Aquatic

Procedia

www.elsevier.com/locate/procedia

Characteristics of Seaweed as Raw Materials for Cosmetics

Nurjanah ${ }^{\text {a }}$, Mala Nurilmala ${ }^{\text {a }}$, Taufik Hidayat ${ }^{\text {a }}$, Fien Sudirdjo ${ }^{\text {b }}$
${ }^{a}$ Departement of Aquatic Product Technology, Faculty of Fisheries and Marine Science, Bogor Agricultural University, Bogor, West Java, 16680, Indonesia
${ }^{b}$ Polytechnic of Fisheries Tual, Jalan Langgur km 6, Kei Island Maluku, 97611, Indonesia

Abstract

Bioactive components found in seaweed is very prospective to be applied in cosmetics. One type of seaweed with unknown characteristics is Caulerpa sp. This study aimed to determine the content Caulerpa which can be a component of raw material for making cosmetic. The analysis were for the proximate with AOAC method, amino acids, vitamins A, B and E using by HPLC, phytochemical test method Harborne, antioxidant activity (DPPH) and total phenols (Folin-Ciocalteau). Proximate Caulerpa sp. showed that consecutive include water $76.065 \%, 1.231 \%$ ash, 3.73% protein, 0.35% fat, and carbohydrates 18.645%. The dominant amino acids resulted was glutamate, histidine, arginine, aspartate, tyrosine, alanine, and valine [greater of 100 mg . $\left.(100 \mathrm{~g})^{-1}\right] .487 .09 \mathrm{mg} \cdot(100 \mathrm{~g})^{-1}$ Vitamin A, Vitamin B $0.42 \mathrm{mg} \cdot(100 \mathrm{~g})^{-1}$, Vitamin E $2.22 \mathrm{mg} \cdot(100 \mathrm{~g})^{-1}$. Derived bioactive components consis of steroids, flavonoids, phenols hydroquinone and saponin, with total phenol at $0.0441 \mathrm{mg} \mathrm{GAE} \cdot \mathrm{g}^{-1}$ and antioxidant activity with IC_{50} of $451.27 \mathrm{mg} \cdot \mathrm{kg}^{-1}$.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the science and editorial board of ISAPPROSH 2015
Keywords: Bioactive compound; Caulerpa sp; cosmetic

1. Introduction

Bioactive components found in seaweed is very prospective to be applied in cosmetics. One type of seaweed with unknown characteristics is Caulerpa sp. Seaweed that used in this study is Caulerpa sp. from Tual waters, Southeast Maluku, Indonesia. Tual marine area reaches 98.67 \% of the total area of Tual City. Seaweed production in Tual is

[^0]constantly increasing, in 2009 it amounted to 3285 t , in 2010 amounted to 4872.9 t , in 2011 amounted to 7947.4 t , and in 2012 amounted to 8953.32 t of dried seaweed (BPS, 2013). There are 203 species of green seaweed in Indonesia, which consist of seven orders, 19 families and 48 genera. One of genus is Caulerpa which consists of 34 species (Atmadja et al., 1996). According to Fithriani (2009), Caulerpa racemosa can be consumed as fresh vegetables. According to Talakua (2011), Arowi, Manokwari beach community already know that Caulerpa racemosa can be consumed, but people have not utilized that. Seaweed is also consumed as fresh vegetables or made into "urap" by coastal communities in the northern of Java island, especially in Central Java, Jepara, Pati, Juwana, and Rembang, but coastal communities in Bali generally consume seaweed by boiling it first. Santoso et al. (2002) states that seaweed which can be consumed contains insoluble dietary fiber which is composed of cellulose and hemicellulose. Seaweed is a natural substance that contains a variety of organic and inorganic substances which are beneficial to human health, contain vitamins and minerals that are very high which has been used in agriculture, industry pharmaceutical, biomedical, and nutraceutical (Marcia et al., 2004). According to Burtin (2003), generally seaweed contains large amounts of lipid levels were normal fibers, and has a low protein composition that is equal to 5% to 15%. Group of green and red seaweed contains a higher protein, i.e. 10% to 30% dry weight (Matanjun et al., 2009). Caulerpa sp. is a green seaweed that grows in shallow waters with tranquil water flow. Caulerpa sp. has chemical and biological spectrum that is quite extensive including antioxidant activity in counteracting free radicals (Sultana et al., 2011). Tual people's habits, the coast of Java people's, and Sulawesi people's eat Caulerpa sp. in the form of "urap" fresh seaweed, while the people of Bali process into "urap" through the boiling process beforehand. This study aimed to determine the content of Caulerpa that can be a component of raw material for making cosmetics.

2. Material and methods

2.1. Procedure analysis

The materials needed Caulerpa sp., $\mathrm{H}_{2} \mathrm{SO}_{4}$, boric acid $\left(\mathrm{H}_{3} \mathrm{BO}_{3}\right), \mathrm{NaOH} 40 \%$. HCl , n-hexane, ethanol, and methanol (p.a.), DPPH, and vitamin C. The tools used in this study include digital scales (Quattro), rotary vacuum evaporator (Eyela), orbital shaker (WiseShake), microplate, spectrophotometers (UV Vis RS 2500), desiccator, oven (Memmert), Soxhlet tube, Kjeldahl flask, Erlenmeyer flask, micro pipette (Eppendorf), mortars. Proximate analysis by AOAC (2011) phytochemical Harbone method and antioxidant activty by salazar method (Salazar-Aranda et al., 2011; Pramesti, 2013).

2.2. Amino acid analysis

Amino acid analysis was performed using HPLC brand Varian 940-LC in four stages, namely the stage of making protein hydrolyzate, drying phase, derivatization phase and injection phase (amino acid analysis). First step were making a protein hydrolyzate by homogenized sample (0.1 g), and 5 mL 6 N HCl was added to it, which then were heated ($100^{\circ} \mathrm{C}$ for 24 h) and then filtered. Second phase were drying filtered sample, to which 30 mL of mixed solution of methanol, sodium acetate, and trietylamino (2:2:1) were added, then dried until all the solvent evaporates. Third phase were derivatization Derivatization solution of 30 mL were made from a mixture of methanol, picoltiocianat (PITC) and triethylamine (TEA) with ratio (3:3:1), then is allowed to sit for 20 min and then 10 mL of 1 M sodium acetate buffer plus were added. Derivatization process was concluded so that the detector are able to detect substances present in the sample. Final phase were injection into the HPLC of standard solution and begins with mixing the stock solution with the standard solution and borate buffer (1:1). A total of 5 mL of the solution was injected into the HPLC within 30 min . The same steps were carried out on a sample by mixing the borate buffer with the stock solutions (1:1). The mixture was injected into the HPLC to detect all the amino acid. Amino acid content in the material is calculated by dividing multiplication of area of the sample, Concentration of standard amino acids ($\mathrm{mg} \cdot \mathrm{mL}^{-1}$), dilution factor and molecular weight of each amino acid by wide and of weight standard sample area and multiplythem by 100%. HPLC used P1 Cotag column, Motion phase used acetonitrile and phosphate buffers, wavelength were 272 nm , and flow rate were $0.5 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$.

3. Result and discussions

Proximate Caulerpa sp showed that consecutive include water $76.065 \%, 1.231 \%$ ash, 3.73% protein, 0.35% fat, and carbohydrates 18.645%. The dominant amino acids was glutamate, histidine, arginine, aspartate, tyrosine, alanine, and valine [greater of $100 \mathrm{mg} \cdot(100 \mathrm{~g})^{-1}$] (Table 1). $487.09 \mathrm{mg} \cdot(100 \mathrm{~g})^{-1}$ Vitamin A, Vitamin B and 0.42 $\mathrm{mg} \cdot(100 \mathrm{~g})^{-1}$, Vitamin E $2.22 \mathrm{mg} \cdot(100 \mathrm{~g})^{-1}$ (Table 2). Derived bioactive components consis of steroids, flavonoids, phenols hydroquinone and saponin, with total phenol at $0.0441 \mathrm{mg} \mathrm{GAE} \cdot \mathrm{g}^{-1}$ and antioxidant activity with IC_{50} of $451.27 \mathrm{mg} \cdot \mathrm{kg}^{-1}$ shown in Table 3 and Table 4.

Table 1. Amino acid Caulerpa sp.	
Amino acid	Fresh $\left(\mathrm{mg} \cdot(100 \mathrm{~g})^{-1}\right)^{*}$
Histidine	195 ± 16.97
Arginine	165 ± 72.83
Treonine	76 ± 18.38
Valine	104 ± 11.31
Metionine	30.5 ± 9.19
Isoleusine	42.5 ± 14.85
Leusine	38 ± 12.73
Fenilalanine	74 ± 21.21
Lisine	65 ± 35.36
Aspartate	169 ± 26.87
Glutamate	365 ± 56.57
Serine	45 ± 2.83
Glisine	37 ± 0.00
Alanine	114.5 ± 9.19
Proline	55 ± 0.00
Tirosine	125 ± 21.21
Sisteine	58 ± 18.38
*) Mean + SD	

Table 2. Vitamine content Caulerpa sp.

Vitamine	Fresh $\left(\mathrm{mg} \cdot(100 \mathrm{~g})^{-1}\right)^{*}$
A	487.09
$\mathrm{~B}_{1}$	0.42
E	2.22
*) Mean \pm SD	

*) Mean \pm SD
Table 3. Bioactive compund Caulerpa sp .

Table 3. Bioactive compund Caulerpa sp.				
Parameter	U1	U2 2		
Alkaloid				
Meyer	-	-	-	-
Wagner	-	-	-	-
Dragendroff	-	-	-	-
Steroid	+	+	Blue	Blue
Triterpenoid	-	-	-	-
Flavonoid	+	-	yellow	-
Fenol hidroquinon	+	+	Green	Green
Saponin	+	+	Foam	Foam
Tanin	-		-	-
$(+)=$ detection	$(-)=$ n detection u1= reply $1 \mathrm{u} 2=$ reply 2			

Table 4. Antioxidant activity Caulerpa sp.	
Parameter	$\mathrm{IC}_{50}(\%)$
Caulerpa sp. fresh	452.37 ± 8.29
${\text { Vitamin } \mathrm{C}^{(*)}}^{\text {Caulerpa lentillifera }{ }^{(* *)}}$ 3.71 ± 0.27 *control positive $^{* *}[10]$ 356.12 .	

Amino acid is very important to healthy human. Now, the research showed that amino glutamat acid can be regeneration sel and antiinflamatory. Beside that, glutamate acid is used to maintain healthy skin. More over, glutamate acid has potential component to material cosmetics. This research also showed that Caulerpa contains high vitamin E. Vitamin E or tocopherol are very important to healthy skin. Cosmetic commercial sure to take a vitamin E component. Although, Caulerpa contained low vitamin E, but raw Caulerpa can be used as material cosmetics. Phytochemical test for Caulerpa containt saponin, fenolhidroquinon, and steroid Bioactive compound fenolhidroquinon also potential to material cosmetics.

Antioxidant activity caulerpa showed that 452.37%. If compared with control, antioxidantactivty for Caulerpa it is very low. And then, if compared with Maulida (2007) research, antioxidant activity is still low. According to Mollyneux (2004) determined strong or low activty antioxidant. If higher than 200%, so antioxidant very low. If it is lower than 200%, the activity antioxidant strong, and very strong. However, Caulerpa still offers potential to have strong antoxidant activity if determined with different method and purification.

4. Conclusion

Caulerpa sp. form tual Kei island has potential for cosmetic material because it contains bioactive compound and then can prevent for free radical by antioxidant content. Moreover, the research can be developed to a lot of assay especelly inhibitor tyrosinase to determine the potential of caulerpa to inhibit melanin pigment.

Acknowledgement

The writer is indebted to RISTEK DIKTI Ministry for its attention and help in developing research on seaweed and non consumption product.

References

Association of Official Analitycal Chemist [AOAC], 2005. Official Method of Analysis of the Association of Official Analytical of Chemist. Arlington, Virginia, (US): Association of Official Analytical Chemist, Inc.
Atmadja, W. S., Kadi, A., Sulistijo, Rachmaniar., 1996. Pengenalan Jenis-jenis Rumput Laut Indonesia. [Intro Types of Seaweed in Indonesia]. Jakarta: Puslitbang Oseanologi-LIPI. [Bahasa Indonesia].
Badan Pusat Statistik [BPS], 2013. Rumput Laut dalam Angka. [Seaweed in Figure]. Jakarta: Badan Pusat Statistika Indonesia. [Bahasa Indonesia].
Burtin, P., 2003. Nutritional Value of Seaweeds. Electron Journal of Environmental Agriculture and Food Chemistry 2(1), 498-503.
Fithriani, D., 2009. Potensi Antioksidan Caulerpa racemosa di Perairan Teluk Hurun Lampung. [Potential Antioxidant of Caulerpa racemosa in Hurun Lampung Bay Area]. [Tesis]. Bogor: Sekolah Pascasarjana, Institut Pertanian Bogor. [Bahasa Indonesia].
Marcia, P. P., Fontoura, S. G., Mathias, A. L., 2004. Chemical Composition of Ulvaria oxysperma (Kützing), Ulva lactuca (Linnaeus) and Ulva fascita (Delile). Braz Arch of Biology and Technology 47(1), 49-55.
Matanjun, P., Mohamed, S., Mustapha, N. M., Muhammad, K., 2009. Nutrient Content of Tropical Edible Seaweeds, Eucheuma cottonii, Caulerpa lentillifera, and Sargassum polycystum. J of Appl Phycol 21(1), 75-80.
Maulida, R., 2007. Aktivitas Antioksidan Rumput Laut Caulerpa lentillifera. [Antioxidant Activity of Seaweed Caulerpa lentilifera]. [Skripsi]. Bogor: Fakultas Perikanan dan Ilmu Kelautan, Institut Pertanian Bogor. [Bahasa Indonesia].
Mollyneux, P., 2004. The Use of the Stable Free Radical Diphenylpicrylhydrazyl (DPPH) for Estimating Antioxidant Activity. Songklanakarin J Sci Technol 26(2), 211-219.
Pramesti, R., 2013. Aktivitas Antioksidan Ekstrak Rumput Laut Caulerpa serrulata dengan Metode DPPH (1,1 definil 2 pikrilhidrazil). [Antioxidant Activity of Seaweed Extract Caulerpa serrulata with DPPH Method (1,1definil 2 pikrilhidrazil)]. Buletin Oseanografi Marina 2(2), 7-15. [Bahasa Indonesia].
Salazar-Aranda, R., Perez-Lopes, L. A., Lopez-Arroyo, J., Alanis-Garza, B. A., Waksman de Torres, N., 2011. Antimicrobial and Antioxidant Activities of Plants from Northeast of Mexico. Evidence-Based Complementary and Altenative Medicine 1(1), 1-6.
Santoso, J., Yoshie, Y., Suzuki, T., 2002. The Distribution and Profile of Nutrients and Catechins of Some Indonesian Seaweeds. Fisheries Science 68(2), 1647-1648.
Sultana, V., Baloch, G. N., Ambreen, A. J., Tariq, M. R., Ehteshamul-Haque, S., 2011. Comparative Efficacy of a Red Alga Solieria robusta, Chemical Fertilizers and Zz Pesticides in Managing the Root Diseases and Growth of Soybean. Pak J Bot 43(1), 1-6.
Talakua, S. H., 2011. Analisis Kandungan Gizi Makroalga Caulerpa racemosa dari Pantai Arowi, Kabupaten Manokwari. [Analysis of Nutritional Content Caulerpa racemosa form Arowi Beach, Monokwari District]. Jurnal Perikanan dan Kelautan 7(2), 113-120. [Bahasa Indonesia].

[^0]: * Corresponding author. Tel.: +62 812848 8213; fax: +62 251862296.

 E-mail address: besthd22@gmail.com

