

www.semargroup.org,

www.ijsetr.com

ISSN 2319-8885

Vol.03,Issue.02,

February-2014,

Pages:0239-0244

Copyright @ 2014 SEMAR GROUPS TECHNICAL SOCIETY. All rights reserved.

Design and Implementation of High Speed Radix 8 Multiplier using 8:2

Compressors
A.M.SRINIVASA CHARYULU

1
, G.SHANMUGA PRIYA

2
, E.N.V.PURNA CHANDRA RAO

3

1
Research Scholar, Dept of ECE, CMRIT, Hyderabad, Andhrapradesh, India, E-mail: aacharyasrinivas@gmail.com.

2
Assoc Prof, Dept of ECE, CMRIT, Hyderabad, Andhrapradesh, India, E-mail: spriyagsn@yahoo.com.

3
HOD, Dept of ECE, CMRIT, Hyderabad, Andhrapradesh, India.

Abstract: This paper presents an area efficient implementation of a high performance parallel multiplier. Radix-4 Booth

multiplier with 3:2 compressors and Radix-8 Booth multiplier with 4:2 compressors are presented here. The design for the 8:2

compressors is presented and compared with the 4:2 compressors. The design is structured for m × n multiplication where m

and n can reach up to 126 bits. Carry Look ahead Adder is used as the final adder to enhance the speed of operation. Finally the

performance improvement of the proposed multipliers is validated by implementing a higher order FIR filter. The design entry

is done in VHDL and simulated using Model Sim SE 6.4 design suite from Mentor Graphics. It is then synthesized and

implemented using Xilinx ISE 9.2i targeted towards Spartan 3 FPGA.

Keywords: FPGA; HDL; Carry Look ahead Adder; Carry Save Adder; Wallace Tree; Booth Encoding.

I. INTRODUCTION

 With the rapid advances in multimedia and

communication systems, real-time signal processing and

large capacity data processing are increasingly being

demanded. The multiplier is an essential element of the

digital signal processing such as filtering and convolution.

Most digital signal processing methods use nonlinear

functions such as discrete cosine transform(DCT) or discrete

wavelet transform (DWT). As they are basically

accomplished by repetitive application of multiplication and

addition, their speed becomes a major factor which

determines the performance of the entire calculation. Since

the multiplier requires the longest delay among the basic

operational blocks in digital system, the critical path is

determined more by the multiplier[2]. Furthermore,

multiplier consumes much area and dissipates more power.

Hence designing multipliers which offer either of the

following design targets high speed, low power

consumption[3], less area or even a combination of them is

of substantial research interest. Multiplication operation

involves generation of partial products and their

accumulation.

 The speed of multiplication can be increased by reducing

the number of partial products and/or accelerating the

accumulation of partial products. Among the many methods

of implementing high speed parallel multipliers, there are

two basic approaches namely Booth algorithm and Wallace

Tree compressors. This paper describes an efficient

implementation of a high speed parallel multiplier using

both these approaches. Here two multipliers are proposed.

The first multiplier makes use of the Radix-4 Booth

Algorithm with 3:2 compressors while the second multiplier

uses the Radix-8 Booth algorithm with 4:2 compressors.

The design is structured for m x n multiplication where m

and n can reach up to 126 bits. The number of partial

products is n/2 in Radix-4 Booth algorithm while it gets

reduced to n/3 in Radix-8 Booth algorithm. The Wallace

tree uses Carry Save Adders (CSA) to accumulate the partial

products. This reduces the time as well as the chip area. To

further enhance the speed of operation, carry-look-ahead

(CLA) adder is used as the final adder [4].

II.MULTIPLER

 Multiplication is one of the most Complex Operations

within arithmetic processors such as the ALU. Hence it is

one of the most complex primitive to be designed in the

configurable chip. The selection criteria for various design

options. Two Architectures are Configurable serial/parallel

Multiplier and Configurable

A. Serial-Parallel Multiplier

 Serial multipliers also find applications in system-on-

chip(SoC) design. As technology scales, more intellectual

property cores and logic blocks will be integrated in a SoC,

resulting in larger interconnect area and higher power

dissipation. The increase in integration density of the on-

chip modules causes the buses connecting these modules to

become highly congested. To overcome this problem, new

techniques have been evolved recently to have on-chip data

transfer in a high speed serial link instead of conventional

mailto:aacharyasrinivas@gmail.com

A.M.SRINIVASA CHARYULU, G.SHANMUGA PRIYA, E.N.V.PURNA CHANDRA RAO

International Journal of Scientific Engineering and Technology Research

Volume.03, IssueNo.02, February-2014, Pages:0239-0244

bus depict the conventional on-chip bus and alternative on-

chip serial-link bus structures, respectively, the serializer at

the source module converts the parallel outputs to a bit

stream that can be transferred in a simple routing network

and at the destination module they are converted back to

parallel data by the deserializer.

B. Serial-Serial Multiplier

 The on-chip serial-link is capable of transmitting data at

Gb/s so that a chunk of parallel data is available when the

destination module finishes the previous computation Under

the new on-chip communication paradigm for digital signal

processing, it is desirable to have a low complexity data

processing unit as the destination module that is able to

perform partial computation on the incoming data stream at

high speed while the data is being buffered illustrates a

potential use of a serial-serial multiplier as a destination

module in a SoC with serial-link bus architecture. The low

complexity pre computation unit forms part of the serial-

serial multiplier and could perform partial computation on

the high speed serial bit stream.

 The unit doubles as a buffer and eliminates the

deserializer. As the data has been partially processed and

buffered, the completion of the multiplication can be done at

a lower speed with a less complex parallel multiplier. The

challenge in such a scheme lies in reducing the critical path

delay of the pre computation unit to that of the deserializer,

which usually has bit rate in the order of several Gb/s. We

introduce this new scheme for the design of serial-serial

multiplier suitable for SoCs with on-chip serial-link bus

architecture. The proposed scheme could also be used as an

alternative to embedded multipliers in the future field-

programmable gate array (FPGA), where configurable logic

blocks (CLBs), embedded multipliers and memory blocks

are integrated with serializer / deserializer to facilitate on-

chip serial data transfer in order to reduce interconnect

complexity.

 A serial accumulator developed based on the new design

paradigm is proposed to deal with very high-speed data

sampling rate of above 4 GHz. The accumulator employs

asynchronous counters1 to perform bit accumulation at each

bit position of the PP matrix, resulting in low critical path

delay and small area, especially for operands with long

word length. Asynchronous counter has a low hardware

complexity but the outputs are not synchronized with the

clock which leads to a timing delay before all output bits of

the counter have settled to their final states. The correct

output of the counter is read after a timing delay to be

analyzed from the timing diagram in Section VI-B. The data

dependent counters change states only when the input bit is

“1,” which leads to low switching power dissipation. The

height of the PP matrix after buffering by the asynchronous

counters is reduced logarithmically to [log2n] +1 before it is

further reduced by the CSA tree.

C. Parallel/parallel Multiplier

 In serial/parallel multiplier algorithm is one design

“serial” components points to reduce silicon chip area. Two

unsigned fixed point numbers represented by m, n bits can

be

 a (m) =am-1……a0

 b (n) =bn-1……..b0

 (1)

The double word length product Q (m+n) is

 Q (m+n) =∑ ∑a
i
 b

i
 2

i+j
 (2)

 Multipliers play an important role in today’s digital signal

processing and various other applications. With advances in

technology, many researchers have tried and are trying to

design multipliers which offer either of the following design

targets–high speed, low power consumption, regularity of

layout and hence less area or even combination of them in

one multiplier thus making them suitable for various high

speed, low power and compact VLSI implementation. The

common multiplication method is “add and shift “algorithm.

In parallel multipliers number of partial products to be

added the main parameter that determines the performance

of the multiplier. To reduce the number of partial products

to be added, Modified Booth algorithm is one of the most

popular algorithms. To achieve speed improvements

Wallace Tree algorithm can be used to reduce the number of

sequential adding stages. Further by combining both

modified Booth algorithm and Wallace Tree technique we

can see advantage of both algorithms in one multiplier.

However with increasing parallelism, the amount of shifts

between the partial products and intermediate sums to be

added will increase which may result in reduced speed,

increase in silicon area due to irregularity of structure and

also increased power consumption due to increase in

interconnect resulting from complex routing. On the other

hand “serial-parallel “multipliers compromise speed to

achieve better performance for area and power

consumption. The selection of a parallel or serial multiplier

actually depends on the nature of application. In this lecture

we introduce the multiplication algorithms and architecture

and compare them in terms of speed, area, power and

combination of these metrics

D. Different multipliers

 As we know in multiplication operation there are two

operands, one is multiplicand and other is multiplier. In

binary number system we do multiplication by using

different type of multiplier. A binary multiplier uses the

simple shift and adds operation. There are many multipliers

introduced in digital electronics. Some of them are

1. Array multiplier

 An array multiplier is shown in below Fig.1 is a

parallel multiplier which does shift and adds all at once.

This multiplier is called an array because it has array of

Design and Implementation of High Speed Radix 8 Multiplier using 8:2 Compressors

International Journal of Scientific Engineering and Technology Research

Volume.03, IssueNo.02, February-2014, Pages:0239-0244

adders. An array multiplier also uses shift and adds

operation as in binary multiplier but it adds the partial

products parallel. The following figure shows the 4x4 array

multiplier.

Digital Multiplication entails a sequence of

additions carried out on partial products the method by

which this partial product array is summed to give the final

product is the key distinguishing factor amongst the

numerous multiplication schemes

Fig.1. Array Multiplication.

2. Wallace Tree Multiplier
 Several popular and well-known schemes, with the

objective of improving the speed of the parallel multiplier,

have been developed in past. Wallace introduced a very

important iterative realization of parallel multiplier. This

advantage becomes more pronounced for multipliers of

bigger than 16 bits. In Wallace tree architecture, all the bits

of all of the partial products in each column are added

together by a set of counters in parallel without propagating

any carries. Another set of counters then reduces this new

matrix and so on, until a two-row matrix is generated. The

most common counter used is the 3:2 counters which is a

Full Adder. The final results are added using usually carry

propagate adder. The advantage of Wallace tree is speed

because the addition of partial products is now O (logN). A

block diagram of 4 bit Wallace Tree multiplier is shown in

below. As seen from the block diagram partial products are

added in Wallace tree block. The result of these additions is

the final product bits and sum and carry bits which are

added in the final fast adder (CRA).

Fig.2. Wallace tree Architecture

Since Wallace Tree is a summation method, it can be used

in conjunction with array multiplier of any kind including

Booth array. The diagram below shows the implementation

of 8 bit squarer using the Wallace tree for compressing the

addition process. Above fig.2 is a Wallace tree Architecture

Fig.3. Operation of 8 bit square

 Wallace introduced a very important iterative realization

of parallel multiplier. This advantage becomes more

pronounced for multipliers of bigger than 16 bits. In

Wallace tree architecture, all the bits of all of the partial

products in each column are added together by a set of

counters in parallel without propagating any carries. Hear

we see in fig.3. Operation of 8 bit square and in fig.4.

Operation of 32 bit Multiplication using Booth and Wallace

tree. Another set of counters then reduces this new matrix

A.M.SRINIVASA CHARYULU, G.SHANMUGA PRIYA, E.N.V.PURNA CHANDRA RAO

International Journal of Scientific Engineering and Technology Research

Volume.03, IssueNo.02, February-2014, Pages:0239-0244

and so on, until a two-row matrix is generated. The most

common counter used is the 3:2 counters which is a Full

Adder. The final results are added using usually carry

propagate adder. The advantage of Wallace tree is speed

because the addition of partial products is now O (logN). A

block diagram of 4 bit Wallace Tree multiplier is shown in

below. As seen from the block diagram partial products are

added in Wallace tree block fig.2. The result of these

additions is the final product bits and sum and carry bits

which are added in the final fast adder (CRA).

Fig.4. 32 bit Multiplication using Booth and Wallace tree

III.RADIX 2 BOOTH MULTIPLIER

 Booth algorithm provides a procedure for multiplying

binary integers in signed-2’s complement representation.

According to the multiplication procedure, strings of 0’s in

the multiplier require no addition but just shifting and a

string of 1’s in the multiplier from bit weight 2
k
 to weight

2
m
 can be treated as 2

k+1
- 2

m
. Booth algorithm involves

recoding the multiplier first. In the recoded format, each bit

in the multiplier can take any of the three values: 0, 1 and -

1.Suppose we want to multiply a number by 01110 (in

decimal 14). This number can be considered as the

difference between 10000 (in decimal 16) and 00010 (in

decimal 2). The multiplication by 01110 can be achieved by

summing up the following products:

 2
4
 times the multiplicand (2

4
 = 16)

 2’s complement of 2
1
 times the multiplicand (2

1
 = 2).

 In a standard multiplication, three additions are required

due to the string of three 1’s.This can be replaced by one

addition and one subtraction. The above requirement is

identified by recoding of the multiplier 01110 using the

following rules summarized in table 1.

Table 1: Radix 2 recoding rules

 To generate recoded multiplier for radix-2, following steps

are to be performed:

 Append the given multiplier with a zero to the LSB

side.

 Make group of two bits in the overlapped way

 Recode the number using the above table.

 Consider an example which has the 8 bit multiplicand as

11011001 and multiplier as 011100010.

A. Modified Booth Algorithm for Radix 4

 One of the solutions of realizing high speed multipliers is

to enhance parallelism which helps to decrease the number

of subsequent calculation stages. The original version of the

Booth algorithm (Radix-2) had two drawbacks. They are:

1. The number of add subtract operations and the number

of shift operations becomes variable and becomes

inconvenient in designing parallel multipliers.

2. The algorithm becomes inefficient when there are

isolated 1’s. These problems are overcome by using

modified Radix 4.

Design and Implementation of High Speed Radix 8 Multiplier using 8:2 Compressors

International Journal of Scientific Engineering and Technology Research

Volume.03, IssueNo.02, February-2014, Pages:0239-0244

 Booth algorithm which scans strings of three bits is given

below:

1. Extend the sign bit 1 position if necessary to ensure

that n is even.

2. Append a 0 to the right of the LSB of the

multiplier.

3. According to the value of each vector, each Partial

Product will be 0, +M,-M, +2M or -2M.

 The negative values of B are made by taking the 2’s

complement and in this paper Carry-look-ahead (CLA) fast

adders are used. The multiplication of M is done by shifting

M by one bit to the left. Thus, in any case, in designing n-bit

parallel multiplier, only n/2 partial products are produced.

The partial products are calculated according to the

following rule

 (3)
Where B is the multiplier.

Table2. Modified Radix 4 recoding rules

Consider example for radix 4:

Table3. Comparison of normal and modified multiplier

Device utilization summery for the device 3s500efg320-4

Total delay for modified: 92.458ns (54.205ns logic,

38.253ns route) (58.6% logic, 41.4% route)

Total delay for normal: 115.924ns (64.207ns logic,

51.717ns route) (55.4% logic, 44.6% route)

Table4. In radix-8 recoding insert this table

IV. SIMULATION RESULTS

For radix 8 with 8:2 compressors simulation results as

shown in fig.5,

Multiplicand

=00"&x"0000000ABDC45600000000000000569"

Multiplier="00"&x"0000ABCD7800000000000000006954

4"

Product=00000000000073561249EE650000000003E83085

EA34D8000000000239D8CE4

Fig.5. Radix_8with 8:2 compressors simulation result

V. CONCLUSION

 In this paper, the design and implementation of two high

performance parallel multipliers is proposed. The first

multiplier makes use of the Radix-4 Booth Algorithm with

3:2 compressors while the second multiplier uses the Radix-

8 Booth algorithm with 4:2 compressors. Both the designs

were implemented on Spartan 3 FPGA. The multiplier using

Radix- 4 Booth algorithm with 3:2 compressors shows more

reduction in device utilization as compared to the multiplier

A.M.SRINIVASA CHARYULU, G.SHANMUGA PRIYA, E.N.V.PURNA CHANDRA RAO

International Journal of Scientific Engineering and Technology Research

Volume.03, IssueNo.02, February-2014, Pages:0239-0244

using Radix-8 Booth algorithm with 4:2 compressors.

Meanwhile the multiplier using Radix-8 Booth algorithm

with 8:2 compressors are found to be faster than the other.

Also the use of Radix- 8 Booth multiplier with 8:2

compressors for a higher order FIR filter showed a dramatic

speed improvement than that using Radix-4 Booth

multiplier with 4:2 compressors.

VI. REFERENCES

[1] Aparna P R, Nisha Thomas, “Design and

Implementation of a High Performance Multiplier using

HDL”, IEEE Transactions, vol.20, pp.: 401-408, 08 Feb.

2009.

[2] Dong-Wook Kim, Young-Ho Seo, “A New VLSI

Architecture of Parallel Multiplier-Accumulator based on

Radix-2 Modified Booth Algorithm”, Very Large Scale

Integration (VLSI) Systems, IEEE Transactions, vol.18, pp.:

201-208, 04 Feb. 2010.

[3] Prasanna Raj P, Rao, Ravi, “VLSI Design and Analysis

of Multipliers for Low Power”, Intelligent Information

Hiding and Multimedia Signal Processing, Fifth

International Conference, pp.: 1354-1357, Sept. 2009.

[4] Lakshmanan, Masuri Othman and Mohamad Alauddin

Mohd.Ali, “High Performance Parallel Multiplier using

Wallace-Booth Algorithm”, Semiconductor Electronics,

IEEE International Conference , pp.: 433- 436, Dec. 2002.

[5] Jan M Rabaey, “Digital Integrated Circuits, A Design

Perspective”, Prentice Hall, Dec.1995.

[6] Louis P. Rubin field, “A Proof of the Modified Booth's

Algorithm for Multiplication”, Computers, IEEE

Transactions, vol.24, pp.: 1014-1015, Oct. 1975.

[7] Rajendra Katti, “A Modified Booth Algorithm for High

Radix Fixed point Multiplication”, Very Large Scale

Integration (VLSI) Systems, IEEE Transactions, vol. 2, pp.:

522-524, Dec. 1994.

[8] C. S. Wallace, “A Suggestion for a Fast Multiplier”,

Electronic Computers, IEEE Transactions, vol.13, Page(s):

14-17, Feb. 1964.

[9] Hussin R et al, “An Efficient Modified Booth Multiplier

Architecture”, IEEE International Conference, pp.:1-4,

2008.

