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Abstract— Ground level electric and magnetic-fields from 

overhead power transmission lines are of increasingly important 

considerations in several research areas due to their impact on 

health and environmental issues. The paper presents a more 

generalized technique to calculate the magnetic-field generated by 

power transmission lines in three dimension coordinates. This 

technique has been evolved, formulated, analyzed and applied to a 

suggested 500-kV single circuit transmission line to evaluate the 

effects of line topology and terrain topography on the computed 

magnetic-field. The results are compared with two-dimensions 

technique.  
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I. INTRODUCTION 

RECISE analytical modeling and quantization of electric 

and magnetic-fields produced by overhead power 

transmission lines are important in several research areas [1]-

[3]. Considerable research and public attention concentrated 

on possible health effects of extremely low frequency (ELF) 

electric and magnetic-fields [4-5]. An analytical calculation of 

the magnetic-field produced by electric power lines is 

produced in [6] and [7], which is suitable for flat, vertical, or 

delta arrangement, as well as for hexagonal lines. Also the 

estimation of the magnetic-field intensity at locations under 

and far from the two parallel transmission lines with different 
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design arrangements is presented in [8]. The effects of 

conductors sag on the spatial distribution of the magnetic-field 

are presented in [9], in case of equal heights of the towers, 

equal spans between towers and the power transmission lines' 

spans being always parallel to each others. 

In this paper, the magnetic-field is calculated by two different 

techniques; 2-D straight line technique and 3-D integration 

technique, where the effect of the sag in the magnetic-fields 

calculation, and the effects of unequal span distances between 

the towers, unequal towers heights, and when the power 

transmission lines' spans are not in straight line are 

investigated. The proposed three-dimension integration 

technique has been applied to different cases in order to justify 

its generalization for magnetic-field produced by actual 

transmission line configuration, arrangement, and terrain 

topography, and also has been applied to a suggested 500-kV 

single circuit overhead transmission line as an application case 

study. 

II. MAGNETIC FIELD CALCULATIONS 

A- The 2-D Straight-Line Technique 

The common practice is to assume that power transmission 

lines are straight horizontal wires of infinite length, parallel to 

a flat ground and parallel with each other. This is a 2-D 

straight line technique, which can be found in many references 

[7-10]. In this paper, the vector magnetic potential approach 

combined with the superposition technique is used for the 

magnetic field calculations. This approach is considered as one 

of the efficient and straightforward techniques used for 

magnetic field calculation under OHTLs. It requires only phys-

ical parameters having specific values. The technique has been 

extended recently as a new approach for determining the 

magnetic field distribution of multiphase ac power TLs 

comprising multi-conductors [11-12]. The concept of this 

technique is based on the field theory of the infinite length two 
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parallel wires shown in Fig. 1.  It can be shown that the vector 

magnetic potentials AZ1 and AZ2 at the point (x, y, 0) from 

conductors 1 and 2 are, respectively: 
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In the previous equations, I and -I are expressed by I 0∠ ° 

and 180∠I °, respectively and the variables x, y and z 

represent the coordinates of any point in the space around 

where the magnetic field is to be calculated. 

Since 3-phase power TLs carry practically balanced currents, 

(1) and (2) can be extended to be applied for TLs of N conduc-

tors, each is carrying current I. In this case, the balanced 

currents can be expressed as 
1θ∠I  , 

2θ∠I , 

3θ∠I ,……., NI θ∠ ,      such that: 

 

0......321 =∠++∠+∠+∠ NIIII θθθθ  (3) 

 

From equations (1) and (3), the total vector magnetic potential 

from the ac N-conductor TL as L approaches infinity, can be 

expressed as: 
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Fig. 1 Two-wire transmission line in the x-y plane 

 

Therefore, the ac magnetic field components can be calculated 

using the expression for curl in Cartesian coordinates, as 

follow: 
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For ac applications, the currents of the 3-phase transmission 

line conductors are of the form: 
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This can be put in a phasor form as: 
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Hence, the total magnetic flux at any point will be consisting 

of a sinusoidal component, which can be represented as: 
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)cos( βω += tHH
acyy

 (14) 

 

Where ω is the angular frequency of the ac field and α and 

β  are the phase angles of the two space fields. 

The RMS values of the space components of the magnetic 

field are given by:      
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Therefore, if the ac currents are applied in their phasor and 

RMS values, the RMS values of the ac magnetic field 

components over one ac supply cycle will be obtained.  

B- The 3-D Integration Technique 

In fact, the power transmission lines are nearly erected in 

periodic catenaries, the sag of each depends on individual 

characteristics of the line and on terrain topography 

conditions. The integration technique, which has been 

established in [13] and will be revealed here, is a three-

dimensional technique which views the power transmission 

conductor as a catenary. In the integration technique, if the 

currents induced in the earth are ignored, then the magnetic-

field of a single current-carrying conductor at any point 

P(xo,yo,zo) shown in Fig. 2 can be obtained by using the Biot-

Savart law [7-10], as: 

 

Fig. 2.  Application of the Biot-Savart law 
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where 

l    a parametric position along the current path,  

)(lI
r

 the line current, 

)(lro

r
 a vector from the source point (x,y,z) to the field point 

(xo,yo,zo), 

)(lao

r
 unit vector in the direction )(lro

r
, and 

dl   a differential element at the direction of the current.   

The exact shape of a conductor suspended between two 

towers of equal height can be described by such parameters; as 

the distance between the points of suspension span L, the sag 

of the conductor S, the height of the lowest point above the 

ground h, and the height of the highest point above the ground 

hm, where hm-h=S. These parameters can be used in different 

combinations. Only two parameters are needed in order to 

define the shape of the catenary (S and L), while the third one 

(h or hm), determines its location in relation to the ground 

surface. Fig. 3 depicts the basic catenary geometry for a single-

conductor line, this geometry is described by: 
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where α  is the solution of the transcendental equation: 

( )uLhhu m

2sinh)/()(2 =− ; with  )4/( αLu =  

The parameter α  is also associated with the mechanical 

parameters of the line: wTh /=α  where hT  is the conductor 

tension at midspan and w  is the weight per unit length of the 

line. 

 

1) Case (A) 

Fig. 2 illustrates the transmission line configuration, which 

gives the designation of Case (A), in which the power 

transmission lines are specified by, equal heights of the towers, 

equal spans between towers (L1=L2=L), and the power 

transmission lines' spans that are always parallel to each 

others. For a single span. the single catenary L is represented 

by Eq. (3). Since the modeled curve is located in the y-z plane, 

the differential element of the catenary can be written as: 
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Fig. 3.  Linear dimensions which determine parameters of 

the catenary. 

 

where point (xo,yo,zo) is the field point at which the field will 

be calculated, and point (x,y,z) is any point on the conductor 

catenary. Now, by substituting Eqs. (20) and (21) into (16), 
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and carrying out the cross product, the result at any point 

(xo,yo,zo) is : 
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where: 
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This result can be extended to account for the multiphase 

conductors in the support structures. For (M) individual 

conductors on the support structures, the expression for the 

total magnetic-field becomes: 
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The parameter (N) in Eq. (24) represents the number of 

spans to the right and to the left from the generic one, as 

explained in Fig. 3. One can take into account part of the 

magnetic-field caused by the image currents. The complex 

depth ζ of each conductor image current can be found as given 

in [9-10]. 
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 where; 

δ     the skin depth of the earth represented by [10]; 

f/503 ρδ =  
(30) 

ρ  the resistivity of the earth in Ω.m, 

f  the frequency of the source current in Hz. 

 

The resultant magnetic-field with the image currents taken 

into account is also represented by Eq. (24), but its 

components will change and take the following formulas: 
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This method can be applied at any field point above or near 

the earth’s surface. 

 

2) Case (B) 

In Case (B), the power transmission lines are specified by, 

equal heights of the towers, equal spans between towers, and 

the power transmission lines' spans that are not parallel to each 

others. Each of the two catenaries L and L2 in Fig. 4, has its 

original point and coordinate system. To calculate the 

magnetic-field intensity at any field point, this field point 

should be located in the coordinate system of the catenary 

under calculation.  

Consider the field points of those that are located on X axis 

of the coordinate system (X,Y,Z) of the L catenary (P1 is the 

original point for this system). Those field points should be 

transferred to the coordinate system of the catanery under 

calculation. By applying this rule on field points and caterany 

L, it is seen that the same equations of case (A) are used, 

where the field points are already presented in caterany L 

coordinate system. But for caterany L2, the field points should 

be transferred to the caterany L2 coordinate system. 
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Fig. 4.  Presentation of Case (B) 

 

For any field point (x1,y1,z1), this can be done in three steps: 

1- Transfer the original of caterany L2 (uc,vc,wc) to the field 

point system. From Fig.(3), for 9090 <<− θ  
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where; dis  is the distance between the nearest point of  

catenary L2 (point P2) and the original point of the field 

points’ system. The distance dis  changes with the location of 

the original point of the field points’ system, e.g. when the 

original of the field points’ system located at point 

P1; 2/Ldis = . Otherwise when the original of the field 

points’ system located at point P2; 0=dis , and so on. 

2- Transfer the field point (x1,y1,z1) from its system to the 

system (U,V,W) of the caterany under calculation L2, from 

appendix (A): 
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3- Finally, use this point (u1,v1,w1) in the same equations of 

case (A). 

By using the superposition technique, the magnetic-field 

intensity at any field point above or near the earth’s surface 

from many catenaries can be calculated. 

 

3) Case (C) 

In Case (C), the power transmission lines are specified by, 

unequal heights of the towers, unequal spans between towers, 

and the power transmission lines' spans that are always parallel 

to each others. 

Fig. 5 presents a catenary L1, which has unequal heights of 

its towers (hm1,hm2). In this case, α  is the solution of the 

transcendental equation: 

 

Fig. 5.  Presentation of Case (C) 
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equations as in case (A) is used, with the integration limits 

from `
2
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L
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2

`1 LL +
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Where `L  is the difference between the span length when 

equal heights of towers and that when there are unequal 

heights of towers.  

Again, this method can be applied at any field point above or 

near the earth’s surface. 

III. ANALYSIS OF MAGNETIC-FIELDS TECHNIQUES 

To calculate the Magnetic-field intensity at points one meter 

above ground level, under 500-kV transmission-line single 

circuit, which are presented in Fig.5, the data in appendix (B) 

are used. The phase-conductor currents are defined by a 

balanced direct-sequence three-phase set of 50Hz sinusoidal 

currents, with 2-kA rms. 

Fig. 6 shows the computed magnetic-field intensity and its 

components by using the 2-D straight line technique, where the 

average heights of the transmission lines are used. It is noticed 

that the magnetic-fields intensity in this case have only two 

components Hx and Hy, and the longitudinal component Hz 

didn't appear. Fig. 7 shows the absolute value of each phase 

contribution in the Y-component of the magnetic-field 

intensity. It is noticed that the contribution of each phase is 

symmetrical around its phase position and the contribution of 

phases (1) and (3) make drop in the Y-component of the 

magnetic-field intensity nearly at -19m and 19m from the 
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center phase. Figs. 8 and 9 show the computed magnetic-field 

intensity and its components under a single span at both the 

midspan (at the maximum sag, point P1) and tower height (at 

point P2), and a distance away from the center phase as shown 

in Fig. 3, respectively, by using the 3-D integration technique 

(case A). It is noticed that the longitudinal components Hz 

appear and have a very small values.  

 

Fig. 6.  Geometric presentation of 500-kV TL 
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Fig. 7.  Computed magnetic-field intensity by using the 2-D 

straight line technique. 

 

Fig. 11 shows the effect of the number of spans (N) on the 

calculated magnetic-field intensity. It is noticed that, when the 

magnetic-field intensity is calculated at point P1 (Fig.3) and a 

distance away from the center phase, the effect of the spans' 

number is very small due to the symmetry of the spans around 

the field points, as explained in Fig. 3, where the contributions 

of the catenaries L1 and L2 are equal and smaller than the 

contribution of the catenary L, since they are far from the field 

points. But when the magnetic-field intensity is calculated at 

point P2 (Fig.3) and a distance away from the center phase, the 

effect of the spans' number is greatly affected (double), that 

due to the contribution of the catenary L2, which produced the 

same magnetic-field intensity as the original span (L) in this 

case as explained in Fig. 3, and, of course, the catenary L1 

have a small contribution in the calculated values of the 

magnetic-field intensities in this case. 
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Fig. 8.  Contribution of each phase in the Y-component of the 

magnetic-field intensity. 

 

Tables 1(a) and 1(b) present the effect of the number of 

spans (N) on the calculated magnetic-field intensity, it was 

seen that as the number of the spans is greater than 5 (N is 

greater than 2), the result of the calculated magnetic-field 

intensity is nearly the same, that due to the far distances 

between the current source points and the field points. For this 

reason, the number of spans does not exceed 5 (N=2).  
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Fig. 9.  Computed magnetic-field intensity by using the 

3-D integration technique (point P1). 
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Fig. 10.  Computed magnetic-field intensity by using the 3-

D integration technique (point P2). 

 

Table 1(a) 

Effect of the Number of Spans on the Magnetic-field 

Intensity Calculated by 3-D Integration Technique 
Distance 

from the 

center 

phase 

(m) 

Magnetic-field Intensity (A/m) calculated 

by 3-D Integration technique 

Cross-section P2 

N=0 

Single 

Span 

N=1 

No. of 

spans=3 

N=2 

No. of 

spans=5 

N=3 

No. of 

spans=

7 

0 6.825 13.57 13.586 13.588 

10 6.338 12.632 12.64 12.641 

20 4.853 9.701 9.703 9.704 

30 3.202 6.396 6.393 6.393 

40 2.081 4.145 4.14 4.139 

 

Fig. 11.  Effect of the spans' numbers on the magnetic-field 

intensity. 

 

Fig. 12 shows the effect of the angle θ as explained in case 

(B) on the calculated magnetic-field intensity of a single span 

under a tower height (point P2 in Fig.4) and a distance away 

from the center phase. It is seen that as the angle θ increased, 

the magnetic-field intensity decreased due to the increases of 

the distance between the current source and the field points. 

Fig. 13 shows the same results as in Fig. 12, except that the 

calculation points are at midspan (point P3 in Fig. 4) and a 

distance away from the center phase. It is noticed that the 

effect of angle θ is higher in this case because all the current-

source points on the catenary L2 are far from the field points 

since the angle θ increased. 
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Fig. 12.  Effect of the angle θ on the magnetic-field 

intensity calculated under tower height. 
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Fig. 13.  Effect of the angle θ on the magnetic-field 

intensity calculated under mid-span. 

 

 

Table 1(b) 

Effect of the Number of Spans on the Magnetic-field  

Intensity Calculated by 3-D Integration Technique 
Distance 

from the 

center 

phase 

(m) 

Magnetic-field Intensity (A/m) calculated by 3-D 

Integration technique 

Cross-section P1 

N=0 

Single 

Span 

N=1 

No. of 

spans=3 

N=2 

No. of 

spans=5 

N=3 

No. of 

spans=7 

0 40.796 40.865 40.871 40.872 

10 39.5 39.546 39.551 39.552 

20 21.38 21.344 21.341 21.34 

30 9.163 9.101 9.095 9.094 

40 4.958 4.892 4.885 4.884 

 

Tables 2 and 3 present a comparison between the magnetic-

field intensity calculated with both 2-D straight line technique, 

where the average conductors' heights are used, and 3-D 

integration technique, with various angles θ, various span 

lengths, and various differences between the towers' heights, 

are taken into account, that at both tower height (point P2) and 

midspan (point P1) and a distance away from the center phase, 

respectively. From both two Tables, it is seen that the 

difference between the towers' heights have a small effect, 

when the magnetic-field intensity is calculated at the tower 

height, but when the magnetic-field intensity is calculated at 

midspan, it has a greater effect, especially when this difference 

is equal to the sag itself.  

From Tables 2 and 3 and Figs. 8, 9 and 10, it is seen that 

there are large differences between the values of the magnetic-

field intensity computed by using the traditional 2-D straight- 

line technique and the 3-D integration technique (θ=0, LL=0 

and L=400m). That is due to the variation of the conductors’ 

heights over the field pints, whereas in 2-D straight line 

technique, the conductors’ heights are always assumed equal to 

average height (h+1/3 of sag), which is higher than the 

minimum conductor height (h), hence 2-D straight line 

technique produced a magnetic-field intensity that is smaller 

than that calculated by 3-D integration technique under 

midspan as indicated in Table 3 and Figs. 8 and 9. Also, the 

average height is smaller than the maximum conductor height 

(hm), hence 2-D straight line technique produced a magnetic-

field intensity greater than that calculated by 3-D integration 

technique under maximum conductor height as indicated in 

Table 4 and Figs. 8 and 10. 

 

 

 

Table 2 

Comparison Between The Results Of 3-D Integration Technique With Various Parameters At Tower Height And 2-D 

Straight-Line Technique 
Distance 

from the 

center 

phase 

(m) 

2-D 

straight 

line 

technique 

with 

average 

heights 

(A/m) 

3-D integration technique Single span at point P2 (tower height) (A/m) 

Angle  (θ) (deg.) 

With : L=400m, LL=0m 

Span (L) (m) 

With : θ =0deg, LL=0m 

Different between 

towers' heights (LL) (m);  

With :  θ =0deg, 

L=400m 

θ=0 θ=10 θ=40 L=40

0 

L=35

0 

L=30

0 

LL=0 LL=10 LL=S 

0 25.236 6.824 6.824 6.824 6.824 6.721 6.666 6.824 6.808 6.792 

10 23.619 6.337 5.817 4.674 6.337 6.234 6.179 6.337 6.324 6.313 

20 15.218 4.852 4.044 2.660 4.852 4.77 4.725 4.852 4.849 4.846 

30 7.957 3.202 2.482 1.399 3.202 3.154 3.128 3.202 3.207 3.210 

40 4.584 2.081 1.547 0.765 2.081 2.055 2.042 2.081 2.090 2.097 
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Table 3 

Comparison Between  the Results of 3-D Integration Technique with Various Parameters at midspan and 2-D Straight 

Line Technique 
Distanc

e from 

the 

center 

phase 

(m) 

2-D straight 

line 

technique 

with 

average 

heights 

(A/m) 

3-D integration technique Single span at point P1 (mid-span) (A/m) 

Angle  (θ)(deg) 

With : L=400m, LL=0m 

Span (L) (m) 

With : θ =0deg, LL=0m 

Different between towers' 

heights (LL) (m);  

With :  θ =0deg, L=400m 

θ=0 θ=10 θ=40 L=400 L=350 L=300 LL=0 LL=1

0 

LL=S 

0 25.236 40.796 6.690 0.476 40.79

6 

29.22 23.94

6 

40.79

6 

40.33

5 

20.39

8 

10 23.619 39.499 3.953 0.422 39.49

9 

27.361 22.11

8 

39.49

9 

39.15

2 

19.75

0 

20 15.218 21.381 2.624 0.375 21.38

1 

16.809 14.44

1 

21.38

1 

21.53

4 

10.69

1 

30 7.957 9.164 1.877 0.335 9.164 8.347 7.785 9.164 9.357 4.582 

40 4.584 4.959 1.414 0.300 4.959 4.742 4.583 4.959 5.061 2.479 

 

I. APPLICATION OF THE SUGGESTED TECHNIQUE 

In general, by using the discussed three cases (A, B, and C) 

and the superposition technique, one can calculate the 

magnetic-field intensity at any field point from any number of 

catenaries of various configurations.  

Consider the following suggested general case which is 

presented in Fig. 14, and in which the power transmission lines 

are specified by, unequal heights of the towers, unequal spans 

between towers and the power transmission lines' spans that 

are not parallel to each others. Fig. 15 presents the single line 

diagram of the suggested case 500-kV overhead transmission 

line, its equivalent straight line and the calculation lines 

(applications 1, 2 and 3). Table 4 presents the parameters 

which describe the overhead transmission line. 

The calculation of the magnetic-field intensity at any field 

point on the application 1 (Fig. 16) can be done as follows: 

1- When the field point is located in the same coordinate 

system of the catenary under consideration, equations 

of case (A) are used if the catenary has tower that are 

of equal heights (e.g. as span 7), and equations of 

case (C) are used if the catenary has towers that are of 

unequal heights (e.g. as span 8). 

2- When the field point is located in coordinate system 

makes an angle θ with the coordinate system of the 

catenary under calculation, equations of case (B) are 

used when the catenary has tower of equal heights 

(e.g. as spans 1,4,5 and 6), and also the equations of 

case (B) are used when the catenary has towers of 

unequal heights, but in this case α , and the limits of 

the integration are the same as those of case (C) (e.g. 

as spans 2 and 3). 

 

The same rules can be used to calculate the magnetic-field 

intensity at any field point on the applications 2 and 3, the only 

required is the angle between the field point coordinate system 

and each span coordinate system. 

 

Table 4 

Classification of the suggested case spans 
Span 

number 
Angle θ 

in 

degrees 

Span 

length 

(m) 

Heights of 

span two 

ends (m) 

1 70 400 hm and hm 

2 75 450 hm and (hm 

+5m) 

3 40 400 (hm +5m) 

and hm 

4 20 400 hm and hm 

5 15 400 hm and hm 

6 5 400 hm and hm 

7 0 400 hm and hm 

8 0 400 hm and 

(hm+5m) 
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Fig. 14.  Suggested case study of a single circuit 500-kV 

overhead transmission line. 

 

Fig. 15.  Single line diagram of the suggested case. 

 

Fig. 16 shows the comparison between the results of 3-D 

integration technique and 2-D straight line, when they are 

applied on the field points of the application 1, with various 

distances between center of application 1 and the span 7 (dis1 

in Fig. 15). It is noticed that the magnetic-fields from 3-D 

integration technique are greeter than those from 2-D straight 

line, and the maximum difference is under the center of the 

overhead transmission line. Also it is noticed that as the 

distance (dis1 in Fig. 15) increases the point of maximum 

magnetic-field goes far from the center of application 1 and 

toward the transmission line. Fig. 16 shows the comparison 

between the results of 3-D integration technique and 2-D 

straight line, when they are applied on the field points of the 

application 2, with various distances between center of 

application 2 and the span 4 (dis2 in Fig. 15). It is noticed that 

the magnetic-fields from 3-D integration technique are greeter 

than those from 2-D straight line, and the maximum difference 

is under the center of the overhead transmission line. Also it is 

noticed that as the distance (dis2 in Fig. 15) increases the point 

of maximum magnetic-field goes far from the center of 

application 2 and toward the transmission line. 
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Fig. 16.  Computed magnetic-field intensity by using the 3-

D integration technique and 2-D straight line with various 

distances from the overhead transmission line at 

application 1. 
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Fig. 17.  Computed magnetic-field intensity by using the 3-

D integration technique and 2-D straight line with various 

distances from the overhead transmission line at 

application 2. 

Fig. 18 shows the comparison between the results of 3-D 

integration technique and 2-D straight line, when they are 

applied on the field points of the application 3, with various 

distances between center of application 3 and the span 4 (dis3 

in Fig. 15). It is noticed that the magnetic-fields from 3-D 

integration technique are greeter than those from 2-D straight 
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line, and the maximum difference is under the center of the 

overhead transmission line. Also it is noticed that as the 

distance (dis3 in Fig. 15) increases the point of maximum 

magnetic-field goes far from the center of application 3 and 

toward the transmission line. Fig. 19 shows the comparison 

between the results of 3-D integration technique and 2-D 

straight line, when they are applied on the field points of the 

application 3, with various angles between application 3 and 

horizontal line (angle in Fig. 15). It is noticed that the 

magnetic-fields from 3-D integration technique are greeter 

than those from 2-D straight line, and the maximum difference 

is under the center of the overhead transmission line. 
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Fig. 18.  Computed magnetic-field intensity by using the 

3-D integration technique and 2-D straight line with 

various distances from the overhead transmission line at 

application 3. 
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Fig. 19.  Computed magnetic-field intensity by using the 3-

D integration technique and 2-D straight line with various 

angles of application 3. 

II. CONCLUSIONS 

The 2-D straight line and 3-D integration techniques give 

two choices for calculating magnetic-field. The 2-D Straight 

Line is a rough approximation, and the 3-D integration is an 

exact solution, however it requires integration over the three-

phase spans which results in long computation time. It is seen 

that by using the 3-D integration technique, the Z-component 

of the magnetic-field intensity appears, whereas this 

component is always equal to zero in the 2-D straight-line 

technique. Under the 3-D integration technique, this paper 

presents multispecial cases to calculate the magnetic-field 

intensity, by using these cases, it is possible to calculate the 

magnetic-field intensity at any point under complex 

configurations of power transmission lines, as was explained in 

this paper on the suggested case study. Also, it is possible to 

use the same technique, with some treatment, in the calculation 

of the electric field under overhead transmission lines. 
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Appendix (A) 

Assume two coordinates' systems (X,Y,X) and (U,V,W) in a 

space, where axis U and axis W in system (U,V,W) form an 

angle θ with axis X and axis Z in system (X,Y,Z) respectively, 

while axis V and axis Y are parallel to each other, and the 

original of the system (U,V,W) located at point (xc,yc,zc) refers 

to system (X,Y,Z), as indicated in Fig. 19. Any point P in 

space can be presented by the two system as (x1,y1,z1) in 

system (X,Y,Z) and (u1,v1,w1) in system (U,V,W).  

From Fig. A.1, the following is seen: 

 

)sin(

1``

β

w
L =                                                             (A.1) 

)cos(

1``

β

u
L =                                                             (A.2) 

)sin(
`` θβ += Lzz                                                       (A.3)  

)cos(
`` θβ += Lxx                                                      (A.4)  

czzzz −= 1                                                                 (A.5) 

cxxxx −= 1                                                              (A.6) 

zzzz c +=1                      
                                        (A.7) 

xxxx c +=1                                                             (A.8) 

 

Fig. A.1  The cartesian coordinates of two systems in 

space 

 

A1: To transfer any point (u1,v1,w1) in the (U,V,W) system to a 

point (x1,y1,z1) in the (X,Y,Z) system; 

 

By substituting (A.3) and (A.1) into (A.7): 

)sin(
)sin(

1
1 θβ

β

w
zz c ++=           (A.9) 

By substituting (A.4) and (A.2) into (A.8): 

)cos(
)cos(

1
1 θβ

β

u
xx c ++=          (A.10) 

and; 11 vyy c +=                (A.11) 

where:  

1

11tan
u

w−=β              (A.12) 

A2: To transfer any point (x1,y1,z1) in the (X,Y,Z) system to a  

point (u1,v1,w1) in the (U,V,W) system; 

 

By substituting (A.3) and (A.5) into (A.1): 

)sin(
)sin(

1
1 β

θβ +

−
= czz

w              (A.13)  

By substituting (A.4) and (A.6) into (A.2): 

)cos(
)cos(

1
1 β

θβ +

−
= cxx

u              (A.14) 

and; cyyv −= 11                (A.15) 

where: θθβ −
−

−
=−= −−

c

c

xx

zz

xx

zz

1

111 tantan      (A.16) 
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Appendix (B) 

 

To calculate the magnetic-field intensity under 500-kV 

transmission line single circuit, the data in Table B.1 are used. 

 

Table B.1 

Data of 500-kV Overhead Transmission Line 
Tower span (L) 400m 

Number of subconductor per phase (n) 3 

Diameter of a subconductor (2r) 30.6mm 

Spacing between subconductors (B) 45cm 

Minimum clearance to ground (h) 9m 

Outer phase Maximum height (hm=Houter) 22m 

Inner phase Maximum height (hm=Hinner) 24.35m 

Distance between adjacent two phases (D) 13.2m 
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