−ṽ∗δ‖2,

we get

‖ṽ∗δ−ṽn+1‖2+‖ṽn+1−v̂n‖2+2γδ‖v̂n − ṽ∗δ‖2
+
(
1− 2γ2C2

) ‖ṽn−v̂n‖2≤ ‖ṽ∗δ − ṽn‖2.
Applying the identity 2〈a− c, c− b〉 = ‖a− b‖2 −

‖a− c‖2 − ‖c− b‖2 with a = v̂n, b = ṽ∗δ and c = ṽn to
the left-hand side of the last inequality, we have

‖ṽ∗δ−ṽn+1‖2+‖ṽn+1−v̂n‖2+
(
1− 2γ2C2

) ‖ṽn−v̂n‖2
+ 2γδ[2〈v̂n − ṽn, ṽn − ṽ∗δ 〉+ ‖ṽn−v̂n‖2 + ‖ṽn − ṽ∗δ‖2

= ‖ṽ∗δ−ṽn+1‖2+‖ṽn+1−v̂n‖2
+ (1 + 2γδ − 2γ

2
C2)‖ṽn − v̂n‖2

+4γδ〈v̂n − ṽn, ṽn−ṽ∗δ〉
+2γδ‖ṽn−ṽ∗δ‖2 ≤ ‖ṽ∗δ − ṽn‖2 .

Defining d = 1 + 2γδ − 2γ2C2 and completing the
square form of the third and fourth terms yields

‖ṽ∗δ−ṽn+1‖2 + ‖ṽn+1−v̂n‖2 + d‖ṽn − v̂n‖2

+ 4γδ〈v̂n − ṽn, ṽn − ṽ∗δ 〉+
(2γδ)2

d
‖ṽn−ṽ∗δ‖2

− (2γδ)2

d
‖ṽn−ṽ∗δ‖2 + 2γδ‖ṽn−ṽ∗δ‖2 ≤ ‖ṽ∗δ − ṽn‖2

and

‖ṽ∗δ−ṽn+1‖2 + ‖ṽn+1−v̂n‖2

+ ‖
√
d(ṽn − v̂n) +

2γδ√
d
(ṽn−ṽ∗δ)‖2

≤
(
1− 2γδ +

(2γδ)2

d

)
‖ṽ∗δ − ṽn‖2,

finally implying that

‖ṽ∗δ−ṽn+1‖2 ≤ q‖ṽ∗δ − ṽn‖2

≤ qn+1‖ṽ∗δ − ṽ0‖2 −→
n→∞ 0

with

q = 1− 2γδ +
(2γδ)2

d
∈ (0, 1) .

The theorem is proven.
�

6. Numerical example

We consider a pricing oligopoly model (Karpowicz, 2012;
Nowak and Romaniuk, 2013) with a leader and two
followers. For instance, let us consider AA, one of the
most profitable airlines globally, which has always had
the reputation of a leader and industry challenger. Let
us also consider two local flying companies called AI
and AII as the followers of AA on the market. AI
and AII were forced to immediately start competing with
international airlines for routes, getting access to airports,
securing flight slots and landing rights, and attracting a
new customer base.

We suppose that each consumer buys at most one
ticket. It is a common practice for airlines to price
discriminate, i.e., consumers coming to the market at
different times have valuations inversely related to the
length of time between the purchase and the flight. This is
the case of business people who decide to travel at the last
moment, and pay much more money for getting a ticket.
On the other hand, people who plan to travel a year ahead
pay significantly less money. The linear demand assumes
a continuum of people between these extremes.

The dynamics of the game are as follows: (a) AA is
the first mover and manages all its advantage attracting
the highest value customers who pay a uniformly high
price, (b) AI and AII price discriminates over the residual
demand. The firms can choose to offer limited airline seats
for a specific route: high, medium, low, or none at all.
The market price of the seats decreases with increasing
total quantity offered by the companies. If the companies
decide to offer a high quantity of airline seats, the price
collapses so that profits drop to zero. Figure 1 describes
the states and actions corresponding to the Markov chain
of the pricing problem.
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Fig. 1. Pricing Markov chain.

Following Eqn. (2), the individual utilities are as
follows:

AA high medium low none
High 0 30 43 69

Medium 22 39 47 71
Low 25 37 43 61
None 0 0 0 0

AI high medium low none
High 0 22 24 0

Medium 30 39 37 0
Low 43 47 43 0
None 59 41 55 0

AII high medium low none
High 0 24 27 3

Medium 28 39 39 5
Low 37 45 43 10
None 54 39 59 0

The transition matrices are

πAI
(i,j|1) =

⎡

⎢
⎢
⎣

0.3288 0.2152 0.3739 0.0821
0.1308 0.3639 0.4474 0.0578
0.1394 0.1225 0.4843 0.2538
0.5846 0.1538 0.0937 0.1679

⎤

⎥
⎥
⎦ ,

πAI
(i,j|2) =

⎡

⎢
⎢
⎣

0.4525 0.3901 0.1061 0.0513
0.0755 0.2378 0.3888 0.2979
0.0373 0.1512 0.7654 0.0461
0.2750 0.1673 0.3104 0.2474

⎤

⎥
⎥
⎦ ,

πAII
(i,j|1) =

⎡

⎢
⎢
⎣

0.2564 0.7202 0.0005 0.0230
0.0115 0.3802 0.2628 0.3455
0.2662 0.0333 0.3895 0.3111
0.0513 0.5530 0.3145 0.0812

⎤

⎥
⎥
⎦ ,

πAII
(i,j|2) =

⎡

⎢
⎢
⎣

0.0077 0.0217 0.0346 0.9360
0.0758 0.3909 0.3933 0.1401
0.2946 0.1857 0.1726 0.3470
0.0611 0.2346 0.5648 0.1395

⎤

⎥
⎥
⎦ ,

πAA
(i,j|1) =

⎡

⎢⎢
⎣

0.0239 0.8486 0.0471 0.0804
0.2961 0.3267 0.2228 0.1543
0.0975 0.1078 0.6152 0.1794
0.2028 0.2719 0.3546 0.1707

⎤

⎥⎥
⎦ ,

πAA
(i,j|2) =

⎡

⎢⎢
⎣

0.3579 0.0507 0.2801 0.3113
0.5572 0.3785 0.0120 0.0523
0.1751 0.2076 0.4572 0.1602
0.0829 0.2980 0.3511 0.2681

⎤

⎥⎥
⎦ .

Each company knows how the increased offer lowers
airline seats price and their profits. Strategic dependence
is a common practice in the global airline industry. In this
case, AA does this so it can predict the strategic pricing
movements of other airlines. By anticipating the predicted
response of the followers, AA is able to make a strategy
to become and stay successful. Given δ = 14.3, γ =
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0.008 and applying the extraproximal method for Markov
chains (see Section 4.4), we obtain c(i|k) for the leader
(see Fig. 3) and c(i|k) for the followers (see Figs. 4 and
5). Figure 2 shows the convergence of the parameter λ.
Then, applying (6), we have that the strategies needed to
converge to a Stackelberg equilibrium are as follows:

dAA =

⎡

⎢
⎢
⎣

0.8995 0.1005
0.0656 0.9344
0.2172 0.7828
0.2827 0.7173

⎤

⎥
⎥
⎦ , (42)

dAI =

⎡

⎢⎢
⎣

0.1077 0.8923
0.1311 0.8689
0.9035 0.0965
0.8349 0.1651

⎤

⎥⎥
⎦ , (43)

dAII =

⎡

⎢
⎢
⎣

0.7331 0.2669
0.9214 0.0786
0.1230 0.8770
0.8856 0.1144

⎤

⎥
⎥
⎦ . (44)

Air travel has become a commodity and major routes
are saturated with fierce competition. Low-cost carriers
have significantly influenced consumer behavior for cheap
price bargains among regular travelers and increasingly
among business travelers. AA has consistently been one
of the most profitable airlines globally, and has always
had the reputation of a leader and industry challenger
fixing its strategies (42) only on the most lucrative routes.
AI, looking at the strategies of AA, decided on a fully
branded product/service differentiation strategy (43) as
follows: (a) to compete with AA choosing a mixed
strategy dl(1,2) = 0,8923 for a lucrative international route

and the rest for dl(1,1) = 0.1077 a domestic route seriously
considered by AA, (b) to strongly compete with AA in
strategy dl(2,1) for an international route, and (c) to fully

compete with AA in strategies dl(3,1) and dl(4,1) for the
most lucrative domestic routes. AII, instead, launch a
strategy (44) for local and short-haul routes to stay at the
forefront of competition deciding (a) to compete with AA
in strategy dl(1,1) for a domestic route, (b) to compete

partially with AA choosing a mixed strategy dl(2,2) =
0.0786 for a lucrative international route and the rest for
dl(2,1) = 0.9214 a local route not seriously considered by

AA, (c) to absolutely compete with AA in strategy dl(3,2)
choosing seriously only an international route, and (d)
to partially compete with AA choosing a mixed strategy
dl(4,2) = 0.1144 for a lucrative international route and the

rest for dl(4,1) = 0.8856 a local route partially considered
by AA.

Remark 2. Price efficiency and effectiveness are critical
for an airline’s ability to compete and survive. However,
this does not mean that every airline should seek to offer
the lowest price. Instead, it is important to offer the

appropriate price for routes not considered by the leader
airline.
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Fig. 2. Convergence of the parameter λ.

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Leader´s Strategies

Time (n)

 

 
c

(1,1)

c
(2,1)

c
(3,1)

c
(4,1)

c
(1,2)

c
(2,2)

c
(3,2)

c
(4,2)

Fig. 3. Convergence of the strategies of AA.
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Fig. 4. Convergence of the strategies of AI.
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Fig. 5. Convergence of the strategies of AII.

7. Conclusion

The main contribution of this paper was the development
of the extraproximal method for computing the
Stackelberg/Nash equilibria in a class of ergodic
controlled finite Markov chains games. The nonlinear
programming problem was represented using an
implementation of the Lagrange principle. Another
important contribution was the use of the regularizing
parameter, which provides strong convexity for the
cost-functions and, hence, the correctness of the
convergence analysis.

For solving the extraproximal method, we presented
a two-step iterated procedure which involved an iterative
solution of a quadratic programming problem for the
solution of the Stackelberg game in terms of Markov
chains. A numerical method was presented for computing
the first step of the extraproximal method (parameter λ).
The convergence of the suggested procedure to the
Stackelberg/Nash equilibrium was also analyzed. It is
important to note that we provided all the details needed
to implement the extraproximal method in an efficient
and numerically stable way for ergodic controlled finite
Markov chains games.
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