
Policy-Based Dynamic Service Chaining in
Network Functions Virtualization

Eder J. Scheid, Cristian C. Machado, Ricardo L. dos Santos, Alberto E. Schaeffer-Filho, Lisandro Z. Granville
Institute of Informatics - Federal University of Rio Grande do Sul

Porto Alegre, RS, Brazil
Email: {ejscheid, ccmachado, rlsantos, alberto, granville}@inf.ufrgs.br

Abstract—Network Functions Virtualization (NFV) enables
the rapid development, flexible management, and the dynamic
placement of new, innovative Virtualized Network Functions
(VNFs), such as load balancers, firewalls, and Intrusion Detection
Systems (IDSes). Furthermore, NFV along with Software-Defined
Networking (SDN) allows VNFs and physical middleboxes to
be dynamically composed into service chaining graphs. Despite
these benefits, service chaining graphs can be further improved
through the use of techniques that have not been satisfacto-
rily explored yet, such as Policy-Based Network Management
(PBNM). In PBNM, policies can be written and triggered during
runtime, thus supporting the dynamic (re)configuration of service
graphs with minimal disruption. In this paper, we propose an
approach to automatically design NFV service chaining graphs
based on policies. These policies rule the forwarding of traffic
and the construction of service chaining graphs. In our approach,
service chaining graphs are enforced dynamically in the network
during runtime. Finally, to assess its feasibility and generality,
we create two different scenarios to demonstrate and discuss how
our solution can be employed and its expected results.

Index Terms—Policy-based Network Management; Network
Functions Virtualization; Service Chaining.

I. INTRODUCTION

Network functions, such as load balancing, firewalls, and
Intrusion Detection Systems (IDSes) are traditionally real-
ized in physical devices often refereed to as middleboxes.
Middleboxes tend to be proprietary and vendor-specific, and
thus force network operators to learn about the peculiarities
of middleboxes from different vendors, which is counter-
productive. Also, physical middleboxes are not flexible enough
to accommodate bursts of demand, which intrinsically hinders
their scalability. Network Functions Virtualization (NFV) [1]
is a novel technology that addresses the lack of flexibility of
physical middleboxes. NFV proposes the use of Commercial
Off-The-Shelf (COTS) hardware to host virtualized network
services. With this approach, the capital expenditure (CAPEX)
and operational expenditure (OPEX) can be significantly re-
duced. Also, with NFV, service provisioning can be easily
scaled up and down according to network demands.

NFV allows the chaining of multiple Virtualized Network
Functions (VNFs). Such VNF chaining enables network ope-
rators to dictate to which sequence of VNFs a packet should go
through. The act of specifying the sequence of VNFs is called
network service chaining [2]. Service chaining on current
network infrastructures is statically defined and dependent
on the network’s topology. This imposes a challenge to the

operator when adding or removing services, considering that
earlier technologies are difficult to redeploy [3]. With NFV and
Software-Defined Networking (SDN) [4], this chaining can
be performed dynamically. SDN decouples the control plane
from the data plane, providing a global view of the network
and a controller that performs traffic forwarding decisions
[4]. With this separation, a controller can be implemented to
steer the traffic dynamically during runtime. Therefore, service
chaining can be easily adapted to the administrator’s need.
This chaining is created from existent VNFs and middleboxes,
thus using network resources efficiently [5].

Network operators have different needs according to the
traffic of the networks that they manage. Also, network users
do not necessarily need the same services (e.g., packets
exchanged inside the enterprise’s network can pass through
a simple firewall instead of a more sophisticated one). From
these premises, a question emerges: how can the operator
dynamically compose a set of VNFs to handle customized
traffic flows? An approach to solving this problem is to use
policies to govern the service chain of a flow. Policy-Based
Network Management (PBNM) in computer networks is a
concept widely applied and well-defined [6], but as long as
the authors of this paper are aware of, its use in NFV service
chaining has not been exploited.

In this paper, we present a PBNM solution to design and
manage service chaining, where business-level operators can
write Service Level Agreements (SLAs) to guide the building
of service chaining graphs. We also introduce a Controlled
Natural Language (CNL) to establish requirements and con-
straints for the writing of policies. Further, we discuss our
solution’s feasibility and generality in two different scenarios.
Our proposed solution can be employed in both homogeneous
environments (VNFs only) and heterogeneous environments
(composed of both VNFs and physical middleboxes).

This paper is structured as follows. In Section II, we review
work related to this approach. Then, in Section III, the solution
and associated architecture are described. In Section IV, two
case studies are outlined and discussed. Finally, in Section V,
we finish this paper with conclusions and future work.

II. RELATED WORK

PBNM is a concept already widely employed and studied
for years. However, with the recent scientific and industrial
interest in both NFV and SDN, this concept is emerging back.

2016 IEEE Symposium on Computers and Communication (ISCC)

978-1-5090-0679-3/16/$31.00 ©2016 IEEE

Moreover, some high-level languages for programming Open-
Flow networks (e.g., Frenetic [7]), simplify the steering and
the classification of traffic by abstracting packet-forwarding
policies and modularizing components. Thus, promoting the
use of PBNM approaches in OpenFlow networks.

Machado et al. [8] propose to manage an SDN environment
with minimal changes in the controller implementation. To
achieve this, the authors introduce a framework that translates,
in the work’s scope, Quality-of-Service (QoS) policies into
a set of OpenFlow rules. The work aims to reduce the
complexity of management tasks and to enable the writing of
high-level policies by using a CNL. Nevertheless, the authors
do not address traffic steering policies nor NFV.

In the service chaining area, the Internet Engineering Task
Force (IETF) has described an architecture for the develop-
ment of Service Function Chains (SFCs) [9]. In addition, the
Network Service Headers (NSH) [10] is an approach that
introduces a new header in packets traveling through services
instances. This header is intended to help the separation of
traffic. However, the addition of this header increases the traffic
processing time, which may cause delays or even packet loss.

Qazi et al. [11] proposed SIMPLE, a solution that relies
on SDN to provide middlebox traffic steering. SIMPLE intro-
duces a policy enforcement layer which translates user-defined
policies into OpenFlow rules and track packets that had their
headers modified by service instances. This solution addresses
the service chaining problem with SDN but does not take
into consideration if the middleboxes are deployed as VNFs,
consequently, not leveraging NFV’s flexibility and scalability.

Likewise, Csoma et al. [12] introduced ESCAPE, a proto-
typing framework that allows the developer to test and chain
customized VNFs in an SDN environment. ESCAPE employs
some consolidated tools, such as Mininet and ClickOS, pro-
viding a strong basis to develop and evaluate different types
of NFV and SDN solutions. Although allowing the developer
to compose any VNF chain, the prototype does not support
the modification of this chain during runtime.

Several solutions have been proposed in the NFV and SDN
area [13] [14] [15] [16] (due to space constraints they are not
detailed in this paper). Despite the efforts employed by the
authors to provide these solutions, such solutions have some
important shortcomings. For example, the synergy between
SDN and NFV that introduces the possibility to write high-
level rules to guide the composition of service chains is not
considered. In addition, the mechanisms to analyze low-level
rules in order to provide richer data to guide this composition
are not covered. Therefore, we pursued to cover all these
aspects during the development of our solution.

III. POLICY-BASED DYNAMIC SERVICE CHAINING

We present an approach to enable network operators to write
management policies that govern the chaining of VNFs. Based
on the set of available VNFs in the infrastructure, our proposed
framework creates a graph that represents the Service Chaining
(SC). This graph is then used by an SDN controller to perform
the traffic steering. The primary objective of our solution is to

ease the tasks of network operators when specifying service
chains and also decouple the need of expressing how low-
level configurations must be implemented in the infrastructure.
Therefore, is not under the scope of our solution how the
controller will perform the steering of traffic.

A. Controlled Natural Language

The syntax of many policy languages often resembles the
syntax of traditional programming languages, which is the case
of Ponder [17]. This approach requires the network operator
to have a prior knowledge of the language and to translate
SLAs into a particular format. On the other hand, with the
employment of CNLs [18] to write policy languages, network
operators can write SLAs in (a subset of) English, which
diminish the need for prior specific knowledge. Machado et al.
[8] proves the feasibility of using a CNL to write SLAs that
are translated to QoS rules and then enforced in the network
elements. Given this premise, we present a CNL to write rules
for the creation of service chaining graphs. The grammar of
the proposed CNL is presented in the Listing 1.

Listing 1: Proposed CNL grammar
1 Language :→<S e r v i c e><Flow><P r e p o s i t i o n ><E x p r e s s i o n>
2 S e r v i c e :→ s e r v i c e−r e g e x e s
3 Flow :→<D i r e c t i o n><Targe t><D i r e c t i o n><Targe t>
4 D i r e c t i o n :→ From |To
5 T a r g e t :→ use r−d e f i n e d−r e g e x e s
6 P r e p o s i t i o n :→Have
7 E x p r e s s i o n :→<Term>|<Term><Connec t ive><E x p r e s s i o n>
8 Term :→<A d j e c t i v e><Contex t>
9 A d j e c t i v e :→ a d j e c t i v e−r e g e x e s

10 C o n t e x t :→ c o n t e x t−r e g e x e s
11 C o n n e c t i v e :→And |Or

As the policy language is defined as a CNL, in order
to identify strings that compose a policy in a solid way
we defined a set of regular expressions. We have classified
these regular expressions into four main types according their
purposes: (i) service-regexes to identify the type of service;
(ii) user-defined-regexes that are set by the user; (iii) adjective-
regexes to identify the level of requirement; and (iv) context-
regexes to identify the context of the policy. Some examples
of regular expressions are presented in Table I.

TABLE I: Regular Expressions Examples

Type Expression

service-regexes HTTP, SMTP, FTP, VoIP...

user-defined-regexes teachers, staff, Internet...

adjective-regexes none, low, medium, high...

context-regexes inspection, perfomance, resiliency...

B. Architectural Model

In this section, we propose a solution that permits the
writing of SLAs which are an abstraction of a service chain.
This means that the network operator only specifies the level
of context enforcement a flow must have. Thus, a flow has to
pass through the respective service chain that complies with
the stored policies.

2016 IEEE Symposium on Computers and Communication (ISCC)

We present in Figure 1 a high-level perspective of the
conceptual model of our solution. The components charac-
terized with a dashed line are existing solutions and were not
implemented, given that our solution is generic enough and can
be applied on top of them. In the next sections, we present a
more in-depth description of the layers and its components.

Fig. 1: Proposed System Architecture

1) Service Layer: The Service Layer comprises: (i) tradi-
tional lifecycle management functions, such as Operation Sup-
port Systems (OSS) and Business Support Systems (BSS), (ii)
virtualization-related management functions, such as lifecycle
management for VNFs; and (iii) adaptation functions toward
lower layer. As the management functions of the service layer
must not depend on the infrastructure of the network, their
implementation is generic. They are described below.

• Web-based Interface: This component acts as a frontend
that allows the operator to interact with the VNF Manage-
ment and the Policy Editor using a user-friendly interface.
With the utilization of a Graphical User Interface (GUI),
the interaction with the system is simplified.

• VNF Management: In order for the system to recognize
the available VNFs in the infrastructure, infrastructure-
level operators must inform their description and details.
To manage this information (create, remove and update
VNFs) a set of functions are accessible using the op-
erator’s account to login in the web-based interface. The
NFV ETSI Industry Specification Group (ISG) formalizes
the information that a VNF should contain [19]. This
information is stored in the VNF Descriptor (vnfd),
which contains elements regarding requirements of the
deployment and operation of VNFs, such as the num-
ber of virtual CPUs (computation requirement),
the amount of virtual network bandwidth needed
(virtual network bandwith resource) and
the version of the VNF software.

• Policy Editor: This component allows business-level ope-
rators to create, retrieve, update and delete policies.
Operators can also enable or disable policies accordingly
to their needs. The aforementioned CNL is used to input
the policies. Also, the Policy Editor has to parse and
match the given CNL with low-level rules.

• Policy Repository: Policies wrote by business-level ope-
rators are stored in this component. This repository is
accessed by the Policy Decision Point (PDP) and the
Service Chaining Graph Builder to design the graphs.

2) Orchestration Layer: This layer comprises two compo-
nents, the resource orchestrator, and the controller adapter,
which are embedded in this layer and are not depict in
architecture. The first is composed of virtualizers, policy
enforcement and orchestration with underlying resources. The
latter comprises resource abstraction functions and virtualiza-
tion for different technologies. This layer is in charge of all
the infrastructure management and networking control, being
the main layer of our solution. Within these two components,
we place a set of elements; they are detailed below.

• VNF Repository: This component holds information
about the VNFs informed by the infrastructure-level op-
erator in the GUI. The ETSI defines that once an instance
of a VNF is deployed, a VNF Record (vnfr) is created.
This record (e.g., IP Address (vnf address), type of
service, and status) is updated during the lifecycle of the
respective VNF by the NFV Orchestrator.

• Service Chaining Graph Builder: This component access
the policies wrote by business-level operators and auto-
matically creates service chaining graphs based on those
policies. In addition, to have sufficient information to
create these graphs, this element retrieves the available
VNFs from the VNF Repository. Once it retrieved the
detailed information about the policies and VNFs, the
graphs are created and stored or updated in a repository.

• SC Graphs Repository: This repository stores the Service
Chaining graphs created by the builder. The stored tuple
consists of a policy and its respective service chain.

• Policy Decision Point (PDP): This component determines
which policy is going to be enforced based on the
information given by the SDN Controller and the NFV
orchestrator. It decides which policy matches with a flow
informed by the SDN Controller given the stored policies
in the Policy Repository. Information about the network
and VNFs are constantly fed to this component.

• Policy Enforcement Point (PEP): This component informs
the Traffic Steering Component to access the respective
graph in the SC Graphs Repository and install the rules.

• Traffic Steering Component: This component communi-
cates with the SDN controller and steers the flows through
the desired set of VNFs based on the defined service
chaining graph. This steering is ruled by the policies
enforced by the PEP. Thus, when a policy is enforced, this
component access the SC Graphs Repository to retrieve
the graph and informs the SDN controller of the rules
that must be installed in the switches.

3) Infrastructure Layer: Within this layer are compromised
all the physical resources, and controllers. Resources are com-
posed of machines containing compute, storage and network
resources and their respective managers. In our model users,
VNFs, routers, and servers compose this layer.

2016 IEEE Symposium on Computers and Communication (ISCC)

C. Policy Translation

The process of translating SLAs into service chains com-
prises three phases, performed by the Policy Editor (Phase 1
and 2) and Service Chaining Graph Builder (Phase 3).

1) Phase 1 - Policy Validation: To validate an SLA written
by an operator, the Policy Editor has to parse this SLA into a
set of defined regular expressions, as depict in Figure 2. The
Policy Editor iterates over the string to find service-regexes
first, then it moves to user-defined-regexes that specifies the
source and destination of the flow, and finally, it searches for
the adjective-regexes followed by the context-regexes. If the
parser encounters an error in any part of the parsing process,
the SLA is marked as invalid and is not stored in the database.
In the web-based interface, the operator receives an error
message. In addition, there is an option that allows the operator
to validate the SLA before committing it to the database.

Fig. 2: Valid SLA Policy Parsing Example

2) Phase 2 - Conflict Detection: The primary focus of this
paper is not to resolve conflicts among policies. However, our
system estimates some conflicting policies at the insertion.
Then, the GUI displays this information to the current operator,
who must write a new nonconflicting policy. Conflicts can
vary from already defined policies to priority conflicts, such
as the inclusion of two equal policies but with different
adjective-regex will trigger a priority conflict. For example,
if an operator writes an SLA “HTTP traffic from teachers to
students have high inspection” and later tries to insert another
SLA informing “HTTP traffic from teachers to students have
none inspection”, the system will notify the operator of the
conflict, which in this case is the same service-regex (HTTP),
same user-defined-regexes (teachers and students) and different
adjective-regexes (high and none) for the same context-regex
(inspection). Next, after the notification, the operator must
resolve the conflicting SLAs.

3) Phase 3 - Service Chain Graph Construction: Once
policies are defined and inserted into the database, the Service
Chaining Graph Builder component has to create the desired
service chains. To construct these service chains, the builder
must have knowledge of what VNFs are available for compos-
ing the graphs. It does that by accessing the VNF Repository
and retrieving the information stored at the VNF descriptors
or records. This process of retrieval is guided by the context-
regexes (e.g., if the context-regex=“inspection”) the builder
only retrieves VNFs related with security or inspection, which
minimizes the amount of VNF information to process.

After retrieving the VNFs, the SC builder sets a chaining
threshold for the highest level related to the context. This
threshold is based on the available VNFs. For instance, a graph

composed of a firewall, an intrusion detection system, and a
deep packet inspection may represent the highest “inspection
level” for an infrastructure with those three VNFs available.
In a first moment, this threshold is a suggestion based on pre-
defined thresholds; the infrastructure-level operator can add
or remove VNFs as required. After setting this threshold, the
adjective-regex is examined to determine the desired context
level of the to-be-constructed service chain. If the desired
context level is high, the service chain is set to the threshold,
which is the case of adjective-regex depict in Figure 2.
Otherwise, the builder conducts the removal of virtualized
functions until it reaches the desired level.

In Table II some examples of context levels and its
equivalent service chain are represented. It also represents
the different chaining possibilities given a set of VNFs.
The “→” character represents an edge in the graph, and
the functions are those defined as present in the infrastruc-
ture by infrastructure-level operators. The resultant graph is
composed of network functions (nodes) and links (edges);
the sequence of the network functions is determined based
on the “vnf depedency” element present in the ETSI
Network Service Descriptor (nsd). This element describes
the dependency among VNFs and informs which source VNF
must exist before a target VNF is deployed. The information
stored in the node is a pointer to the desired VNF in the
repository and in the edges are stored only linking information,
such as the source’s and destination’s port.

Lastly, the Service Chaining Graph Builder inserts the tuple
<policy,graph> in the SC Graph Repository for posterior
access by the Traffic Steering Component.

TABLE II: Service Chains and Context Levels Examples

context-regex adjective-regex Graph Builder Output

inspection

high Firewall → DPI → IPS
medium Firewall → DPI

low Firewall

D. Traffic Classification and Steering

To properly steer the traffic through the set of desired
VNFs, the incoming flow of packets must be classified. This
classification is performed by the PDP, in which the services-
regexes and the user-defined-regexes are employed to match
with the policies stored at the Policy Repository. The former
is used to classify the type of service of the current flow. The
latter defines the source and destination of the graph (e.g.,
“from teachers to Internet”). This information is then utilized
to retrieve the matching policy from the Policy Repository.

Having retrieved the policy, the PDP forwards the infor-
mation and the policy to the PEP to enforce it. This act of
enforcing is performed by informing this policy to the Traffic
Steering Component so that it can retrieve the matching SC
graph from the SC Graph Repository.

Considering that SDN helps to address the problem of
dynamic steering of traffic, with the use of OpenFlow [20]
enabled switches and routers; and that OpenFlow rules are

2016 IEEE Symposium on Computers and Communication (ISCC)

installed and expired during runtime, SDN was elected as the
networking paradigm to compose the solution. With the use of
this approach, the network becomes more flexible and more
manageable, as service graphs can be modified during runtime.

TABLE III: User Domains and Respective IP Ranges

Scenario 1 Scenario 2
User Domain IP Range User Domain IP Range

human-resources 154.15.2.0/24 platinum 135.98.1.0/24
accounting 154.15.3.0/24 diamond 135.98.5.0/24
development 154.15.4.0/24 gold 135.98.10.0/24
directory 154.15.5.0/24 silver 135.98.15.0/24
marketing 154.15.7.0/24 bronze 135.98.25.0/24

IV. CASE STUDIES

To provide an evaluation of the feasibility of our solution,
we describe its implementation in two different scenarios that
serve as case studies. The choice of these scenarios was based
on two premises: the various levels of hierarchy present in the
organization and the presence of heterogeneous traffic in the
network. As an example of the level hierarchy, we can state
that in the case of VNF Service Chain as a Service, “gold
users” have a higher priority than “silver users” and so on.
Heterogenous traffic is described as the presence of traffic such
as different internet protocols competing for a network share.

A. Scenario 1 - Common Enterprise Network

Let us consider the case of a generic enterprise, with
different departments, such as Marketing, Human Resources,
Directory, and among others. These departments have different
network requisites due to the diversity of applications in each
of them. For example, the need for a high level of inspection
on financial transactions originated from the Marketing de-
partment or a strong security between the communication of
two branches. Thus, the organization’s network business-level
operator and infrastructure-level operators must guarantee that
these requirements are fulfilled. In order to comply with
these requirements, infrastructure-level operators can define
different IP ranges for the departments, an example of user
domains can be found in column Scenario 1 in Table III.
Moreover, business-level operators can define sets of policies
for the traffic traveling on the organization’s network.

As an example, we will define an enterprise with the user
domains presented in Table III, column Scenario 1. This
scenario is depicted in Figure 3. The board of directors may
hold weekly meetings with the human resources department.
In order to eliminate the need of physical presence in the
conference room, the participants can use VoIP calls to attend
the meeting. This possibility introduces the VoIP QoS require-
ment. To address this requirement, one could write an SLA of
the type “VoIP traffic from human-resources to directory have
high performance” and only activate this SLA once a week,
during the meeting. This traffic will then be steered to the
set of middleboxes imposed by our solution, guaranteeing a
good VoIP user experience for the participants, dynamically
using network resources (solid red line). If we consider an
organization with more than one branch, infrastructure-level

operators can detail branch domains and user domains for
these branches and a business-level operator can write SLAs
accordingly, e.g., “HTTP traffic from branch1 to branch3

have low security” (blue dashed line) and so on.

Fig. 3: Traffic Flows in a Common Enterprise Network

This example aims to provide a picture of how can our
approach be used in organizations with multiple departments.
The CNL proposed by our solution is generic enough to
englobe the requirements of different types of departments and
occasions present in enterprises. In addition, there is support
for enterprises with multiple branches, as user domains can be
assumed to be edge routers inside a branch’s.

B. Scenario 2 - VNF Service Chain as a Service (VNF-SCaaS)

The price of current Internet middleboxes represents a
significant percentage of a company’s expenses. With this
premise, there is the possibility to monetize service chaining
graphs specially designed for exclusive corporations, reducing
its CAPEX and OPEX. Our approach facilitates this moneti-
zation of service chains by allowing the network operator to
set different users domains in the infrastructure with different
classes, such as represented in column Scenario 2 in Table
III. If a company does not require a high level of inspection
or traffic performance it does not need to buy an expensive
middlebox just to use some of it features, it pays to have a
low degree of inspection in a private NFV environment and
redirect the traffic to them. Some examples of SLAs that can
be applied to a VNF-SCaaS environment are: (i) “VoIP traffic
from diamond to Internet have high performance”, (ii) “FTP
traffic from Internet to bronze have none inspection”; and (iii)
“SMTP traffic from silver to Internet have low inspection”.

As the steering of traffic is dynamic, business-level ope-
rators can define not only classes but generic traffic from
different tenants. Let us consider the case where a company
provides VNF as a Service, portraited in Figure 4. In this case,
there is more than one subscriber to this service, so a business-
level operator can define user domains for different subscribers
(tenants). Once these domains are defined, the operator can
write policies such as “HTTP traffic from tenantX to tenantY
have high inspection” or “Video traffic from tenantX to
tenantZ have medium performance”. The first policy is
translated, and our solution constructs a service chain for this
flow containing an IDS, a Firewall and a DPI (solid red line).

2016 IEEE Symposium on Computers and Communication (ISCC)

Having the service chain defined, the SCaaS provider can
charge the tenantX accordingly. The second policy specifies
that video service from tenantX to tenantZ must have some
level of performance. However, the SCaaS provider only owns
a license for a single video caching virtualized function;
therefore, the constructed graph will comprise only the video
cache function (blue dashed line). This service chain (a video
caching function) may improve the overall video quality in
streaming, meeting some of tenantZ’s expectation.

Fig. 4: Traffic Flows in a VNF-SCaaS Infrastructure

This case study is focused on applying NFV as a Service
alongside with Service Chaining as a Service. We observe
that both service chaining and NFV can be monetized as
a business-level operator can add value to different service
chains and VNFs, thus charging accordingly.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a policy-based approach to
chain multiple VNFs. We also have defined a CNL to allow
business-level operators to write SLAs in a GUI. These SLAs
guide the construction and the enforcement of service chains
in the network. Our approach takes in consideration some
elements from the ETSI specification to guide the construction
of service chaining graphs. In our approach, PBNM is applied
to support the implementation of the components. With the
employment of PBNM and a CNL to dynamically compose
service chaining graphs, the need for previous knowledge from
network operators is lowered, thus reducing OPEX. Addition-
ally, combining NFV and SDN to compose the infrastructure
adds elasticity and lowers CAPEX.

We provided two case studies that have validated the fea-
sibility of our solution. The first details a common enterprise
network divided by departments and branches. The second
presents a scenario where our solution helps operators to
monetize their middleboxes. This is achieved by implementing
means to provide VNF service chaining as a service, allowing
a business-level operator to set classes of priority to different
customers, thus charging accordingly. In these two cases, the
PBNM approach proved to simplify the management and
creation of customized service chains to different flows.

To extend our solution, future work proposals include: (i)
integration with an implemented NFV framework, such as the

ESCAPE framework described in Section II, (ii) extension of
our solution to address currently not supported requirements,
such as QoS and performance; and (iii) propose a more
sophisticated approach to the suggestion of thresholds and
VNF order in the service chaining graph.

REFERENCES

[1] “Network Functions Virtualisation (NFV),” White Paper, European
Telecommunications Standards Institute (ETSI), 2014.

[2] P. Quinn and T. Nadeau, “Problem Statement for Service Function
Chaining,” (IETF), RFC 7498, 2015.

[3] W. John, K. Pentikousis, G. Agapiou, E. Jacob, M. Kind, A. Manzalini,
F. Risso, D. Staessens, R. Steinert, and C. Meirosu, “Research Directions
in Network Service Chaining,” in 2013 IEEE SDN4FNS, 2013.

[4] N. Feamster, J. Rexford, and E. Zegura, “The Road to SDN: An
Intellectual History of Programmable Networks,” SIGCOMM Comput.
Commun. Rev., vol. 44, no. 2, 2014.

[5] J. Blendin, J. Ruckert, N. Leymann, G. Schyguda, and D. Hausheer,
“Position Paper: Software-Defined Network Service Chaining,” in 2014
Third European Workshop on Software Defined Networks (EWSDN).

[6] J. Strassner, Policy-Based Network Management: Solutions for the Next
Generation (The Morgan Kaufmann Series in Networking). San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2003.

[7] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A Network Programming Language,”
in Proceedings of the 16th ACM SIGPLAN International Conference on
Functional Programming, ser. ICFP ’11. ACM, 2011.

[8] C. Cleder Machado, J. Araujo Wickboldt, L. Zambenedetti Granville,
and A. Schaeffer-Filho, “Policy authoring for software-defined net-
working management,” in Integrated Network Management (IM), 2015
IFIP/IEEE International Symposium on, May 2015, pp. 216–224.

[9] J. Halpern and C. Pignataro, “Service Function Chaining (SFC) Archi-
tecture,” (IETF), RFC 7665, 2015.

[10] P. Quinn and U. Elzur, “Network Service Header,” Working Draft,
(IETF), Internet-Draft draft-ietf-sfc-nsh-01, 2015.

[11] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
“SIMPLE-fying Middlebox Policy Enforcement Using SDN,” in Pro-
ceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, ser.
SIGCOMM ’13. New York, NY, USA: ACM, 2013, pp. 27–38.

[12] A. Csoma, B. Sonkoly, L. Csikor, F. Németh, A. Gulyas, W. Tavernier,
and S. Sahhaf, “ESCAPE: Extensible Service Chain Prototyping Envi-
ronment Using Mininet, Click, NETCONF and POX,” in Proceedings
of the 2014 ACM Conference on SIGCOMM. ACM, 2014.

[13] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “OpenNF: Enabling Innovation in Network
Function Control,” in Proceedings of the 2014 ACM Conference on
SIGCOMM, ser. SIGCOMM ’14. New York, NY, USA: ACM, 2014.

[14] X. Ge, Y. Liu, D. H. Du, L. Zhang, H. Guan, J. Chen, Y. Zhao, and
X. Hu, “OpenANFV: Accelerating Network Function Virtualization with
a Consolidated Framework in Openstack,” in Proceedings of the 2014
ACM Conference on SIGCOMM, ser. SIGCOMM ’14. ACM, 2014.

[15] Y. Zhang, N. Beheshti, L. Beliveau, G. Lefebvre, R. Manghirmalani,
R. Mishra, R. Patneyt, M. Shirazipour, R. Subrahmaniam, C. Truchan,
and M. Tatipamula, “StEERING: A software-defined networking for
inline service chaining,” in Network Protocols (ICNP), 2013 21st IEEE
International Conference on, Oct 2013, pp. 1–10.

[16] W. Ding, W. Qi, J. Wang, and B. Chen, “OpenSCaaS: an open service
chain as a service platform toward the integration of SDN and NFV,”
Network, IEEE, vol. 29, no. 3, pp. 30–35, May 2015.

[17] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The Ponder Policy
Specification Language,” in Proceedings of the International Workshop
on Policies for Distributed Systems and Networks, ser. POLICY, 2001.

[18] T. Kuhn, “A Survey and Classification of Controlled Natural Lan-
guages,” Comput. Linguist., vol. 40, no. 1, pp. 121–170, Mar. 2014.

[19] European Telecommunications Standards Institute (ETSI), “ETSI Group
Specification Network Functions Virtualisation (NFV); Management and
Orchestration,” 2014.

[20] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, 2008.

2016 IEEE Symposium on Computers and Communication (ISCC)

